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Stereospecific access to α-haloalkyl esters via enol
ester epoxides and synthesis of a C3–C21
fragment of bastimolide A†
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We report a 14-step synthesis of a C3–C21 fragment of bastimo-

lides A and B, antimalarial macrocyclic polyketides. A crucial ring-

opening reaction of an enol ester epoxide showed previously unex-

plored reactivity, leading to an asymmetric synthesis of α-haloalkyl
esters. The α-haloalkyl ester synthesis was shown to be stereo-

specific, and provided access to a key α-silyloxyaldehyde to initiate

application of configuration-encoded 1,5-polyol synthesis. This

strategy established the C11/C15 and C15/C19 remote stereoche-

mical relationships of the bastimolides. The potential of this C3–

C21 fragment for coupling to C22–C41 was established using a

Mukaiyama aldol reaction with a simple enolsilane.

Introduction

Malaria continues to have a significant global impact causing
an estimated 249 million malaria cases in 2022,1 and the
threat of resistance emphasizes the continuing need for new
treatment options. Marine cyanobacteria offer structurally
interesting natural products that offer insights for drug discov-
ery.2 Among these are bastimolide A (1),3 a 40-membered
macrolide that has proven to exhibit potent antimalarial pro-
perties against four resistant strains of Plasmodium falciparum
(IC50 = 80–270 nM), and its 24-membered macrolactone
isomer, bastimolide B (2).4 Both 1,3- and 1,5-polyol motifs are
combined in its structure (Fig. 1), which bears little apparent
resemblance to any clinical antimalarial drugs or preclinical
candidates.5 This suggests the possibility that biological evalu-
ation of 1, 2, or analogs could uncover a new mode of action
via a novel Plasmodium drug target.

Synthesis of the bastimolides is therefore a high priority,
and various strategies to access structural subunits6 and halo-
genated analogues7 have appeared. Smith8 and Aggarwal9 have

reported the first total syntheses of 1 and 2, respectively, and
Kirsch et al. reported a formal synthesis.10 We recently
reported asymmetric synthesis of a 1,5-polyol comprising the
C22–C41 fragment of the bastimolides.11

Polyols bearing 1,5-relationships between hydroxyl groups
often cause complications for configurational assignments,12

stereocontrolled synthesis, and diastereomer separations.13 This
prompted our development of a configuration-encoded synthetic
strategy14 (Fig. 2) utilizing building blocks of defined hydroxyl
configuration that are linked iteratively via Julia–Kocienski olefi-
nation.15 Subjecting α-silyloxyaldehydes to Julia–Kocienski olefi-
nation with γ-sulfononitrile building blocks (R)-3 or (S)-3 estab-
lishes syn- or anti-1,5-diol relationships, and subsequent
reduction of the nitrile regenerates α-silyloxyaldehyde functional-
ity at the chain terminus for another iteration. The programmed
assembly allows synthesis of all possible diastereomers of 1,5-
polyols with equal facility, and obviates analytical or preparative
separations of diastereomers. Here we disclose the configuration-
encoded synthesis of the C3–C21 subunit of the bastimolides (4),
aided by the discovery of mild conditions for stereospecific trans-
formation of enol ester epoxides into 1-haloalkyl esters.

Results and discussion

Our retrosynthetic analysis (Fig. 2) involves two iterations of
the configuration-encoded 1,5-polyol synthesis strategy. This

Fig. 1 Structures of bastimolides A (1) and B (2).

†Electronic supplementary information (ESI) available. CCDC 2403648. For ESI
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suggesting α-silyloxyaldehyde 5 as a key precursor, which
would be coupled successively with (S)-3 and (R)-3 to unam-
biguously establish C15 and C19 configurations. Our earlier
successes in three-step synthesis of α-silyloxyaldehydes from
alkynes via enol ester epoxides16 prompted a similar approach
to 5 from alkyne 6.

The synthetic sequence began with preparation of epoxide
8 17 (Scheme 1), obtained in 92% ee by enantioselective
Katsuki epoxidation of alkene 7 with the Berkessel Ti catalyst
A.18 Reaction of 8 with lithiated trimethylsilylacetylene, fol-
lowed by alkyne desilylation and TBS protection of the 2°
alcohol, furnished alkyne 6 in 72% yield over five steps, with
only two column chromatography purifications.

The next task was to implement our three-step route from
alkynes to α-silyloxyaldehydes. Ruthenium-catalyzed addition19

of anisic acid to alkyne 6 (Scheme 1) gave (Z)-enol ester 9 in
90% yield, and another Berkessel–Katsuki epoxidation furnished
enol ester epoxide 10 with excellent yield and selectivity (94%,
96 : 4 dr). The epoxide ring-opening, which had normally pro-
vided smooth access to α-silyloxyaldehydes upon treatment with
silyl triflates and lutidine,11,14c,16 failed in this case; only traces of
the aldehyde 5 were observed. In an effort to understand this
anomaly, simplified enol ester substrate 11a (Fig. 3a) was sub-
jected to the ring opening. Instead of α-silyloxyaldehyde 12a, a
dimeric hydroxyfuran structure 13 was obtained. This could be
rationalized by an oxocarbenium ion (or its equivalent) under-
going nucleophilic attack by the nearby silyloxy substituent as
implied by structure C, followed by some combination of silyl
transfer events and dimerization. The dimerization finds pre-
cedent in a similar structure formed from furanoses.20

Replacement of OTBS with less nucleophilic OBz would be
expected to suppress the formation of dimer 13, and indeed with
substrate 11b the expected ring-opening pathway to the
α-silyloxyaldehyde 12b was restored (64% yield).11

Further comment about unexpected structure 13 is war-
ranted. The cis configuration at both ring junctions of 13 was
assigned by its apparent C2 symmetry (4 signals in its 13C
NMR spectrum) and small coupling constants at the ring junc-
tion ( J = 3.7 Hz observed at the anomeric C–H). A boatlike
central ring would be accompanied by high torsional strain
and lack of anomeric stabilization; we propose a chairlike con-
formation for the central ring of 13, with pseudo-C2 symmetry
attributed to a rapid chair–chair conformational equilibrium.

Fig. 2 Two iterations of configuration-encoded 1,5-polyol synthesis to
access an anti,syn-1,5,9 triol stereotriad.

Scheme 1 Synthesis of enol ester epoxide 10 and its anomalous
reactivity.

Fig. 3 (a) Simplified analogs 11a and 11b reveal the reason for anoma-
lous reactivity of 10. (b) Stereospecific enol ester epoxide ring-opening
to 1-haloalkyl esters 15.
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Although changing to ester protection at the C9-OH could
circumvent the anomalous reactivity of 10 and 11a, we sought
to address the problem head-on, with the hypothesis that a
large concentration of an external nucleophile could suppress
the offending cyclization. Indeed, upon treatment of enol ester
epoxide 14a with LiCl and TsOH, complete conversion to
1-haloalkyl ester 15a was observed within 5 min. Similar
results were observed with enol ester epoxides 14b, 14c, 11a,
and 11b, producing 1-haloalkyl esters 15b–15e respectively. All
of these 1-haloalkyl esters were formed with complete stereo-
specificity despite the potential intermediacy of a planar oxo-
carbenium ion. Enol ester epoxide trans-14a, prepared via the
corresponding E-enol ester, gave diastereomer epi-15a, provid-
ing further evidence of the stereospecific nature of the ring-
opening. Crystallographic analysis of the 3,5-dinitrobenzoate
derivative of 15b (see ESI†) confirmed the structural assign-
ment suggesting inversion of configuration by the chloride
nucleophile. To our knowledge there is only one related
example leading from an enol ester epoxide to a 1-haloalkyl
ester (SnCl4, 50% yield).21 Here we provide for the first time (a)
evidence of stereospecificity, (b) preliminary evaluation of
scope, and (c) subsequent reactivity studies in application to
target-oriented synthesis. Racemic 1-haloalkyl esters22 have
been used in various bond constructions,23 and this access to
enantiopure samples presents new opportunities for reaction
development and mechanistic study.

Turning our attention back to the synthetic route, we put
the new method to the test in conversion of enol ester epoxide
10 to α-silyloxyaldehyde 5. Treatment of 10 with a chloride
source (NBu4Cl was used for improved solubility) and cam-
phorsulfonic acid, followed by O-silylation, cleanly furnished
the α-haloalkyl ester 16 in 84.5% yield (Scheme 2).
Transesterification with concomitant elimination of chloride
then completed the alternative method for conversion of 10 to
aldehyde 5. While the typical K2CO3/MeOH was effective for
this transesterification on microscale, scale-up was proble-

matic. A more reliable modification employed phase-transfer
catalysis: in an immiscible mixture of benzene (or toluene)
and ethylene glycol, exposure to K2CO3 along with phase-trans-
fer catalyst NBu4HSO4 furnished aldehyde 5 in 74% yield,
along with recovered 10 (88% yield based on conversion).24

With aldehyde 5 in hand, we applied our configuration-
encoded 1,5-polyol synthesis. Julia–Kocienski olefination with
(S)-3 smoothly established the syn-1,5-diol relationship
between C11 and C15 with a quantitative yield of nitrile 17.
Reduction of the nitrile with DIBAL-H and a second iteration
of the Julia–Kocienski reaction with alternative building block
18 then established the desired anti,syn-1,5,9-triol stereotriad
in 19, while placing masked aldehyde functionality at the ter-
minus.25 Sulfone 18 was prepared in 6 steps from acrolein (see
ESI†), using Keck allylation (95% ee) to encode the desired
configuration at the carbon destined to become C19 of the bas-
timolides. Hydrogenation of the alkenes of 19 afforded acetal
20, which was converted to β-silyloxyaldehyde 4 through
Fujioka–Kita acetal hydrolysis.26 This aldehyde is the C3–C21
fragment of bastimolides, ready for Mukaiyama aldol coupling
to the C22–C41 subunit.

ð1Þ

An initial assessment of Mukaiyama aldol conditions for
coupling to the C3–C21 subunit (4) employed the trimethylsilyl
enol ether derived from pinacolone (eqn (1)). In the presence
of BF3·OEt2, this enolsilane added smoothly to aldehyde 4 to
afford aldol 21 (dr 88 : 12) with close correspondence to the
1,3-diastereocontrol we previously observed in similar polyace-
tate-type aldol adducts.27 Diagnostic 1H NMR data for several
closely related aldol products in that prior report enabled

Scheme 2 Access to α-silyloxyaldehyde 5 and configuration-encoded assembly of the C3–C21 subunit of bastimolides.
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assignment of anti configuration to the major diastereomer 21
and demonstrated the potential of 4 as a viable intermediate
en route to bastimolides and analogs.

Conclusions

We have developed a synthesis of the C3–C21 fragment of basti-
molides using the configuration-encoded approach to 1,5-polyol
assembly. The synthetic sequence encountered an unexpected
structural incompatibility of our previously established three-step
conversion of alkynes to α-silyloxyaldehydes. Solving this problem
led to the discovery of a stereospecific synthesis of enantiopure
1-haloalkyl esters; these are richly functionalized synthetic build-
ing blocks with further synthetic potential.

Data availability
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Preparative procedures and characterization data are provided
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