

RSC Applied Polymers

The application of polymers, both natural and synthetic

Interdisciplinary and open access

rsc.li/RSCApplPolym

Fundamental questions Elemental answers GOLD OPEN ACCESS

Showcasing research from Professor Di-Yan Wang's laboratory, Department of Chemistry, National Taiwan Normal University, Taipei, Taiwan.

Pioneering nucleation for stable ultraviolet-to-deep-blue illuminating two-dimensional perovskite nanoplates by using saturated salt solution

To kinetically control the formation of 2D perovskite nanoplates with specific *n* values, a saturated PbX₂ (X = Br or Cl) solution is used with optimized CsX and PbX₂ concentrations and minimal oleylamine (OLM) to adjust the [Pb_xBr_y]^{2x-y}/Cs⁺ ratio. This promotes the formation of [Pb_xBr_y]^{2x-y} complexes, leading to the selective nucleation of 2D (OLM)₂Cs_{n-1}Pb_nX_{3n+1} nanoplates while suppressing 3D crystal growth. These nanoplates exhibit strong photoluminescence from ultraviolet to deep-blue. Notably, this work is the first to report 2D (OLM)₂Cs_{n-1}Pb_nBr_{3n+1} nanoplates (*n* = 1) with ultraviolet emission and (OLM)₂Cs_{n-1}Pb_nBr_{3n+1} nanoplates (*n* = 1) showing violet to deep-blue emissions.

Image reproduced by permission of Di-Yan Wang from *Nanoscale*, 2025, **17**, 15204.

As featured in:

See Yi-Chia Chen, Di-Yan Wang et al., Nanoscale, 2025, **17**, 15204.

