
Nanoscale

CORRECTION

View Article Online
View Journal | View Issue

Cite this: Nanoscale, 2025, 17, 15536

Correction: Investigation of the phase transition to the Ruddlesden-Popper phase in La- or Nb-doped $\rm Sr_2Fe_{1.5}Mo_{0.5}O_{6-\delta}$ double perovskites and the impact of lanthanum or niobium doping

Agata Ducka,*^a Patryk Błaszczak,^{a,b} Marcin Zając,^c Alexey Maximenko,^c Maria Gazda^a and Beata Bochentyn^a

DOI: 10.1039/d5nr90115d rsc.li/nanoscale

Correction for 'Investigation of the phase transition to the Ruddlesden-Popper phase in La- or Nb-doped $Sr_2Fe_{1.5}Mo_{0.5}O_{6-\delta}$ double perovskites and the impact of lanthanum or niobium doping' by Agata Ducka et al., Nanoscale, 2025, **17**, 12371–12384, https://doi.org/10.1039/D5NR00596E.

The authors regret that an incorrect version of Fig. 8 was included in the originally published article. The correct version of Fig. 8 is shown below.

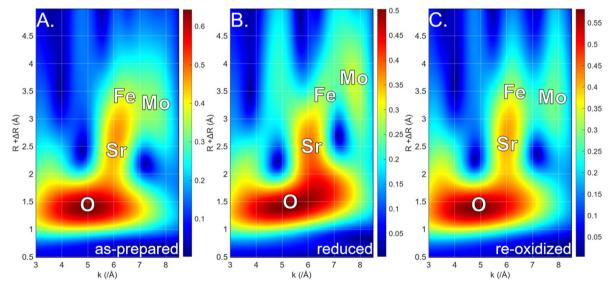


Fig. 8 The EXAFS wavelet transform of LSFM in as-prepared (A.), reduced (B.), and re-oxidized (C.) states.

The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers.

^aFaculty of Applied Physics and Mathematics, Gdansk University of Technology, ul. Narutowicza 11/12, 80-233 Gdańsk, Poland. E-mail: agata.ducka@pg.edu.pl

bFaculty of Electronics, Telecommunications and Informatics, Gdansk University of Technology, ul. Narutowicza 11/12, 80-233 Gdansk, Poland

^cNational Synchrotron Radiation Centre SOLARIS, Jagiellonian University, Czerwone Maki 98, 30-392 Kraków, Poland