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DetectNano: deep learning detection in TEM
images for high-throughput nanostructure
characterization

Khalid Ferji

The rapid and unbiased characterization of self-assembled polymeric vesicles in transmission electron

microscopy (TEM) images remains a challenge in polymer science. Here, we present a deep learning-

powered detection framework based on YOLOv8, enhanced with Weighted Box Fusion, to automate the

identification and size estimation of polymer nanostructures. By incorporating multiple morphologies in

the training dataset, we achieve robust detection across unseen TEM images. Our results demonstrate

that the model provides accurate vesicle detection within 2 seconds—an efficiency unattainable using tra-

ditional image analysis software. The proposed framework enables reproducible and scalable nano-object

characterization, paving the way for a general AI-driven automation in polymer self-assembly research.

1. Introduction

Self-assembled nanostructures derived from amphiphilic block
copolymers are fundamental in polymer science, offering
precise control over morphology, size, and functionality.1,2

Among these, polymersomes—hollow vesicular nanostructures
—are widely studied for their potential in drug delivery, encap-
sulation, and synthetic biology.3–6 Their stability, permeability,
and tunability make them attractive candidates for biomedical
and nanotechnological applications.7–11 Traditionally,
dynamic light scattering (DLS), small-angle X-ray scattering
(SAXS), and transmission electron microscopy (TEM) are used
for vesicle characterization, but these techniques have their
limitations.12,13 DLS provides only an ensemble-averaged size
distribution and lacks morphological resolution, while SAXS
requires complex data fitting.14–16 TEM remains the gold stan-
dard for direct visualization, but its conventional analysis
relies heavily on manual segmentation, which is time-consum-
ing, operator-dependent, and prone to bias. To address these
challenges, we propose a deep-learning-based detection
method that automates the characterization of self-assembled
nanostructures in TEM images, ensuring high reproducibility
and efficiency. This enables faster innovation, optimizes the
analytical workflow, and frees researchers to focus on more
critical scientific tasks.

In recent years, artificial intelligence (AI) has emerged as a
powerful tool for accelerating discovery in polymer

science.17–21 Convolutional neural networks (CNNs),22 particu-
larly object detection models, have demonstrated remarkable
success in recognizing and classifying nanoparticles in TEM
images.23,24 Several research efforts have already explored the
use of deep learning for the detection and characterization of
nanoparticles and nanostructures, highlighting the potential
of AI in improving analysis speed and precision.25–27 For
example, Kamble et al.28 developed a deep learning model for
microstructure recognition in polymer nanocomposites,
achieving high accuracy. Similarly, Saaim et al.29 utilized
machine learning algorithms to automatically segment and
classify nanoparticles in high-resolution TEM images, signifi-
cantly reducing the workload associated with manual annota-
tion. Another relevant study by Lu et al.30 demonstrated the
feasibility of using semi-supervised learning approaches for
identifying and differentiating the morphologies of nano-
structures, enabling automated classification without extensive
manual labelling.

Recent efforts in the field of bioimage analysis have demon-
strated the power of open-source tools in democratizing the
use of deep learning for microscopy applications. For instance,
ilastik—developed by Kreshuk and collaborators—has enabled
non-expert users to perform machine learning-based segmen-
tation and classification tasks in a highly interactive environ-
ment, significantly reducing the technical barrier for research-
ers handling complex microscopy data.31 Similarly, Henriques
and co-workers contributed to the development of
ZeroCostDL4Mic, a platform that simplifies the use of deep
learning models in microscopy by leveraging free cloud
resources and user-friendly interfaces, thus accelerating the
adoption of AI in image-based research workflows.32 These
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initiatives illustrate how thoughtfully designed tools can facili-
tate the integration of AI into everyday scientific practice—
especially for researchers outside the machine learning
community.

While AI-based approaches have been successfully
implemented in material characterization,33–35 their appli-
cation to self-assembled polymers remains rare.36,37 The devel-
opment of a deep-learning-based approach tailored specifically
for polymersome detection could offer a significant break-
through in polymer and materials sciences. This work aims to
provide a proof of concept demonstrating that AI can success-
fully detect vesicles across diverse TEM datasets and offer
users an open-source tool38—DetectNano— to assist them in
detecting and evaluating size distribution in a straightforward
manner (Fig. 1). Importantly, our goal is also to deliver a con-
crete training example that can serve as a starting point for
polymer scientists—particularly non-specialists in AI—seeking
to integrate machine learning into their daily research
workflows.

2. Building a deep learning model for
polymer nanostructure detection

Developing an AI model capable of detecting and classifying
nanoscale objects in TEM images requires several key com-
ponents. These include: (i) a well-annotated dataset – essential
for teaching the model what to recognize, (ii) a deep learning
model – the core algorithm that learns to detect and classify
nanostructures, (iii) computational infrastructure – the hard-
ware and software environments used to train the model, and

(iv) evaluation metrics – the criteria used to measure the
model’s accuracy and reliability. By carefully assembling and
optimizing these components, we have developed an auto-
mated method to detect vesicles and related self-assembled
nanostructures in TEM images (Fig. 1). Further details on
dataset composition, training configurations, and implemen-
tation can be accessed in our public repository on Zenodo.39

Dataset construction

The first step in training a deep learning model is constructing
a high-quality dataset. Since our primary objective is to detect
polymersomes, we needed a dataset containing clear examples
of these nanostructures. Polymersomes are vesicular nano-
structures (V) formed by the self-assembly of amphiphilic
block copolymers.9,40 They resemble spherical shells com-
posed of a polymeric membrane enclosing an aqueous cavity.

However, to improve the generalization ability of the AI
model and enhance its detection accuracy, we also included
additional nanostructures commonly observed in polymer self-
assembly. These different morphologies help the model learn
to distinguish between various forms and prevent it from over-
fitting to a single vesicle shape. The three selected additional
nanostructures are summarized in Fig. 1A: (i) multicompart-
ment vesicles (MCV): unlike simple vesicles, these structures
contain multiple hydrophilic cores within a single polymer
membrane. (ii) Thick membrane multicompartment vesicles
(TMCV): these vesicles represent an intermediate state between
MCV and larger structures. They have a thicker polymer mem-
brane, which makes them more stable before merging into
larger aggregates. (iii) Large compound nano-objects (LCN):
these structures are formed when multiple vesicles fuse

Fig. 1 (A) Class distribution and schematic 3D representations of polymer nanostructures in the dataset, accompanied by representative trans-
mission electron microscopy (TEM) images illustrating each morphological class: large compound nano-objects (LCN), multicompartment vesicles
(MCV), thick membrane multicompartment vesicles (TMCV), unilamellar vesicles (V), and the scale bar. (B) Workflow for automated detection,
dataset annotation, and morphological analysis of nanostructures from TEM images using multi-model fusion via Weighted Box Fusion (WBF) of
three YOLOv8 models (YOLOv8n, YOLOv8s, and YOLOv8m). TEM images were adapted with permission from ref. 3. Copyright 2022, American
Chemical Society.

Paper Nanoscale

18778 | Nanoscale, 2025, 17, 18777–18786 This journal is © The Royal Society of Chemistry 2025

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

6 
Ju

ly
 2

02
5.

 D
ow

nl
oa

de
d 

on
 2

/1
4/

20
26

 1
1:

18
:1

5 
A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5nr02446c


together, leading to non-spherical morphologies. Their irregu-
lar shape differentiates them from traditional vesicles and pro-
vides additional complexity for the AI model to learn. These
four nanostructures (V, MCV, TMCV and LCN), along with
annotated scale bars, constitute the five object classes used to
train the model.

Including these different morphologies improves the
model’s ability to distinguish between subtle structural vari-
ations and ensures better performance in real-world datasets.
The dataset was built using 65 high-resolution TEM
images.3,7,41–44

Data annotation and preparation

Once the dataset was assembled, it was essential to provide
clear annotations so the AI model could learn from labelled
examples. Annotations were performed manually using the
Roboflow platform,45 where bounding boxes were drawn
around each nanostructure to classify them into five pre-
defined classes: V, MCV, TMCV, LCN and scale bar. Annotated
scale bars within TEM images served as internal references to
convert pixel-based measurements into nanometers, enabling
accurate size estimation. A summary of the dataset compo-
sition is illustrated in Fig. 1A, showing the frequency of each
morphology. The dataset maintains a balanced representation
of different nanostructures, ensuring that the model is
exposed to a variety of shapes and improving its robustness.

Deep learning model

To detect vesicles and related nanostructures, we implemented
a YOLOv8-based object detection framework.46 YOLO (You
Only Look Once) is a state-of-the-art deep learning architecture
specifically designed for fast and accurate object detection.
However, given the variability of TEM images in contrast,
resolution, and noise levels, a single model configuration was
insufficient to guarantee reliable detection. To overcome this,
we employed three different versions of YOLOv8, each offering
a balance between computational efficiency and detection pre-
cision: YOLOv8n (nano), YOLOv8s (small), and YOLOv8 m
(medium). Each model was trained independently and evalu-
ated separately using the same predefined dataset split, ensur-

ing consistency and comparability across results. To further
improve detection accuracy and reduce false positives, we
implemented a Weighted Box Fusion (WBF) technique, which
merges the predictions of all three models into a single
refined output.

Training was conducted on PyTorch 2.0 with Ultralytics
YOLOv8 using an Intel Core i7-1068NG7 processor under
Ubuntu 20.04. The dataset was randomly split into training
(72%), validation (17%), and test (11%) sets, ensuring a repre-
sentative sample for model generalization. Class distributions
were preserved across subsets using a fixed random seed to
maintain consistency and reproducibility. The training set was
used to optimize model parameters, the validation set helped
fine-tune hyperparameters and prevent overfitting, while the
test set provided an independent evaluation of model perform-
ance on unseen data. Key training settings included the use of
the Adam optimizer with an initial learning rate of 0.001, an
image size of 640 pixels, and a batch size of 1 due to CPU con-
straints. A total of 85 epochs were used, with data augmenta-
tion and image caching enabled to improve convergence.

In object detection tasks, models must learn to simul-
taneously identify the correct class of each object and accu-
rately localize it within the image using bounding boxes. The
performance of such models is therefore assessed using a
combination of classification and localization metrics.47 The
following evaluation metrics were used to monitor and
compare model performance throughout training and vali-
dation. A brief description of each metric is provided in
Table 1 to guide the interpretation of the results presented in
Fig. 2 and 3. The detailed computation of these metrics is
handled automatically by the Ultralytics YOLOv8 framework.46

3. Training and performance
evaluation of YOLOv8 models

To evaluate the performance of our model, we monitor several
standard metrics throughout both training and validation, as
summarized in Table 1. During training, these metrics are
computed after each epoch to assess how well the model is

Table 1 Description of evaluation metrics used to assess object detection performance in this study

Metric Definition Purpose and expected trend

Box loss Measures the error in predicting object location
(bounding box)

Evaluates localization accuracy. Should decrease and approach 0

Class loss Measures the error in classifying detected objects Assesses how well the model assigns labels. Should decrease and
approach 0

Distribution focal
loss (DFL)

Refines bounding box prediction by focusing on
high-confidence areas

Improves regression accuracy. Should decrease and approach 0

Precision Ratio of correct detections to total detections
made by the model

Indicates reliability of predictions. Should increase and approach 1

Recall Ratio of correctly detected objects to the total
number of ground truth objects

Measures model’s ability to find all objects. Should increase and
approach 1

mAP50 Mean average precision under a moderate
detection threshold

Measures detection accuracy under moderate conditions. Should
increase and approach 1

mAP50-95 Average precision over a range of thresholds Assesses detection performance across varying localization
precision levels. Should increase and approach 1
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Fig. 2 Training (Train) and validation (Val) performance of YOLOv8n, YOLOv8s, and YOLOv8m models. The graphs show how each model learns to
localize and classify nanostructures using loss functions (box, class, and DFL: distribution focal loss) during training, and how performance is evalu-
ated on the validation set using standard detection metrics: precision, recall, mAP50, and mAP50-95.

Fig. 3 Class-wise evaluation of YOLOv8n, YOLOv8s, and YOLOv8m models based on precision, recall, mAP50, and mAP50-95. Each panel shows
the performance metrics for a specific nanostructure class in the validation dataset: all classes combined, large compound nano-objects (LCN), mul-
ticompartment vesicles (MCV), thick-membrane multicompartment vesicles (TMCV), vesicles (V), and annotated scale bars. These metrics reflect
how accurately each model identifies and localizes each class, highlighting differences in detection sensitivity and reliability depending on structural
complexity.
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learning from the labeled data. In parallel, validation metrics
are calculated on a separate subset of data not seen during
training, providing an estimate of the model’s ability to gener-
alize to new, unseen images.

The training process aims to minimize the loss functions
(e.g., box loss, class loss, and DFL), which reflect errors in
object localization and classification. Simultaneously, the
objective is to maximize evaluation metrics such as precision,
recall, and mean average precision (mAP), which indicate how
accurately and comprehensively the model detects nano-
structures. These indicators also help highlight trade-offs,
such as under-detection (low recall) versus over-detection (low
precision), and can signal overfitting if validation performance
deteriorates while training accuracy continues to improve.

The training and evaluation of the YOLOv8 models for
polymer nanostructure detection reveal distinct strengths and
trade-offs between speed, accuracy, and generalization. Each
model exhibits unique characteristics that make it more suit-
able for specific tasks, yet they remain complementary in their
contributions to robust detection performance.

During training, all three models demonstrated a gradual
reduction in loss values, with YOLOv8n stabilizing the fastest
(Fig. 2). This model, being the smallest in terms of parameters,
converged more quickly and maintained a relatively low train-
ing loss, indicating efficient learning with minimal overfitting.
In contrast, YOLOv8m, with its significantly larger number of
parameters, exhibited greater fluctuations in loss, suggesting a
more complex optimization process. The longer training time
of YOLOv8m (226 minutes) compared to those of YOLOv8n
(48 minutes) and YOLOv8s (117 minutes) reflects the compu-
tational intensity required for more refined feature extraction.
Despite its slower convergence, YOLOv8m’s higher recall
suggests that it is better at detecting a broader range of nano-
structures, albeit at the cost of increased false positives.
YOLOv8s, as an intermediary model, balanced both precision
and recall, exhibiting moderate convergence speed and a
stable reduction in loss values.

The performance metrics provide further insight into the
models’ strengths. YOLOv8n excels in precision, achieving the
highest score across most nanostructure classes, meaning that
its predictions are highly reliable with fewer false positives.
However, its recall is lower, indicating that while it detects
structures with high confidence, it may miss some instances.
On the other hand, YOLOv8m demonstrates superior recall,
making it advantageous for detecting more instances of nano-
structures, even if some false positives are introduced.
YOLOv8s, positioned between these two extremes, achieves a
well-balanced trade-off, making it a versatile option when both
precision and recall are equally important.

The model-specific performance across different nano-
structure classes further supports this complementarity
(Fig. 3). YOLOv8m tends to perform better in detecting LCN
and MCV, where structural complexity can challenge smaller
models. Its ability to capture fine details makes it particularly
useful for these intricate structures. Meanwhile, YOLOv8n per-
forms exceptionally well in detecting V and scale bars, where

distinct and well-defined edges allow for higher confidence in
detection. YOLOv8s, once again, serves as a middle ground,
performing consistently across all classes without being
heavily biased toward either precision or recall.

Given these observations, it becomes evident that each
model has distinct advantages depending on the detection cri-
teria and computational constraints. Rather than favouring a
single model, a more effective strategy is to leverage their
complementary strengths. By combining the precision of
YOLOv8n, the balanced performance of YOLOv8s, and the
high recall of YOLOv8m, an optimized detection framework
can be achieved. To this end, implementing Weighted Box
Fusion (WBF) provides a means to integrate the predictions of
all three models, capitalizing on their respective advantages
while mitigating their individual weaknesses. This ensemble
approach is expected to enhance both detection robustness
and reliability, ensuring a more accurate and generalizable
characterization of polymer nanostructures in TEM images.
Details of the WBF implementation, including the fusion logic
and parameters, are provided in our public code repository on
Zenodo.39

The impact of WBF on nanostructure detection is illustrated
in Fig. 4, where detection outputs from YOLOv8n, YOLOv8s,
and YOLOv8m, and their fusion via WBF, are shown in the
same unseen TEM image. Detected nanostructures are high-
lighted by bounding boxes, enabling a direct visual compari-
son of detection behavior across models. YOLOv8m tends to
produce more detections but often assigns incorrect classes
(misclassifications), while YOLOv8n is more conservative. WBF
applies Soft Non-Maximum Suppression (Soft-NMS) to merge
overlapping predictions and balance these extremes, resulting
in a cleaner output with improved spatial localization.
Examples of misclassified detections are highlighted with
white arrows. These improvements are further reflected in the
detection counts and confidence scores per class, as shown in
Fig. 4E and F.

One of the key advantages of using YOLOv8 for nano-
structure detection is its ability to provide automated size esti-
mation. Unlike traditional manual methods (using ImageJ for
instance), where individual objects must be segmented and
measured—often requiring extensive time and user input—
YOLOv8 enables rapid and systematic size quantification with
minimal effort. By leveraging the bounding box dimensions,
vesicle diameters can be efficiently estimated in real time,
making this approach particularly well-suited for high-
throughput nanostructure characterization.

As shown in Table 2, individual YOLO models exhibit vari-
ations in size estimations, particularly for LCN, where
YOLOv8m tends to overestimate sizes. WBF refines these
measurements by merging predictions across models, redu-
cing variability and ensuring more consistent and reliable size
estimates. Compared to manual ImageJ analysis, WBF values
are in good agreement, especially for MCV and vesicles, while
slight differences for LCN reflect known limitations of bound-
ing-box-based estimation for irregular or compound structures.
Notably, generating all class-specific size statistics with
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Fig. 4 Evaluation of nanostructure detection performance in an unseen composite TEM image using three YOLOv8 models (n, s, and m) and their
fusion via Weighted Box Fusion (WBF). (A–D) Detection outputs from YOLOv8n, YOLOv8s, YOLOv8m, and WBF, respectively. The bounding boxes
indicate detected nanostructures, color-coded by class: blue for LCN, green for MCV, yellow for TMCV, and red for unilamellar vesicles (V). The
white arrows highlight examples of misclassifications, where the model assigns the wrong morphological class to a detected object. (E) Number of
detections per nanostructure class for each model and the WBF output. (F) Average confidence score per class, with error bars representing the
standard deviation.
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YOLOv8 and WBF required less than two seconds, whereas
manual measurement of the same image in ImageJ took over
30 minutes, clearly demonstrating the efficiency advantage of
our automated approach.

Several recent studies have explored deep learning-based
approaches for nanoparticle or nanostructure detection in
TEM images.23,28–30 These works mainly target rigid inorganic
materials and rely on segmentation or classification strategies
rather than real-time object detection. In contrast, this work
focuses on soft polymeric morphologies such as vesicles and
multicompartment structures, and leverages YOLOv8 com-
bined with WBF to enhance detection robustness across mor-
phologies. To our knowledge, no existing framework addresses
this specific application space while enabling automated size
estimation using embedded scale bars. This highlights the
complementary nature and originality of the present approach.

4. Generalization on unseen TEM
images of vesicles from the literature

To assess the robustness of our detection pipeline, we evalu-
ated the model’s generalization ability on unseen TEM images
of vesicles extracted from the literature, featuring varied con-
trast levels and different chemical compositions. Unlike the
training dataset, which maintained a controlled imaging
environment, these external images introduced diverse acqui-
sition conditions, testing the adaptability of the model.

As illustrated in Fig. 5, our model successfully detects vesi-
cles across different datasets, demonstrating high confidence
and accurate size estimation despite variations in contrast and
imaging artifacts. The confidence score distributions remain
consistent with the results obtained on our test dataset, rein-
forcing the model’s reliability in identifying self-assembled
nanostructures beyond the initial training conditions. Notably,
the size distribution remains coherent with the expected
vesicle dimensions, further validating the robustness of the
detection approach.

These results highlight the generalization capability of our
framework, emphasizing its applicability to a broad range of
TEM datasets. This adaptability is particularly crucial for
polymer self-assembly studies, where consistent nanostructure
characterization across datasets is essential. Nevertheless, vesi-
cles with distinct or complex morphologies—such as non-

spherical aggregates, onion-like vesicles, or structures exhibit-
ing extreme contrast variations—may not be reliably detected
by our current model. In addition to morphological variability,
image quality factors—such as resolution, signal-to-noise
ratio, or contrast inconsistencies—can significantly affect
detection confidence and size estimation, particularly for
poorly resolved structures. Overcoming these limitations
would benefit from targeted strategies, including advanced
data augmentation techniques (e.g., synthetic contrast vari-
ation, controlled noise addition, and rotational or spatial
transformations), transfer learning from larger microscopy
datasets, and increasing dataset diversity by integrating pub-
licly available, community-shared annotated TEM images.

To facilitate such improvements, our framework has been
designed to be easily fine-tuned by future users, allowing them
to adapt the model to their specific vesicle types by retraining
on additional annotated datasets. This flexibility ensures that
the model can be continually refined to meet the evolving
needs of the polymer and soft matter research community,
further extending its applicability to new and emerging
nanostructures.

In this study, we developed a YOLOv8-based deep learning
model to detect vesicles and other self-assembled nano-
structures, enhancing generalization across diverse TEM data-
sets. Tested on independent TEM images from the literature,
the model demonstrated high accuracy in recognizing vesicu-
lar structures, reinforcing its potential for automated, scalable,
and unbiased nanostructure analysis.

As a proof of concept, DetectNano demonstrates that deep
learning models can be effectively trained to analyze soft
polymer nanostructures in TEM images. Its ability to provide
accurate and reproducible vesicle morphology and size esti-
mation makes it particularly relevant for applications such as
drug delivery, where vesicle size influences the circulation time
and targeting efficiency,50,51 or synthetic biology, where
vesicle-based systems serve as protocells and
compartments.52,53 Even in its current form, the framework
can support high-throughput screening and quality control
tasks in experimental workflows involving vesicular nano-
carriers. Furthermore, as an open-source and modular plat-
form, DetectNano is designed to evolve. By providing anno-
tated datasets, pretrained models, and full source code, this
framework offers a concrete and accessible entry point for
non-specialists in AI to explore deep learning applications in

Table 2 Comparison of nanostructure size estimations in TEM images (Fig. 3) obtained using YOLOv8 models, WBF fusion, and manual analysis
with ImageJ

Model

Size (nm)

LCN TMCV MCV V

YOLOv8n 357.6 ± 107 122.8 ± 26 202.2 ± 32.8 80.6 ± 18
YOLOv8s 334.2 ± 143 129 ± 32 209.8 ± 36 83.4 ± 18.8
YOLOv8m 374.8 ± 136.4 128.4 ± 26.4 208.8 ± 37.6 87 ± 19.2
WBF 308 ± 104 122.4 ± 26 203.8 ± 32.6 84 ± 18.2
ImageJ 301 ± 63 132.1 ± 25.9 202.1 ± 41.6 78.2 ± 23.2
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nanoscience. With community-driven contributions,
DetectNano could be extended toward more advanced
implementations, including real-time analysis pipelines or
in situ/flow-based TEM monitoring for continuous nano-
structure detection.

Although the current dataset is sufficient to demonstrate
proof-of-concept performance, its limited size and source
diversity may restrict full generalization to highly heterogeneous
TEM conditions. Most images originate from our previous work,
potentially introducing bias in contrast and morphology repre-
sentation. We acknowledge these limitations and recognize the
importance of expanding the dataset through public repositories
and broader community contributions. This step is essential to
move toward robust, generalizable models applicable across
varied polymer and nanomaterial systems.

Looking ahead, the next step is to develop a universal
model capable of detecting a wide range of polymeric and in-
organic nanostructures. Achieving this goal requires a collec-
tive effort from the scientific community, emphasizing the
need for open-access datasets and collaborative model train-
ing. By sharing annotated TEM datasets and uniting efforts
across disciplines, the community can accelerate the develop-
ment of a robust, generalizable AI tool for nanomaterial
characterization. Beyond a technical contribution, this study
calls for collaborative efforts to harness AI in nanoscience.

Conflicts of interest
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Fig. 5 Detection, size distribution, and confidence analysis of vesicles using the WBF-enhanced YOLOv8 model in unseen TEM images extracted
from the literature. The middle panels show the corresponding size distributions (in nm) and the right panels present the distribution of detection
confidence scores, along with the average ± standard deviation. Example 1 was adapted with permission from ref. 48. Copyright 2017, American
Chemical Society. Example 2 was adapted with permission from ref. 6. Copyright 2011, Royal Society of Chemistry. Example 3 was adapted with per-
mission from ref. 49. Copyright 2021, Wiley-VCH Verlag GmbH & Co. KGaA.
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Data availability

All data supporting the findings of this study—including anno-
tated TEM images, trained models, and source code—are
openly available on Zenodo at the following link: https://doi.
org/10.5281/zenodo.14995364.

References

1 F. S. Bates and G. H. Fredrickson, Phys. Today, 1999, 52,
32–38.

2 J.-L. Six and K. Ferji, Polym. Chem., 2019, 10, 45–53.
3 D. Ikkene, A. A. Arteni, C. Boulogne, J.-L. Six and K. Ferji,

Macromolecules, 2022, 55, 4268–4275.
4 D. E. Discher and A. Eisenberg, Science, 2002, 297, 967–973.
5 R. P. Brinkhuis, F. P. J. T. Rutjes and J. C. M. Van Hest,

Polym. Chem., 2011, 2, 1449–1462.
6 A. Blanazs, J. Madsen, G. Battaglia, A. J. Ryan and

S. P. Armes, J. Am. Chem. Soc., 2011, 133, 16581–16587.
7 D. Ikkene, A. A. Arteni, M. Ouldali, G. Francius, A. Brûlet,

J.-L. Six and K. Ferji, Biomacromolecules, 2021, 22, 3128–
3137.

8 S. Varlas, J. C. Foster, P. G. Georgiou, R. Keogh,
J. T. Husband, D. S. Williams and R. K. O’Reilly, Nanoscale,
2019, 11, 12643–12654.

9 E. Rideau, R. Dimova, P. Schwille, F. R. Wurm and
K. Landfester, Chem. Soc. Rev., 2018, 47, 8572–8610.

10 J. He, J. Cao, Y. Chen, L. Zhang and J. Tan, ACS Macro Lett.,
2020, 9, 533–539.

11 J. Yeow, J. T. Xu and C. Boyer, ACS Macro Lett., 2015, 4, 984–
990.

12 T. P. T. Dao, A. Brulet, F. Fernandes, M. Er-Rafik, K. Ferji,
R. Schweins, J. P. Chapel, F. M. Schmutz, M. Prieto, O. Sandre
and J. F. Le Meins, Langmuir, 2017, 33, 1705–1715.

13 A. Czajka and S. P. Armes, Chem. Sci., 2020, 11, 11443–
11454.

14 C. M. Maguire, R. Matthias, W. Peter and A. Prina-Mello,
Sci. Technol. Adv. Mater., 2018, 19, 732–745.

15 H. Hinterwirth, S. K. Wiedmer, M. Moilanen, A. Lehner,
G. Allmaier, T. Waitz, W. Lindner and M. Lämmerhofer,
J. Sep. Sci., 2013, 36, 2952–2961.

16 A. S. Byer, X. Pei, M. G. Patterson and N. Ando, Curr. Opin.
Chem. Biol., 2023, 72, 102232.

17 E. P. Fonseca Parra, J. Oumerri, A. A. Arteni, J.-L. Six,
S. P. Armes and K. Ferji, Macromolecules, 2025, 58, 61–73.

18 K. Ferji, Polym. Chem., 2025, 16, 2457–2470.
19 W. Ge, R. De Silva, Y. Fan, S. A. Sisson and M. H. Stenzel,

Adv. Mater., 2025, 37, 2413695.
20 C. Kuenneth, W. Schertzer and R. Ramprasad,

Macromolecules, 2021, 54, 5957–5961.
21 L. Chen, G. Pilania, R. Batra, T. D. Huan, C. Kim,

C. Kuenneth and R. Ramprasad, Mater. Sci. Eng., R, 2021,
144, 100595.

22 Y. LeCun, Y. Bengio and G. Hinton, Nature, 2015, 521, 436–
444.

23 Z. Sun, J. Shi, J. Wang, M. Jiang, Z. Wang, X. Bai and
X. Wang, Nanoscale, 2022, 14, 10761–10772.

24 C. Zelenka, M. Kamp, K. Strohm, A. Kadoura, J. Johny,
R. Koch and L. Kienle, Ultramicroscopy, 2023, 246, 113685.

25 G. Güven and A. B. Oktay, Nanoparticle detection from TEM
images with deep learning, 26th Signal Processing and
Communications Applications Conference (SIU), Izmir,
Turkey, 2018, pp. 1–4.

26 J. Madsen, P. Liu, J. Kling, J. B. Wagner, T. W. Hansen,
O. Winther and J. Schiøtz, Adv. Theory Simul., 2018, 1,
1800037.

27 Y. Wu, A. Ray, Q. Wei, A. Feizi, X. Tong, E. Chen, Y. Luo
and A. Ozcan, ACS Photonics, 2019, 6, 294–301.

28 A. Kamble, S. He, J. R. Howse, C. Ward and I. Hamerton,
Comput. Mater. Sci., 2023, 229, 112374.

29 K. M. Saaim, S. K. Afridi, M. Nisar and S. Islam,
Ultramicroscopy, 2022, 233, 113437.

30 S. Lu, B. Montz, T. Emrick and A. Jayaraman, Digital
Discovery, 2022, 1, 816–833.

31 S. Berg, D. Kutra, T. Kroeger, C. N. Straehle, B. X. Kausler,
C. Haubold, M. Schiegg, J. Ales, T. Beier, M. Rudy, K. Eren,
J. I. Cervantes, B. Xu, F. Beuttenmueller, A. Wolny,
C. Zhang, U. Koethe, F. A. Hamprecht and A. Kreshuk, Nat.
Methods, 2019, 16, 1226–1232.

32 L. von Chamier, R. F. Laine, J. Jukkala, C. Spahn,
D. Krentzel, E. Nehme, M. Lerche, S. Hernández-Pérez,
P. K. Mattila, E. Karinou, S. Holden, A. C. Solak, A. Krull,
T.-O. Buchholz, M. L. Jones, L. A. Royer, C. Leterrier,
Y. Shechtman, F. Jug, M. Heilemann, G. Jacquemet and
R. Henriques, Nat. Commun., 2021, 12, 2276.

33 K. Choudhary, B. DeCost, C. Chen, A. Jain, F. Tavazza,
R. Cohn, C. W. Park, A. Choudhary, A. Agrawal,
S. J. L. Billinge, E. Holm, S. P. Ong and C. Wolverton, npj
Comput. Mater., 2022, 8, 59.

34 A. Stoll and P. Benner, GAMM-Mitt., 2021, 44, e202100003.
35 X. Zhong, B. Gallagher, S. Liu, B. Kailkhura, A. Hiszpanski

and T. Y.-J. Han, npj Comput. Mater., 2022, 8, 204.
36 K. Hagita, T. Aoyagi, Y. Abe, S. Genda and T. Honda, Sci.

Rep., 2021, 11, 12322.
37 E. Z. Qu, A. M. Jimenez, S. K. Kumar and K. Zhang,

Macromolecules, 2021, 54, 3034–3040.
38 K. Ferji, DetectNano, https://github.com/ChemDoc/

DetectNano.
39 K. Ferji, Zenodo, 2025,DOI: 10.5281/zenodo.14995364.
40 D. E. Discher and F. Ahmed, Annu. Rev. Biomed. Eng., 2006,

8, 323–341.
41 V. L. Romero Castro, B. Nomeir, A. A. Arteni, M. Ouldali,

J.-L. Six and K. Ferji, Polymers, 2021, 13, 4064.
42 D. Ikkene, A. A. Arteni, H. Song, H. Laroui, J. L. Six and

K. Ferji, Carbohydr. Polym., 2020, 234, 115943.
43 K. Ferji, P. Venturini, F. Cleymand, C. Chassenieux and

J.-L. Six, Polym. Chem., 2018, 9, 2868–2872.
44 K. Ferji, C. Nouvel, J. Babin, M.-H. Li, C. Gaillard, E. Nicol,

C. Chassenieux and J.-L. Six, ACS Macro Lett., 2015, 4,
1119–1122.

45 Roboflow, https://roboflow.com.

Nanoscale Paper

This journal is © The Royal Society of Chemistry 2025 Nanoscale, 2025, 17, 18777–18786 | 18785

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

6 
Ju

ly
 2

02
5.

 D
ow

nl
oa

de
d 

on
 2

/1
4/

20
26

 1
1:

18
:1

5 
A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online

https://doi.org/10.5281/zenodo.14995364
https://doi.org/10.5281/zenodo.14995364
https://doi.org/10.5281/zenodo.14995364
https://github.com/ChemDoc/DetectNano
https://github.com/ChemDoc/DetectNano
https://github.com/ChemDoc/DetectNano
https://doi.org/10.5281/zenodo.14995364
https://roboflow.com
https://roboflow.com
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5nr02446c


46 YOLOv8, https://yolov8.com.
47 T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona,

D. Ramanan, P. Dollár and C. L. Zitnick, Computer Vision –
ECCV 2014, 2014, pp. 740–755.

48 J. Tan, D. Liu, Y. Bai, C. Huang, X. Li, J. He, Q. Xu,
X. Zhang and L. Zhang, Polym. Chem., 2017, 8, 1315–1327.

49 V. Ibrahimova, H. Zhao, E. Ibarboure, E. Garanger and
S. Lecommandoux, Angew. Chem., Int. Ed., 2021, 60, 15036–
15040.

50 S. Wilhelm, A. J. Tavares, Q. Dai, S. Ohta, J. Audet,
H. F. Dvorak and W. C. W. Chan, Nat. Rev. Mater., 2016, 1,
16014.

51 Y. Barenholz, J. Controlled Release, 2012, 160, 117–134.
52 S. Kretschmer, K. A. Ganzinger, H. G. Franquelim and

P. Schwille, BMC Biol., 2019, 17, 43.
53 C. M. Lee James, H. Bermudez, B. M. Discher,

M. A. Sheehan, Y. Y. Won, F. S. Bates and D. E. Discher,
Biotechnol. Bioeng., 2001, 73, 135–145.

Paper Nanoscale

18786 | Nanoscale, 2025, 17, 18777–18786 This journal is © The Royal Society of Chemistry 2025

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

6 
Ju

ly
 2

02
5.

 D
ow

nl
oa

de
d 

on
 2

/1
4/

20
26

 1
1:

18
:1

5 
A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online

https://yolov8.com
https://yolov8.com
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5nr02446c

	Button 1: 


