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Data-driven approaches have revolutionized the design and optimization of photonic metadevices by har-

nessing advanced artificial intelligence methodologies. This review takes a model-centric perspective that

synthesizes emerging design strategies and delineates how traditional trial-and-error and computationally

intensive electromagnetic simulations are being supplanted by deep learning frameworks that efficiently

navigate expansive design spaces. We discuss artificial intelligence implementation in several metamaterial

design aspects from high-degree-of-freedom design to large language model-assisted design. By

addressing challenges such as transformer model implementation, fabrication limitations, and intricate

mutual coupling effects, these AI-enabled strategies not only streamline the forward modeling process

but also offer robust pathways for the realization of multifunctional and fabrication-friendly nanophotonic

devices. This review further highlights emerging opportunities and persistent challenges, setting the stage

for next-generation strategies in nanophotonic engineering.

Introduction

The emergence of artificial structures not only unveils the
complexity of light–matter interaction, which generally occurs
within atoms or molecules, but also provides an unpre-
cedented opportunity for control of light via engineered
devices. Compared with photonic crystals which rely on collec-
tive response arising from periodic perturbations, metamater-
ials have demonstrated powerful and versatile manipulation of
electromagnetic (EM) waves via structural engineering of their
subwavelength building blocks, i.e., meta-atoms.1 For instance,
metamaterials exhibiting properties that are not usually seen
in naturally occurring materials, such as optical magnetism,2

negative effective refractive index,3 and strong chirality4 have
been reported. Importantly, those exotic properties primarily
arise from a meta-atoms’ architecture rather than the intrinsic
properties of the base materials. These characteristics make
metamaterials an excellent candidate for applications in
devices that require precise control over the intrinsic pro-
perties (magnitude, phase, polarization, etc.) of light.
Extending these principles to 2D has led to the development
of metasurfaces which gain their properties from single-layer
or few-layer planar artificial structures. In contrast to metama-
terials, metasurfaces provide a more compact and fabrication-
friendly approach to light control,5 facilitating applications

such as wavefront shaping,6 beam steering,7 holography,8

optical computing,9 etc. The development of metadevices as
an extension of the metamaterial and metasurface paradigm
paves the way toward the next generation of photonic
technologies.

Though metamaterials and metasurfaces have manifested
an impressive capability to manipulate light, the design of
metadevices, especially those for sophisticated and/or multiple
functionalities can be an extremely challenging engineering
task. Metamaterial design has traditionally relied on iterative
numerical simulations that solve Maxwell’s equations to deter-
mine the optical/electromagnetic response of its constituent
meta-atoms. Common computational tools include the Finite-
Difference Time-Domain (FDTD) method,10 and Finite-
Element Method (FEM),11 as they discretize EM fields in space
and/or time to analyze how nanostructures interact with EM
waves. However, given the fact that meta-atoms generally
include deep-subwavelength features, accurate metamaterial
simulations based on these methods can be computationally
expensive,12 especially when considering multiscale devices.
On the other hand, optimization methods such as genetic
algorithms (GA) or other evolutionary optimization techniques
are commonly employed to design metamaterials structures.13

The optimization iteratively refines designs by evaluating
optical properties of the structure using numerical EM solvers
(commercial or customized), updating the design based on an
objective function, and repeating the process until some stop-
ping criteria is met.14 Despite previous efforts made to
improve the efficiency of both optimization methods and EM
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solvers, these approaches still impose a significant compu-
tational burden in terms of time and resources. Consequently,
evaluating and optimizing subwavelength architecture remains
a great challenge, necessitating more advanced and efficient
strategies.

Machine learning (ML) and deep learning (DL), subsets of
artificial intelligence (AI),15 offer data-driven approaches to
identifying complex structure/response correlations in meta-
material design due to their ability to replicate hyper-dimen-
sional non-linear relationships and, once trained, near instan-
taneous evaluation. ML algorithms include supervised, unsu-
pervised, and reinforcement learning, with supervised learning
being the most utilized due to its structured data-label
relationships.16 Fully connected (FC) neural networks, such as
multilayer perceptrons (MLPs), have been used to map design
parameters to optical properties.17–20 Recurrent neural net-
works (RNNs), including long short-term memory (LSTM)21

networks, excel in sequential data, making them suitable for
applications involving sequence processing such as in the case
of spectra.22,23 Convolutional neural networks (CNNs),
designed for image processing, effectively analyze spatial pat-
terns within metasurfaces.24,25 The transformer architecture,
first introduced by Vaswani et al. in 2017,26 uses self-attention
mechanisms to capture complex data dependencies, enabling
parallelized training and specializing in sequence modelling,
forming the basis for large language models (LLMs) like
ChatGPT,27 has also been applied in designing
metamaterials.28

DL has rapidly advanced metamaterial modelling and
optimization.29,30 The journey began in 2017 when Malkiel
et al. developed a bidirectional MLP-based DL model for
designing H-shaped plasmonic nanostructures.17 Ma et al.
(2018) further advanced the method by developing two bidirec-
tional neural networks with partial stacking for both forward
and inverse modelling of reflection and CD spectra,19 while
Peurifoy et al. (2018) applied MLPs to optimize multilayer
nanoparticles.20 Asano et al. (2018) employed CNNs to
enhance the Q-factor of photonic crystals.31 Sajedian et al.
(2019) integrated CNNs and RNNs to predict absorption
spectra of random plasmonic nanostructures.32 Chen et al.
(2023) recently harnessed a transformer-based model for
designing broadband solar metamaterial absorbers.28

A few recent review papers on AI-assisted metamaterial
design have charted diverse paths toward solving forward and
inverse design challenges. For instance, Masson et al. (2023)
have discussed the use of ML for nanoplasmonics, revealing
how advanced algorithms uncover the complex structure–prop-
erty relationships that underpin high-performance device
engineering.33 Chen et al. (2022) have bridged the fields of AI
and meta-optics by detailing how AI accelerates both design
and functional realization of flat optical devices.34

Furthermore, Ueno et al. (2024) have offered the perspective
that zeroes in on AI-enabled design-for-manufacturing and
computational post-processing, help mitigate the simulation–
fabrication gaps in metasurfaces.29 Other review
articles12,30,35–47 have been dedicated to different aspects such

as free-form optimization,48 light–matter interactions,49

physics-informed neural networks,50 and intelligent inverse
design for phononic metamaterials.37 In contrast, from a
model-centric perspective, this review will primarily focus on
emerging design strategies. In particular, we aim to discuss
high-degree-of-freedom (DoF) metamaterial design, the use of
transformers and attention mechanisms, the prediction of
mutual coupling effects between meta-atoms, strategies for
designing robust and fabrication-friendly metamaterials, and
recent advances as well as future prospects. We also summar-
ize the computational costs in practice for those reported
methods. Across the studies we survey, the dominant expense
is usually dataset generation (e.g., full-wave simulations), while
model training is a secondary, one-off cost and inference is
typically near-interactive on commodity GPUs. For inverse
design, simpler models such as one-shot/tandem/autoenco-
der-based approaches tend to yield faster per-candidate
sampling than sequential samplers (e.g., diffusion), which
trade speed for stability/diversity. Consequently, hardware
requirements scale most strongly with training-set size, fidelity
and the inverse-design strategy, rather than with the specific
deep-learning library. In practice, a single consumer GPU is
usually sufficient for training and inference, whereas multi-
GPU or cluster access mainly benefits large-scale dataset gene-
ration or LLMs training. To enable apples-to-apples compari-
sons, we encourage future reports to specify (i) dataset-gene-
ration setup, (ii) training wall-clock and memory footprint,
and (iii) per-sample inference cost.

AI-assisted high-DoF metamaterial
design
Image-based methods

Most ML-based approaches for AI-assisted forward design of
high-DoF metamaterials function as black-box models, where
the metamaterial structure (geometries and material pro-
perties) serves as input, and the optical response (for instance,
transmission and reflection coefficients) is predicted as
output. In this context, ‘high-DoF’ refers to a hyper-dimen-
sional design space characterized by independently tunable
parameters (e.g., 10+), making traditional iterative method
unfeasible. To encode the metamaterial unit cell into a format
suitable for ML models, two primary digitalization methods
have been adopted.51 The first method involves pixelating the
planar metamaterial and treating the resulting representation
as an image, often in a binary format. Computer vision tech-
niques, particularly CNNs, are then applied to optimize the
pixel distribution. This approach allows for high-DoF designs,
as each pixel can be independently adjusted to form intricate
structures. Moreover, the pixel-based representation aligns
with human intuition, as the unit cell’s geometry is directly
visualized, facilitating the interpretation of optimization out-
comes. Research efforts have explored and refined this
approach to enhance metamaterial design efficiency and
performance.35,41,52–64
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One early demonstration of image-driven high-DoF meta-
material modelling was provided by An et al. (2020), who devel-
oped a CNN to predict wideband amplitude and phase
responses of quasi-freeform dielectric metasurfaces25

(Fig. 1(a)). They leveraged the CNN model’s ability to handle
structures across varying lattice constants, material indices,
and thicknesses. They achieved an average prediction standard
deviation of 0.005 (amplitude) and 0.78 degrees (phase) at
each single frequency point after training on more than

100 000 simulation data sets. This study underscored the viabi-
lity of image-based approaches to accelerate metamaterial
designs, opening the door to fast performance evaluation for
high-DoF structures. However, generating such an enormous
training data set can be extremely time-consuming, raising
concerns about the practical efficiency. One might question
whether conventional simulation-optimization methods could
achieve comparable performance with fewer simulations,
calling into question the trade-off between model accuracy and

Fig. 1 Image-based method for AI-assisted design of metasurfaces. (a) CNN network for design of high-DoF quasi-freeform dielectric metasur-
faces. Reprinted with permission from ref. 25. Copyright 2020, Optical Society of America. (b) GAN model for metasurface inverse design. Reprinted
with permission from ref. 65. Copyright 2021, Wiley-VCH. (c) VAE and GA for metasurface inverse design. Reprinted with permission from ref. 66.
Copyright 2022, Optical Society of America. (d) The first diffusion probabilistic model for inverse design of meta-atoms. Reprinted with permission
from ref. 67. The article is licensed under a Creative Commons Attribution 4.0 International License https://creativecommons.org/licenses/by/4.0/.
(e) The first probabilistic generative model in a tandem architecture (TGN) for the design of meta-atoms. Reprinted with permission from ref. 68.
Copyright 2025 American Chemical Society. (f ) 100 × 100 binary images were used for freeform metasurfaces forward and inverse design. Reprinted
with permission from ref. 69. Copyright 2022 American Physical Society https://doi.org/10.1103/PhysRevB.106.085408.
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data set size. Notably, while training required ∼48 hours on
two NVIDIA 1080 Ti GPUs, curating the >100k-sample corpus
took ∼8 days across six servers (∼48 server-days), making data
generation, not training, the dominant cost. Surrogate model-
ling only pays off when the model is reused extensively across
many design queries; for one-off or small-batch tasks, the up-
front data cost can outweigh the inference-time speedup.

This work was soon extended to exploit other network
types. In 2021, An et al. introduced a Generative Adversarial
Network (GAN) for the inverse design of quasi-freeform struc-
tures65 (Fig. 1(b)), using Wasserstein GAN (WGAN) that learns
to generate free-form dielectric meta-atom patterns con-
ditioned on desired amplitude and phase responses. They pro-
duced 100 qualified designs in 32 seconds under a tight
threshold of ±0.1 amplitude error and ±10° phase error in
dual-target cases. For the field of AI-assisted metamaterials
design, this work marked a turning point by proving that GAN-
based models can directly synthesize meta-atom layouts target-
ing multifunctional properties in one step. In 2022, Yu et al.
further improved An’s work by combining a Variational
AutoEncoder (VAE) and GA for inverse design66 (Fig. 1(c)).
Compared to GANs, the VAE compresses the large design space
into a latent manifold of feasible structures, which acted as a
search domain for a GA. By looping the GA over the VAE’s
learned manifold of solutions, the algorithm could escape
local optima and eventually converge to a meta-atom configur-
ation that met the target spectral requirements. The training
process lasts about 6 h on two NVIDIA GeForce GTX 3080. In
2023, diffusion models entered the field: Zhang et al. proposed
a diffusion probabilistic model for generating high-DOF meta-
atom images conditioned on desired wideband S-parameter
spectra67 (Fig. 1(d)). Starting from random noise, the diffusion
model iteratively refines the pixelated meta-atom design such
that its simulated electromagnetic response converges to the
specified target spectrum. This diffusion-driven strategy inher-
ently avoids the training instabilities of GANs by eschewing
adversarial objectives altogether. However, diffusion models
require running additional sequential denoising steps to gene-
rate each design, which can significantly increase the compu-
tational time for inference. As a result, on-demand design
generation is generally slower (0.43 s per design as reported)
compared to direct one-shot mapping techniques (such as
those based on VAE or tandem networks, about 1 ms per
design on common commercial GPUs), as each solution must
be iteratively computed, suggesting a trade-off between the
speed for stability improvement and the accuracy in design
outcomes. In 2025, Yang et al. introduced a probabilistic gen-
erative model in a tandem architecture, i.e. the Tandem
Generative Network (TGN), for design of meta-atoms68

(Fig. 1(e)). The TGN architecture couples a forward neural
network (to capture physics of a meta-atom’s response) with a
generative network that samples new structure images from a
learned probability space. This tandem setup addresses two
key issues: the difficulty of handling one-to-many mappings in
inverse problems (e.g., multiple structures yielding similar
spectra) and the slow generation speed typical of vanilla

diffusion models. Claiming up to 38% lower mean absolute
error (MAE) and nearly 3000× faster generation (generated
10 000 atoms in 3.73 s) than the diffusion model,67 TGN rep-
resents a further step in improving both speed and precision
in high-DoF metasurface design.

Beyond quasi-freeform-related dielectric metasurfaces,
several studies have applied image-processing networks to
optimize other large, pixelated metasurfaces. For instance,
Gahlmann and Tassin (2022) first trained a CNN to emulate
the forward mapping from a 100 × 100 binary meta-atom
image to its full spectra (S-parameters), then embedded this
CNN into a conditional GAN (CGAN), which will propose new
meta-atom images given target spectra69 (Fig. 1(f )). Similarly,
Li et al. (2022) proposed a CNN to predict the circular dichro-
ism (CD) response of chiral metasurfaces with nanohole arrays
(represented as 80 × 80 binary images).24 In another approach,
Tanriover et al. (2022) introduced an AutoEncoder (AE) model
for designing free-form 100 × 100 binary meta-atom images.70

Collectively, these studies underscore the potential of DL to
efficiently handle both forward and inverse design challenges
while respecting fabrication constraints.

The rapid progress in image-based methods for meta-
material design points toward a future where scalability, inter-
pretability, fabrication integration, and data efficiency become
the focal points of research. On the scalability front, next-gene-
ration models will need to handle volumetric metamaterials as
input “images”, which will enable the co-design of large-scale
devices with many interacting elements without sacrificing
resolution. Equally important is enhancing the interpretability of
these models. As AI-designed metamaterials begin being put into
practical use, designers will demand insights into how network
features help to explain physical phenomena. Another critical
direction is the seamless integration of manufacturing constraints
and feedback into the design loop. Future AI models may incor-
porate differentiable fabrication-process simulators that ensure
generated designs are not only nominally optimal but also robust
against fabrication imperfections and material tolerances, which
could involve training networks on experimental data.
Additionally, emphasis on data efficiency will grow: instead of
relying on tens of thousands of simulated examples, researchers
are exploring physics-informed neural networks (PINNs), transfer
learning, and active learning to make the most of limited data.
We will cover the recent advances on these topics in our following
discussions.

Parameter-based methods

While image-based methods have advanced the design of
high-DoF planar metamaterials, their reliance on pixel discretiza-
tion limits their implementation in true 3D meta-atoms with
structural variations in the light propagation direction. To work
around these constraints, parameter-based methods have been
introduced as an alternative framework. In this approach, each
meta-atom is represented by a vector that encodes its geometry
and material properties, enabling a description of 3D subwave-
length architectures. By shifting from a discrete pixel representa-
tion to a parameter space, these methods facilitate designs that
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capture intricate spatial details absent in image-based models.
Sequence-to-sequence models, including FC layers and RNNs like
Gated Recurrent Units (GRUs)71 and LSTMs,21 are often used to
process these parameter vectors. The more recently emerged
transformer architectures with self-attention mechanisms offered
new possibilities for efficiently mapping complex parameter
spaces to optical responses.28

In their pioneering work published in 2017, Malkiel et al.
introduced a DL algorithm for plasmonic nanostructure
design using an 8-parameter model to generate H-shaped
planar structures within a design space comprising approxi-
mately 2.33 × 108 possible configurations, addressing the long-
standing challenge of time-consuming numerical
simulation17,72 (Fig. 2(a)). By training a bidirectional Deep
Neural Network (DNN) composed of multiple FC layers on over
15 000 simulation instances, the authors achieved a trans-
mission spectra prediction mean squared error (MSE) of 0.16.
This study was significant as it was one of the first to solve a
nontrivial metasurface design problem with DL, offering
orders-of-magnitude speedups over iterative solvers. In 2018,
Peurifoy et al. showed that a DNN can approximate the forward
light-scattering behaviours of multilayered nanoparticle struc-
tures with high accuracy using a relatively small training set20

(Fig. 2(b)). Once trained, their network reached a mean relative
error (MRE) of 1.5%. In a later study (2019), Nadell et al.
applied DL to model and design all-dielectric metasurfaces,
which involve multiple resonant modes and near-field coup-
ling between elements73 (Fig. 2(c)). Their method, which incor-
porated not only the raw parameters but also their ratios as
inputs, achieved a transmittance prediction MSE of 1.16 × 10−3

after training on 18 000 simulation samples (about 0.1 ms per
prediction on Tesla Quadro M6000). This study validated that
DNNs can handle relatively large, complex unit cells. In 2021,
Xu et al. combined NNs with transfer learning and GA to
design phase-modulating metasurfaces74 (Fig. 2(d)). In their
approach, a forward spectrum-prediction network was first
trained on a base task (a rectangular meta-atom) and then
fine-tuned (transferred) to a new task (elliptical meta-atom)
using far fewer samples. The enhanced accuracy from transfer
learning allowed the network to serve as a high-fidelity surro-
gate model for a genetic algorithm. The significance of this
work lies in its hybrid strategy: by reducing the NN’s data
requirements and integrating it with GA, it demonstrated a
practical route to designing large-area functional metasurfaces
more quickly. In 2022, Liao et al. further extended AI-based
design to 3D chiral plasmonic metasurfaces75 (Fig. 2(e)). In
practice, separate models were trained for a given handedness
of a chiral structure; then the knowledge learned was partially
transferred to a new model for the opposite handedness,
greatly accelerating convergence while requiring little
additional data. This study demonstrated that even highly
intricate design spaces (like 3D chiral nanoresonators with
polarization-dependent responses) can be handled by DL
when augmented with physics-informed training (transfer
learning between related design tasks) and feature-extraction
methods. Looking to the current state of the art, researchers

are pushing parameter-based methods to handle higher-
dimensional design spaces and more complex unit cell archi-
tectures. In 2025, Zhang et al. introduced a fixed-attention
LSTM-based approach for both forward and inverse design of
true 3D plasmonic metamaterials, defined by 12 parameters
(representing two gold nanorods embedded in a dielectric sub-
strate), thereby exploring a design space of approximately 3.09
× 1019 possible configurations (Fig. 2(f )).76 They treated the
ordered list of design parameters as a temporal sequence and
learned to “focus” to the most influential parameters during
training. This attention-enhanced LSTM achieved ∼48% lower
MSE on the metasurface’s transmission compared to a stan-
dard LSTM without attention, with about 3 ms per prediction
on one NVIDIA GeForce RTX 2080 Ti. This work addresses the
“curse of dimensionality” in metamaterial design by intelli-
gently structuring the network to handle many design vari-
ables (and their interdependencies), it opens the door for AI-
assisted optimization of high-DoF metamaterials that were pre-
viously intractable.

In contrast to the studies mentioned above in this section,
several recent studies have employed models based on a
limited number of design parameters. For instance, Ma et al.
(2018) proposed a DL model for the design of stacked, twisted
gold split ring resonators (SRRs) with dielectric spacers19

(Fig. 2(g)). After training on 25 000 samples, they achieved an
MSE of 1.6 × 10−4 for reflection amplitude predictions. Liu
et al. (2018) directly confronted the one-to-many mapping
issue inherent in photonic inverse design, where multiple dis-
tinct structures can exhibit the same spectrum77 (Fig. 2(h)).
They introduced a tandem neural network training approach
in which an inverse-design network is cascaded with a pre-
trained forward network (kept fixed) during training. Instead
of learning an arbitrary mapping from spectrum to a particular
geometry, the inverse model learns to produce any geometry
that yields the desired spectrum by minimizing the error
between the forward-predicted spectrum of its output design
and the target spectrum. By effectively bypassing the need for
one-to-one training pairs, this strategy enabled stable training
of inverse models on datasets containing non-unique (i.e.,
degenerate) solutions, paving the way for reliable DL-based
design of more complex photonic structures without being
hindered by mode degeneracies or ambiguous mappings. Mall
et al. (2020) introduced a bidirectional AE (biAE) for plasmonic
metasurfaces (with 4 structural parameters) that generated 105

possible design configurations78 (Fig. 2(i)), reaching an MAE of
1.43% on validation cases after training on 1200 full-wave
simulation examples. Hou et al. (2020) applied a tandem
network for metamaterial absorbers defined by 6 parameters,
achieving a test-set MSE of 2.95 × 10−4 after training on 20 000
samples (predicted in milliseconds per design on one NVIDIA
GTX1060)79 (Fig. 2( j)). Later studies by Han et al. (2023) and
Luo et al. (2024) employed similar architectures (using 4 para-
meters) for designing chiral metastructures, with error metrics
on the order of 10−4 (Fig. 2(k and l)).80,81

In Table 1, we summarize the recent research on the
degrees of freedom and the corresponding network architec-
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Fig. 2 Parameter-based method for AI-assisted design of metasurfaces. (a) An H-shaped planar structure design using DNN. Reproduced with per-
mission from ref. 72. The article is licensed under a Creative Commons Attribution 4.0 International License https://creativecommons.org/licenses/
by/4.0/. (b) Multilayered nanoparticle structures. Reproduced from ref. 20 © 2018 The Authors, with permission under the Creative Commons
Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0) https://creativecommons.org/licenses/by-nc/4.0/. (c) An all-dielectric meta-
surface with multiple resonant modes and near-field coupling between elements. Reprinted with permission from ref. 73. Copyright 2019, Optical
Society of America. (d) A rectangular-shaped phase-modulating meta-structure. Reprinted with permission from ref. 74. Copyright 2021, Optical
Society of America. (e) A 3D Born–Kuhn type chiral metasurface. Reprinted with permission from ref. 75. Copyright 2022, Optical Society of
America. (f ) AI-assisted true 3D plasmonic high-DoF metamaterials design. Reproduced with permission from ref. 76. Copyright 2025 Optical
Society of America. (g) A stacked, twisted gold split ring resonator with dielectric spacers. Reproduced with permission from ref. 19. Copyright 2018
American Chemical Society. (h) Tandem networks were used to design thin-film metasurfaces. Reproduced with permission from ref. 77. Copyright
2018 American Chemical Society. (i) Metal-dielectric–metal periodic gap-plasmon based half-wave plate metasurface design based on biAE.
Reproduced with permission from ref. 78. Copyright 2020 Institute of Physics. ( j) Metamaterial absorber design based on tandem networks.
Reproduced with permission from ref. 79. The article is licensed under a Creative Commons License https://creativecommons.org/licenses/by/4.0/.
(k) A chiral plasmonic Born–Kuhn metamaterial design based on multi-task learning. Reproduced with permission from ref. 80. Copyright 2023
American Chemical Society. (l) A dagger-shaped Ag array and an Ag mirror separated by a dielectric spacer. Reprinted with permission from ref. 81.
Copyright 2024, Optical Society of America.
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tures. For the “Dimensions” column, the categories are
defined as follows: (i) 1D: meta-atom’s parameters vary along a
single axis; (ii) 2D: meta-atoms can be represented as binary
images. 2.5D: meta-atoms can be described using a binary
image combined with one additional parameter representing
thickness information; (iii) 3D: true 3D meta-atoms with struc-
tural variations in the vertical direction. Although studies on
1D structures can efficiently explore a vast design space, many
such systems can be rapidly solved using conventional optim-

ization methods, suggesting the unnecessity of using AI-
assisted approaches. Parameter-based AI design methods for
metamaterials will evolve in several directions. First, as unit
cells become more complex, future models must handle poten-
tially dozens of design variables without compromising accu-
racy or requiring extensive training data. This evolution may
involve network architectures such as attention mechanisms,
physics-informed neural networks, and modular networks,
along with dimensionality reduction techniques that isolate

Table 1 Comparison of forward-design accuracy in parameter-based techniques

Works Dimensions
Number of
parameters Design space Training set Network type Error metrics

Malkiel et al. (2017)17 2D 8 2.33 × 108 a 15 000 FC layers MSE: 0.16
Peurifoy et al. (2018)20 1D 8 7.98 × 1012 a 50 000 FC layers MRE: 1.5%
Ma et al. (2018)19 3D 5 Not mentioned 25 000 CNN MSE: 1.6 × 10−4

Liu et al. (2018)77 1D 16 6.57 × 1034 a Not mentioned FC layers Error: 0.19
Nadell et al. (2019)73 2.5D 8 8.16 × 108 18 000 FC layers MSE: 1.16 × 10−3

An et al. (2019)82 2.5D 4 1.91 × 1011 a 35 000 FC layers MSE: 3.5 × 10−4

Gao et al. (2019)83 2.5D 4 8.70 × 108 3900 FC layers MSE: 1.03 × 10−5

Lin et al. (2019)84 2.5D 4 4.12 × 109 a 25 900 FC layers MSE: 1.04 × 10−3

Li et al. (2019)85 2.5D 3 2.48 × 107 a 2254 FC layers MSE: 3.86 × 10−5

Sajedian et al. (2019)86 2.5D 8 5.72 × 109 Not mentioned FC layers Not applied
Hou et al. (2020)79 2.5D 6 Not mentioned 20 000 FC layers MSE: 2.95 × 10−4

Unni et al. (2020)87 1D 11 1.79 × 1026 a 100 800 FC layers Negative log-likelihood:
−4.5

Mall et al. (2020)78 2D 4 1.00 × 105 1200 biAE MAE: 1.43%
Tanriover et al. (2020)88 2.5D 3 1.41 × 108 a 3157 FC layers MSE: 2.1 × 10−3

Qiu et al. (2020)89 1D 8 2.03 × 107 a 80 000 FC layers MSE: 5 × 10−2

Xu et al. (2020)90 2D 3 Not mentioned 25 000 FC layers MSE: 5 × 10−3

Unni et al. (2021)91 1D 20 4.30 × 1039 a 579 600 FC layers RMSE: 2 × 10−2

Xu et al. (2021)74 2.5D 4 9.29 × 108 a 27 000 FC layers MSE: 7.7 × 10−4

Lininger et al. (2021)92 1D 5 1.00 × 1012 200 000 CNN RMSE: 2 × 10−2

Zandehshahvar et al.
(2021)93

1D 8 7.98 × 1012 a 40 000 AE MSE: 2.2 × 10−6

Huang et al. (2021)94 2D 5 3.03 × 1014 a 12 040 FC layers MSE: 1.4 × 10−2

Sun et al. (2021)95 2D 4 5.94 × 107 a 2.16 × 107 K-nearest neighbor (KNN) MSE: 3.46 × 10−6

Tanriover et al. (2021)96 2.5D 4 1.61 × 1011 a 6318 Complex valued FC layers MSE: 1.2 × 10−4

Deng et al. (2021)97 2.5D 14 1.04 × 1012 24 000 CNN MSE: 1.2 × 10−3

Xu et al. (2021)98 2D 4 8.55 × 107 a 71 808 FC layers Accuracy: 96.49%
Noureen et al. (2022)99 2.5D 7 7.39 × 1012 a Not mentioned FC layers MSE: 1.8 × 10−3

Liao et al. (2022)75 2.5D 5 4.25 × 107 a 23 000 FC layers MSE: 1.6 × 10−4

Gao et al. (2022)100 2D 4 2.08 × 1012 a 10 350 Modified FC layers MSE: 1.47 × 10−4

Shen et al. (2022)101 2D 5 1.38 × 1010 a 8400 FC layers MSE: 1.29 × 10−4

Deng et al. (2022)22 2.5D 4 1.35 × 1014 a 8000 LSTM MAE: 8 × 10−2

Lin et al. (2022)102 2D 16 4.30 × 109 55 000 FC layers MSE: 3.24
Li et al. (2022)103 2D 5 3.12 × 1011 a 10 000 FC layers MSE: less than 1 × 10−3

Knightley et al. (2022)104 1D 13 2.92 × 1022 a 40 000 FC layers MSE: 5 × 10−4

Chen et al. (2022)105 2.5D 6 1.97 × 1014 a 4812 FC layers MSE: 2.66 × 10−3

Qiu et al. (2023)106 2D 4 3.51 × 106 a 750 FC layers MAE: 3 × 10−2

Liu et al. (2023)107 2D 4 4.32 × 109 a 80 000 FC layers MSE: 8.7 × 10−3

Jiang et al. (2023)108 2D 10 Not mentioned 528 000 FC layers with residual block MSE: 1.3 × 10−5

Yu et al. (2023)109 2.5D 7 2.18 × 107 8000 FC layers MSE: 1.6 × 10−4

Han et al. (2023)80 3D 4 Not mentioned 3075 FC layers RMSE: 3.57 × 10−5

Jahan et al. (2024)110 2.5D 5 3.38 × 107 5324 FC layers MSE: 2.44 × 10−4

Luo et al. (2024)81 2D 4 Not mentioned 7200 FC layers MSE: 8.5 × 10−3

Chen et al. (2024)111 2.5D 4 2.83 × 106 320 CNN with LSTM MSE: 1.2 × 10−2

Wang et al. (2024)112 2D 5 7.57 × 108 a 18 144 FC layers MSE: 2.8 × 10−4

Zhu et al. (2024)113 2D 9 3.47 × 1013 a 4736 FC layers MSE: 6 × 10−4

Fan et al. (2024)114 2.5D 5 Not mentioned 2400 FC layers MSE: 7.4 × 10−3

Liu et al. (2025)115 2.5D 6 8.90 × 106 a 12 988 FC layers MSE: 3 × 10−5

Yu et al. (2025)116 2.5D 5 Not mentioned 2400 FC layers MSE: 1 × 10−3

Chen et al. (2025)117 2.5D 16 1.00 × 1043 Not mentioned FC layers with Bayesian linear
regression

Not mentioned

Zhang et al. (2025)76 3D 12 3.09 × 1019 6393 LSTM with fixed-attention MSE: 2.17 × 10−3

a Indicates estimated based on parameter ranges provided in the paper.
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key design features. Transformer-based models and attention
mechanisms offer a promising approach in this context. Also,
multimodal learning that integrates electromagnetic simu-
lations, experimental spectra, and fabrication constraints
within a single model may further improve design efficiency.
These advancements are expected to support the development
of metamaterial systems that address practical design chal-
lenges and span high-dimensional design spaces.

Transformers and attentions applied in
metamaterial design

Transformers are a modern DL architecture that relies on an
attention mechanism to process information, rather than the
convolution or recurrence used in traditional models
(Fig. 3(a)).26 When computing an output, transformers ingest
the entire input (e.g., a sentence or an image) and use self-
attention to decide which parts of the input are most relevant
to each other. In other words, the model learns to weigh the influ-
ence of different input elements on each other dynamically. This
attention-driven approach allows transformers to capture long-

range dependencies in data effectively – for example, a word at
the beginning of a sentence can directly influence the interpret-
ation of a word at the end, because the model can access and
evaluate both simultaneously. The ability to look at all parts of
the input at once is also essential to mitigate issues including the
vanishing-gradient problem that RNNs face when dealing with
long sequences. Transformers have since become the dominant
model in natural language processing and are increasingly used
in other domains (with variants such as the Vision Transformers
for images).118

The application of transformers has recently expanded to
the design of metamaterials. In 2023, Chen et al. introduced
the first encoder-only transformers for both forward and
inverse design of broadband solar metamaterial absorbers
(Fig. 3(b)).28 The studied absorbers comprise 6 subwavelength
layers with thicknesses ranging from 0 to 100 nm for Ge, Si,
TiO2, Al2O3, SiO2 and 0–200 nm for MgF2. To handle the high-
dimensional spectral data, the input spectrum is segmented
into multiple patches. Each patch is embedded using one-
dimensional convolution before being fed into a transformer
encoder. This segmentation and positional embedding help
overcome overfitting and dimension mismatch issues,

Fig. 3 Transformer and self-attention for AI-assisted design of metasurfaces. (a) Transformer architecture. Reproduced from ref. 26 with permission
from Google, which grants reproduction of tables and figures for scholarly works provided proper attribution is given. (b) Encoder-only transformers
for the design of broadband solar metamaterial absorbers. Reproduced from ref. 28 Copyright 2023. The authors, Advanced Photonics Research
published by Wiley-VCH GmbH, under the terms of the Creative Commons Attribution License https://creativecommons.org/licenses/by/4.0/. (c)
Dielectric metasurface design based on encoder-only transformer models. Reproduced from ref. 119 Copyright 2023. The authors, Advanced
Optical Materials published by Wiley-VCH GmbH. (d) Improved transformer combined with a CGAN for the inverse-design of graphene terahertz
multi-resonant metasurfaces. Reproduced with permission from ref. 120. Copyright 2023 IEEE. (e) GPT for inverse design of multilayer thin film
structures. Reprinted with permission from ref. 121. The article is licensed under a CC-BY 4.0 License https://creativecommons.org/licenses/by/4.0/
. (f ) Mid-infrared metasurface-embedded Fabry–Perot filters design via FC layers that couple with a CNN-self-attention module. Reproduced with
permission from ref. 122. Copyright 2024 American Chemical Society.
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enabling the network to learn the underlying physical relation-
ships effectively, and is expected to be implemented frequently
in future works. After training, prediction is millisecond-scale
on one NVIDIA GeForce GTX 3080 Ti. This work represents a
significant breakthrough in AI-assisted design of metamater-
ials incorporating transformers, a new paradigm in navigating
complex optical design spaces with unprecedented efficiency
and accuracy. In the next study, Chen et al. (2023) have
extended their approach to design a dielectric metasurface
where the incident angle is tuned to mediate the coupling
between guided-mode resonances and quasi-BICs (Fig. 3(c)).119

With unit cells characterized by 5 parameters and a training
set containing 23 681 simulation data points, their encoder-
only transformers achieved an MSE of 4.56 × 10−3, which rep-
resents a 17.6% improvement over a FC layers network, and a
34.4% reduction in training parameters. Other encoder-only
approaches have also emerged. For example, Niu et al. (2023)
have employed a VAE with an encoder-only transformer for the
inverse design of metasurfaces,123 while Yin et al. (2025) have
combined a transformer encoder for forward prediction
(∼17 ms per prediction) with a visual attention network for
inverse design.124 In another study, Ma et al. (2025) have inte-
grated FC layers with a transformer to achieve the inverse
design of a metasurface absorber.125 These models leverage
the transformer encoder’s ability to capture long-range depen-
dencies within metamaterial data in parallel, making them
well-suited for both forward and inverse tasks.

Some studies have implemented other transformer architec-
tures.126 For instance, Huang et al. (2024) have applied an
improved transformer combined with a CGAN for the inverse-
design of graphene terahertz multi-resonant metasurfaces, rep-
resented by a 20-element chemical potential vector (Fig. 3(d)).120

After trained on 19 000 data points, the network achieved a test
accuracy of 96.14% compared to 94.27% for an FC-layer model.
In a separate effort, Ma et al. (2024) implemented a decoder-only
transformer, which is also known as a Generative Pre-trained
Transformer (GPT), for inverse design of multilayer thin film
structures (Fig. 3(e)).121 Rather than fixing the material for each
layer and optimizing only the thickness, they introduced a “struc-
ture token” that defines both the material and its thickness, such
as “Al_10”. This approach not only overcomes the limitations of
fixed output sizes but also enables handling diverse design scen-
arios, including variable numbers of layers, distinct material com-
binations, and different incidence angles and polarization states.

Despite these advances, transformers generally require
large data sets because of their limited inductive biases.127

Early studies noted that RNN-based sequence-to-sequence
models could match or exceed the performance of transfor-
mers on small parallel data sets, underscoring the training
challenges when data is limited.128 More recent work has
demonstrated that careful hyperparameter tuning, regulariz-
ation, and strategies such as reducing network depth, employ-
ing smaller token vocabularies, or leveraging pre-training and
transfer learning can help transformers perform in low-
resource settings.128 Therefore, we believe that relaxing the
data requirements of transformers remains an important area

for future research. Notwithstanding the remarkable achieve-
ments of Vision Transformers in computer vision tasks, their
potential for image-based metamaterial design remains largely
untapped, presenting a promising avenue for future research.

Beyond transformer architectures, incorporating self-atten-
tion into alternative network structures has also boosted the
efficiency of metamaterial design. For example, Zeng et al.
(2023) have investigated the data shift in electromagnetic
solvers for 1D grating couplers by integrating a ResNet with
mixed training and multihead attention.129 They observed that
when models are trained on data based on randomly generated
nano-structures but then applied to predict optimized designs, a
mismatch in data distributions (data shift) causes a significant
drop in prediction accuracy. They also introduced a mixed train-
ing strategy, where a small fraction of the optimized (shifted) data
is blended into the training set. The reported model achieved an
MSE of 1.35 × 10−4 for coupling efficiency prediction, marking an
improvement by 167% compared to a ResNet without attention.
Similarly, Yuan et al. (2024) have inversely-designed tunable mid-
infrared metasurface-embedded Fabry–Perot filters via FC layers
that couple with a CNN-self-attention module for forward model-
ling (Fig. 3(f)).122 Trained on 19 473 simulation samples, this
approach yielded a test R2 of 0.973 for predicting transmission as
defined in their paper, approximately 10% higher than a compar-
able network without self-attention. These studies demonstrate
the potential of self-attention mechanisms in the design of meta-
materials. In particular, the reported results confirm that integrat-
ing self-attention mechanisms can reduce prediction errors and
enhance model accuracy. Further investigation into such inte-
grations, which lead to systems typically requiring less training
data than transformers, is expected to advance the overall capa-
bilities of AI-assisted metamaterial design.

Prediction of mutual coupling effects

Mutual coupling refers to the complex electromagnetic inter-
actions between closely spaced meta-atoms, which can signifi-
cantly alter the idealized responses assumed during conven-
tional design.130 Traditional design methods often apply peri-
odic boundary conditions or approximations that neglect near-
field interactions, which can lead to discrepancies between
unit-cell based simulation results and actual device perform-
ance, particularly for phase-sensitive metasurfaces utilized for
wavefront manipulation.131 Modelling these interactions using
full-wave electromagnetic simulations demands extensive com-
putational resources, thereby hindering efficient design optim-
ization. AI-based methods address this challenge by learning
the mapping between meta-atom geometry, local environment,
and optical response.114,132–135

In 2021, An and colleagues developed a CNN to accurately
predict the electromagnetic responses of individual meta-
atoms when mutual coupling between nonidentical neigh-
bours is present (Fig. 4(a)).136 The core idea involved translat-
ing the physical configurations of the target and adjacent
meta-atoms into high-resolution, binarized images, where
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dielectric regions and voids were distinctly marked, then pro-
cessing these images through the CNN to extract key spatial
features. When integrated with a global optimization, the
method increased a beam deflection efficiency from 41.3% to
68.8% and improved a meta-lens’s focusing efficiency by over
20%. In addition, An et al. demonstrated that by accounting
for coupling perturbations, devices such as beam deflectors
and meta-lenses exhibit significantly enhanced efficiency,
ensuring that a larger fraction of the incident energy is effec-
tively manipulated. In 2022, Majorel et al. developed a U-Net-
based CNN to model optical responses of complex, aperiodic
plasmonic metasurfaces that can extend to arbitrarily large
sizes (Fig. 4(b)).53 Instead of repeatedly calculating detailed
optical interactions for every configuration, the authors pro-
posed to approximate a “dressed polarizability” for each nano-
structure. This quantity encapsulates how local interactions
(due to neighboring coupling, substrates, and other environ-
mental factors) alter the response of an individual nano-
structure. The CNN takes a 2D top-view image of the nano-
structure arrangement along with wavelength information as
input and is trained to output the complex-valued dressed
polarizability tensor for each nanostructure. This method pro-

vided scalability to arbitrarily large and complex geometries
for future references. In 2023, Ma et al. proposed a DL model
for rapid calculation and optimization of metasurfaces incor-
porating meta-atom interactions by training separate network
blocks to associate reflection phase and amplitude with
specific meta-atoms (Fig. 4(c)).137 Rather than treating the
DNN as a black box, their approach interprets weight values in
cascaded dense layers as representing physical mechanisms of
electromagnetic scattering. In the same year, Ha et al. devel-
oped a DL optimizer for large-aperture meta-lens design that
segments the lens into overlapping 5 × 5 super meta-atoms to
capture local lattice interactions (Fig. 4(d)).138 Their architec-
ture integrates an AE to extract low-dimensional represen-
tations of geometrical features with an inverse-design network
that refines meta-atom dimensions to mitigate coupling-
induced phase errors, resulting in a fabricated meta-lens with
a 1 mm radius and a relative focusing efficiency of 93.4%
(compared to the ideal focusing efficiency).

Moving forward, research on AI-assisted metasurface design
is expected to further embrace models that inherently capture
meta-atom responses over varying length scales while main-
taining physical interpretability. Emerging network architec-

Fig. 4 AI-assisted design of metasurfaces with mutual coupling effects. (a) Prediction of electromagnetic responses of individual meta-atoms when
mutual coupling between nonidentical neighbours is present via CNN. Reproduced from ref. 136 Copyright 2021. The authors, Advanced Optical
Materials published by Wiley-VCH GmbH (b) U-Net-based CNN for the modelling of complex, aperiodic plasmonic metasurfaces that can extend to
arbitrarily large sizes. Reproduced with permission from ref. 53. Copyright 2022 American Chemical Society. (c) Rapid calculation and optimization
of metasurfaces incorporating meta-atom interactions. Reproduced from ref. 137. Copyright 2023. The authors, Advanced Photonics Research pub-
lished by Wiley-VCH GmbH, under the terms of the Creative Commons Attribution License https://creativecommons.org/licenses/by/4.0/. (d) A DL
optimizer for large-aperture meta-lens design via AE. Reprinted with permission from ref. 138. The article is licensed under a CC-BY 4.0 License.
https://creativecommons.org/licenses/by/4.0.
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tures such as transformers offer the ability to learn long-range
dependencies across an entire metasurface, using self-atten-
tion or fixed-attention to account for both local and global
coupling effects without a preset neighbor limit. Equally
important is infusing more physics knowledge into the learn-
ing process to avoid purely black-box behaviour. This could
involve embedding constraints like energy conservation, reci-
procity, or known coupling formulas into model architectures
or loss functions, as well as designing network outputs that
correspond to physically meaningful parameters.

Robust and fabrication-friendly
metamaterial design

DNNs are making otherwise intractable problems a reality. In
inverse-design, one typically seeks to maximize a set of per-
formance criteria given a range of input parameter values.
While these ranges may correspond to available material
values or geometrical dimensions, such constraints are not the
same as tolerances. In fact, tolerances are usually not con-
sidered in situ during optimization, but rather a posteriori, if at
all. This means that the optimizer has no idea about the sensi-
tivity of the response surface (i.e., the hyper-dimensional
objective space) to changes in input parameters. It is actually
quite possible that the optimizer, simply seeking to maximize
nominal performance, finds a solution that is highly-perfor-
mant, but quite sensitive to input uncertainties. Designers
therefore need to have previous experience when analysing
optimized designs to anticipate their potential sensitivity.
Otherwise, tolerance analysis may be performed using conven-
tional Monte Carlo methods to estimate a design’s guaranteed
minimum performance given a set of input tolerances/uncer-
tainties. However, in the case of computationally expensive
models such as those requiring full-wave analysis or those with
many input dimensions, this kind of analysis itself can be pro-
hibitive. To this end, engineers have used surrogate modelling
approaches based on radial basis functions or the Kriging
model to help with such analysis. To this end, Easum et al.
(2018)139 introduced an optimization algorithm that iteratively
trains surrogate models which accurately capture response
surface features in order to calculate a design’s “tolerance
hypervolume”. Due to the multi-objective nature of the algor-
ithm, it presents designers with a Pareto front of optimized
designs that showcase the trade-offs between performance
objectives and robustness. While this technique represented a
breakthrough in RF antenna optimization, classical surrogate
models aren’t equipped to handle the more sophisticated non-
linear relationships seen in nanophotonic meta-devices.
Therefore, new techniques were needed in order to capture
design robustness in freeform optical meta-devices.

Wen et al. demonstrated in 2020 how a progressively
growing GAN (PGGAN) can learn how to output highly efficient
and robust metasurfaces using only a sparse training data set
(Fig. 5(a)).140 The progressive growth aspect of the network
enabled more robust learning of local topological features in

the training set while a self-attention mechanism allowed the
network to capture global features. The PGGAN was able to sig-
nificantly accelerate the process for producing robust opti-
mizes designs compared to the conventional topology (i.e.,
adjoint) optimization process. In 2021, Jenkins et al. demon-
strated a U-Net based architecture that achieved extremely
accurate prediction of a metasurface’s performance under geo-
metric variations (Fig. 5(b)).141 The network was used in con-
junction with a more conventional multi-objective optimiz-
ation algorithm in order to quantify both nominal (i.e., no vari-
ations) and guaranteed minimum performances over all poss-
ible geometric deviations. Computing the guaranteed
minimum performance is difficult as it requires an exhaustive
evaluation of all possible variations; the minimum perform-
ance does not always occur at the extremes of the uncertainty
range. Using this approach, the authors presented a result that
trades off a few percent of nominal performance for over a
100% increase in guaranteed minimum performance.
Moreover, the hybrid DL approach reduced the inverse-design
process from a potential many months’ time scale to that of
just a few days, overall speedups 14.8 times for a single optim-
ization ignoring startup time and 4.37 times including it.

In 2023, Tanriover et al. combined an AE and FC NN to
produce a DL model capable of generating manufacturable
freeform dielectric meta-atoms (Fig. 5(c)).70 Their approach
sought to improve upon model generalizability and fabrication
feasibility compared to other solutions. The forward model
exhibited generalizability in material dispersion, source polar-
ization, and wavelength range of operation and was sub-
sequently connected to a GA to perform design optimization.
In the same year, Ueno et al. presented a DL framework for
producing fabrication-friendly metasurfaces. The authors
demonstrated a dual-band optical collimator whose inverse-
design was accelerated by the DNN (Fig. 5(d)).142 The free-form
meta-atoms were generated using a predictive neural network
(PNN) which was trained to accurately predict the transmission
phase and amplitude of candidate designs.

Recent advancements and
perspectives

Recent research highlights several emerging trends that are
shaping the future of AI-assisted metamaterial design. These
approaches aim to overcome current limitations (such as data
scarcity, limited generalization, or design complexity) and
open new possibilities for metamaterial engineering.

One emerging approach is the hybridization of different
neural network types within a single design framework. The
motivation is that complex metamaterial design tasks often
involve multiple representations (e.g. geometric patterns, spec-
tral responses, parametric features) that may be best handled
by different network architectures working in concert. For
example, Chen et al. (2025) reported a CNN-LSTM-A model
combining convolutional layers, LSTM networks, and attention
mechanisms that achieved a prediction accuracy of 0.993 for
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the spectral response of all-dielectric trimer metasurfaces exhi-
biting double Fano resonances.143 We believe that these
hybrid network approaches are improving the stability and
fidelity of AI-driven design, which can further offer new possi-
bilities for designing complex metamaterials. Additionally,
integrating large language models appears promising because,
as Kim et al. (2025), Zhang et al. (2025) and Lu et al. (2025)
demonstrated, it lets researchers achieve comparable results
with less ML expertise and less code.144–146

Another major trend is the integration of physical laws and
domain knowledge directly into DL models, a practice known
as PINNs. By embedding principles like Maxwell’s equations
or partial differential equations (PDEs) into the training
process or network architecture, these PINNs can significantly
reduce the need for large training datasets and improve model
reliability. For instance, a convolution-based PINN with U-Net
backbones accurately simulates near-field and far-field
responses with speed improvements of up to 10 000× over tra-
ditional solvers.147 Ongoing works may seek to extend this

framework by incorporating multiple physical domains (elec-
tromagnetic, thermal, mechanical) into AI models. This trend
is expected to grow as it reduces the need for massive training
datasets, but the long training time and high GPU memory
consumption represent major obstacles for this method.

Newer and complex AI architectures are showing an ever-
growing potentiality. A refined GAN paired with an agent model
based on the Swin Transformer148 has enabled efficient gene-
ration of metasurface patterns from spectral data, achieving MSE
as low as 6 × 10−3 between simulated and generated spectra.149

Likewise, a U-net with CGAN framework has facilitated forward
and inverse design of terahertz metasurfaces with multifunctional
responses, achieving inverse prediction accuracies exceeding
94%.150 While these sophisticated architectures yield perform-
ance improvements, it’s important to balance these gains against
the increased computational costs, extended training times they
entail, and a potential greater demand for training data sets. In
some cases, a simpler model may offer a more efficient solution
for less complex design challenges.

Fig. 5 AI-assisted design of robust and fabrication-friendly metasurfaces. (a) PGGAN with self-attention rapidly output freeform metasurface
designs that surpass topology-optimized devices in efficiency and robustness. Reproduced with permission from ref. 140. Copyright 2020 American
Chemical Society. (b) A U-net based DNN with evolutionary optimization to design metasurfaces whose efficiency persists across fine-grained fabri-
cation-induced edge deviations. Reprinted with permission from ref. 141. The article is licensed under a Creative Commons Attribution 4.0
International License https://creativecommons.org/licenses/by/4.0/. (c) An end-to-end generative-modelling pipeline that learns manufacturable
free-form dielectric metasurface shapes. Reproduced with permission from ref. 70. Copyright 2022 American Chemical Society. (d) A DL-generated,
fabrication-constrained library of free-form meta-atoms for the design of metasurface collimators. Reprinted with permission from ref. 142. The
article is licensed under a Creative Commons Attribution 4.0 International License https://creativecommons.org/licenses/by/4.0/.
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In addition to the supervised methods, unsupervised learn-
ing offers an alternative framework for metamaterial design.
One approach uses the K-Nearest Neighbor (KNN) algorithm,
which requires fewer data and computational resources than
NNs. KNN clusters and interpolates metamaterial configur-
ations to yield new geometries with defined property combi-
nations without direct supervision. Recently, Fan et al. (2025)
reported an inverse design method for optical power splitters
that combined KNN with particle swarm optimization.151 This
unsupervised learning method offers a fresh perspective on
the inverse design of photonics. We believe that unsupervised
learning models can be further extended to other meta-
material design challenges.

Conclusions

In this review, we have provided a comprehensive overview of
data-driven approaches in nanophotonics, with a particular
focus on the design and optimization of AI-enabled metade-
vices. Our discussion highlighted the significant strides
achieved through both image-based and parameter-based DL
methods. Advanced techniques including CNNs, RNNs, GANs,
VAEs, and most recently, transformers have demonstrated their
ability to efficiently navigate complex, high-dimensional
design spaces and account for intricate physical phenomena
such as mutual coupling effects. These methodologies not
only overcome the computational limitations of traditional
design approaches but also enable the rapid prediction and
inverse design of multifunctional photonic architectures.

To conclude, the fusion of artificial intelligence with nano-
photonic engineering marks a transformative shift in meta-
devices development. As described throughout this review, AI-
driven strategies hold immense promise for enhancing design
precision, accelerating optimization processes, and ultimately
facilitating the development of next-generation photonic plat-
forms. Looking ahead, future research is expected to delve
deeper into hybrid network architectures, physics-informed
learning, and attention-based models, thereby broadening the
scope and impact of data-driven nanophotonic design.
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