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The particle size of a nanoparticle plays a crucial role in regulating its biodistribution, cellular uptake, and
transport mechanisms and thus its therapeutic efficacy. However, experimental methods for achieving a
desired nanoparticle size and size distribution often require numerous iterations that are both time-con-
suming and costly. In this study, we address the critical challenge of achieving nanoparticle size control
by implementing the Prediction Reliability Enhancing Parameter (PREP), a recently developed data-driven
modeling-based product design approach that significantly reduces the number of experimental iterations
needed to meet specific design goals. We applied PREP to effectively predict and control particle sizes of
two distinct nanoparticle types with different target particle size properties: (1) thermoresponsive co-
valently-crosslinked microgels fabricated via precipitation polymerization with targeted temperature-
dependent size properties and (2) physical polyelectrolyte complexes fabricated via charge-driven self-
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assembly with particle sizes and colloidal stabilities suitable for effective circulation. In both cases, PREP
enabled efficient and precise size control, achieving target outcomes in only two iterations in each case.
These results provide motivation to further utilize PREP in streamlining experimental workflows in various
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1. Introduction

Polymer-based nanoparticles have attracted increasing interest
in drug delivery and other biomedical applications due to
their capacity to encapsulate therapeutic agents, facilitate
long-term circulation, traverse tissue barriers, interact with cell
surface receptors, and facilitate the delivery of drugs directly
into target cells." These features have been leveraged for a
range of therapeutic applications including transporting che-
motherapeutics to both primary and metastatic cancer sites,”?
delivering imaging agents specifically to cells or tissues to aid
in accurate disease diagnosis,” facilitating gene delivery,®
and providing preventative treatments for infectious
diseases.”®

The success of each of these applications depends strongly
on the size of the nanoparticle,” which regulates both the con-
vective transport of nanoparticles due to blood shear and vari-
ations in interstitial pressure as well as the potential for nano-
particles to interact with active and passive transport pathways
that enable intracellular transport and/or transport across bio-
logical barriers such as the blood-brain barrier.>'*"'® In

Department of Chemical Engineering, McMaster University, 1280 Main St. W.,
Hamilton, Ontario, Canada L8S 4L7. E-mail: hoaretr@mcmaster.ca,
mhaskar@mcmaster.ca

This journal is © The Royal Society of Chemistry 2025

biomaterials optimization challenges.

response, significant effort has been invested in developing
strategies to synthesize nanoparticles with precise and
uniform sizes across different particle size ranges suitable for
different biomedical transport tasks.b>'%1%17:18 gyuch efforts
can be broadly classified into two categories: (1) the assembly
of pre-fabricated polymers into particles and (2) the direct syn-
thesis of nanoparticles from monomeric building blocks. In
the former case, techniques such as self-assembly, triggered
precipitation, and template-assisted synthesis are commonly
employed due to their ability to produce nanoparticles with
well-defined characteristics.'® > Self-assembly, for instance,
relies on the spontaneous organization of polymeric building
blocks through secondary intermolecular interactions like
hydrophobic interactions, hydrogen bonding, electrostatic
forces, and n-=n stacking, with particle size control enabled by
rational tuning of the composition of the building blocks and
the solution conditions used.'**° However, the inherent dis-
persity in size and composition among the typical polymeric
building blocks for self-assembled nanoparticles can lead to
broad particle size distributions, multiple particle populations,
and/or the potential for aggregation. In the latter case, emul-
sion, precipitation, and/or suspension polymerization
methods can all be applied to achieve particle size control,
with the combination of such templating methods with con-
trolled free radical polymerization strategies (e.g. atom transfer
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radical polymerization in emulsion polymerization) particu-
larly beneficial to produce nanoparticles with tunable
sizes."”'® However, factors such as the variability of the local
shear field, variable particle aggregation/nucleation, variability
in surfactant or other surface stabilizer performance under
different environmental/solvent conditions, and/or localized
temperature gradients can result in poor control over nano-
particle size and polydispersity, particularly for methods that
do not rely on more complex polymerization pathways and are
thus more amenable to practical translation.

Solving these size and stability challenges is challenging
based on the frequent interdependence of the key factors that
regulate such properties; for example, adjusting one parameter
such as monomer concentration, surfactant type/concen-
tration, or reaction temperature can affect polymerization and/
or assembly kinetics, the stability of the nanoparticle/solvent
interface, and/or particle nucleation kinetics in sometimes
unanticipated ways. This interconnectedness makes relying
solely on experimental techniques for nanoparticle size optim-
ization both time-consuming and costly, especially without a
strategic framework to guide the process.>*” In this context,
incorporating model-based design techniques that can capture
underlying patterns and relationships within the synthesis
process offer significant promise to accelerate nanoparticle
design. By leveraging model-based computational tools,
researchers can plan experimental iterations more efficiently,
reducing resource consumption and expediting the develop-
ment of nanoparticles with desired characteristics.

Modeling approaches for optimizing nanoparticle size can
be broadly classified into deterministic and data-driven
models. Deterministic models leverage fundamental principles
to describe system behavior, offering detailed insights into
mechanisms like particle growth and nucleation. Studies have
demonstrated the utility of deterministic models in solving
reaction-diffusion equations and predicting size distributions
under varying conditions.”®> However, these models require
extensive computational resources, detailed mechanistic
knowledge (including measurement of several often hard-to-
measure or estimate rate or interaction parameters), and costly
validation, making them less practical for complex systems. In
contrast, data-driven models bypass the need for detailed
mechanistic understanding by uncovering patterns directly
from experimental data. These models have been widely used
to predict nanoparticle properties such as size and mor-
phology by correlating recipe parameters with outcomes>*2%¢
and have been particularly leveraged in polymerization-based
processes to establish correlations between recipe parameters
and final nanoparticle size, facilitating predictive particle size
control while accounting for radical polymerization kinetics,
diffusion rates, and interaction dynamics."?7-29:33:36-38

Among various data-driven modeling techniques such as
neural networks and advanced nonlinear regression
models,>*>?7* latent variable models (LVM) such as
Principal Component Analysis (PCA) and Partial Least Square-
Projection to Latent Structure (PLS) have garnered significant
attention for their ability to identify a reduced set of latent
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variables—underlying patterns or structures—that explain
most of the system’s variability.**™** While effective, these
methods also pose drawbacks in the context of nanoparticle
size optimization given their typical need for large datasets
and prediction uncertainty when applied to new data points.
Existing literature has proposed uncertainty metrics including
Hotelling’s 7> and Squared Prediction Errors (SPE) to address
these limitations.***° While these metrics assess the align-
ment of new data points with the calibration dataset, their
interpretations can vary depending on the specific metric
used. Recently, we introduced the Prediction Reliability
Enhancing Parameter (PREP), a unified metric that enhances
predictive reliability by combining multiple model alignment
metrics, to address this prediction uncertainty challenge. The
PREP method was validated on synthetic datasets and shown
to outperform existing methods to identify optimum inputs to
achieve target outputs, particularly in cases in which the
optimal solution is outside the design space of the original
dataset.”® However, to-date the method has not been validated
on an experimental use case.

Herein, we apply the PREP method to optimize nano-
particle size and nanoparticle size distributions in one
polymerization-based nanoparticle synthesis use case (the syn-
thesis of dual temperature/pH responsive microgels based on
poly(N-isopropylacrylamide) (PNIPAM) via precipitation
polymerization) and in one self-assembly-based nanoparticle
synthesis use case (the fabrication of doxorubicin-loaded poly-
electrolyte complexes based on sulfated yeast beta glucan and
cationic dextran). The first case builds on previous literature
from our group and our previous data-driven modeling efforts
to optimize the size and colloidal stability of acid-functiona-
lized PNIPAM microgels that have broad utility for drug deliv-
ery given their potential for environmentally-responsive revers-
ible swelling responses, their capacity to deform and thus
enhance penetration through biological barriers, and their
highly hydrated surface properties that can suppress immune
system recognition.*®**>* The specific target was to match the
crosslinking density and the acid content (4-8 mol%) to micro-
gels in the existing dataset while achieving smaller particle
sizes that remain stable over time. Specifically, while the pre-
existing data set did not include a microgel with a size less
than 170 nm that met the crosslink density and acid content
criteria, a size of 100 nm was targeted to better exploit the bio-
logical penetration properties of the compressible microgels
for drug delivery applications. The second case targeted a key
challenge around the ionic strength tolerance of polyelectrolyte
complexes, which are typically fabricated in water or low ionic
strength buffers but often lose colloidal stability when then
transferred to the physiological ionic strength conditions typi-
cally required for practical clinical use. The specific target was
to achieve nanoparticles with diameter <200 nm (target =
170 nm) and a polydispersity index (PDI) as low as possible
(target = 0.15), properties most suitable for long-term circula-
tion, that remained colloidally stable under physiological ionic
strength. We demonstrate that in both cases the PREP method
can achieve the target properties with minimal historical data

This journal is © The Royal Society of Chemistry 2025
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following only two iterations, opening the potential to
apply PREP more broadly to address nanoparticle design
challenges.

2. Preliminaries
2.1 Latent variable models (LVM)

Ordinary least squares (OLS) regression assumes that system
outputs are independent; however, this assumption frequently
breaks down in real-world industrial applications—such as
nanoparticle size control—where variables are inherently inter-
dependent, often resulting in poor model performance. In
contrast, latent variable modeling (LVM), while also a linear
modeling approach, is well-suited for capturing complex inter-
dependencies by isolating the core independent structures
within the dataset. By identifying and operating within an
uncorrelated latent space, LVM establishes meaningful con-
nections between system inputs and outputs, particularly in
scenarios where data is limited but intervariable dependencies
are critical to capture.

Specifically, LVM can either (1) extract correlations within a
single block of data—via Principal Component Analysis (PCA)
—and project the original correlated data into a latent uncorre-
lated space (referred to as scores) or (2) define relationships
between input variables (X) and output variables (Y) by jointly
mapping them onto a latent space. In both cases, the resulting
scores are represented as linear combinations of the original
variables that are orthogonal to one another. The general
structure of LVM is illustrated in Fig. 1; for detailed mathemat-
ical formulations, and data-blocking configurations, the reader
is referred to our prior manuscript.>*
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2.2 Latent variable model inversion (LVMI)

The primary objective of modeling is typically to identify a suit-
able set of input values that lead to a predetermined set of
desired output properties, referred to as Ygesirable- This process
is known as model inversion, and within the framework of
LVM it is termed latent variable modeling inversion (LVMI).
The outcomes of model inversion depend on the relationship
between the number of underlying independent latent factors
in the input space (A)—the number of underlying independent
factors (or latent variables) driving the input space, rather than
merely the number of independent input variables —and the
number of output variables (K):

1. If A < K, there is no input set X for which Yjreqicted =
Ydesirable- 1N this case, model inversion identifies an input X
where its Ypredicted 1S as close as possible to Yqesirabie-

2. If A = K, there is a single solution for which its Yjredicted =
Yaesirable that can be identified by model inversion.

3. If A > K (the most common case in practice), there are an
infinite number of input sets X for which Ypredicted = Ydesirable-
In this context, these solutions form a continuous set known
as the Null Space (NS) that represents various input combi-
nations that leave the output prediction unchanged.

Solutions derived from LVMI can either match the targeted
predetermined value (as in the second and third scenarios) or
come as close as possible to the predetermined value (as in
the first scenario). While the prediction accuracy for these
solutions varies across different samples, the degree of accu-
racy cannot be confirmed until all the solutions are experi-
mentally tested, which can be a costly and time-consuming
process. To address this issue, specific modeling alignment
metrics can be computed solely from the input data (X),
metrics that are generally classified into three categories:
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Fig. 1 General latent variable modeling framework.
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(a) Hotelling’s 7> metrics measure the distance of a new
data point’s projection to the latent space from the center of
the latent space, indicating how far the new data point deviates
from the calibration set.

(b) Squared prediction error (SPE) metrics assess how well the
new data point can be reconstructed or regenerated by the model.

(c) Score alignment (Hprs & Hpcy) metrics evaluate the simi-
larity of the score structure of the new data point to that of the
calibration data, indicating how closely the new sample aligns
with the model’s learned structure.

Fig. 1 also provides a conceptual summary of the Hotelling
T* and SPE metrics in which the SPE corresponds to the dis-
tance between the Xi8™™°d and X,e, in the input space
(reflecting how well the model can reconstruct the new
sample) and the Hotelling 7> metric reflects the distance
between the latent projection of the new sample and the
center of the latent space (capturing how far the sample devi-
ates from the distribution of the calibration set). For the Score
Alignment metric (H), when a new sample is projected into a
less populated region of the latent space, it reflects a lower
resemblance to the calibration data point score structure,
resulting in a higher H score (and vice versa).

3. Proposed methodology

Although each of the above-mentioned metrics has its own
general threshold beyond which model predictions are un-
likely to be accurate, there is no single threshold across all
metrics that can define a universally reliable range for predic-
tions and thus determine when model predictions can be
trusted. Additionally, different expectations may arise depend-
ing on which metric is being considered. To address this limit-
ation, the PREP parameter is defined as a linear combination
of the metrics, weighted by different coefficients and powers,
that are optimized using a validation dataset in which both
actual and predicted Y values are available for comparison.
The parameters are optimized such that samples with low pre-
diction accuracy are assigned a higher PREP value while
samples with higher prediction accuracy are assigned a lower
PREP value, allowing the list of potential candidates coming
from LVMI to be ranked based on their likelihood of accurate
predictions and thus enabling prioritization of those samples
that either have the highest chance of success in meeting the
target properties or will provide the model with the most new
information possible for further model refinement. The
general equation for PREP is presented in eqn (1),>! in which
the values of C and P are determined specifically for each
dataset through an optimization algorithm.

PREP = C, hotelingT2%l, + C,SPEE2  + C;hotelingT2%?

pls x,pls pca
+ C4SPE g, + Cshpp + Colrye,

To implement the PREP method, an initial dataset and a
desired target output set are chosen and the k-nearest neigh-
bors (with k being a tuning parameter) to the target output in
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the output space are identified and used to train both a PLS
and a PCA model. The PLS model generates a list of potential
design space (PDS) candidates comprised of candidate recipes
expected to meet the target output. Model alignment metrics
are subsequently calculated for the training data alongside the
prediction accuracy, using a jackknife approach in which the
PLS model is developed using a subset of the samples and the
predicted output is compared to the actual value(s) of the
excluded sample(s). The alignment metrics and prediction
accuracy of the training dataset are then used to optimize the
coefficients and powers of the PREP equation (C and P in eqn
(1)), enabling the ranking of PDS samples by assigning a score
to each candidate based on its likelihood of accurate predic-
tion. Candidates with the lowest PREP score (indicating high
prediction confidence) and the highest PREP score (represent-
ing high uncertainty, which can aid model refinement near
the target output) are selected for synthesis. If the synthesized
samples do not achieve the target, they are added to the
dataset, the list of k-nearest neighbors is updated, and the
process is repeated iteratively until the desired outcome is
obtained. Fig. 2 illustrates the general scheme of the method,
with further details available in the original paper.>!

The PREP method has two key advantages relative to previous
methods for assessing prediction accuracy: (1) only a single para-
meter needs to be evaluated to compare samples, reducing
uncertainty and bias in prediction assessment; and (2) the
method does not require a large number of data points for practi-
cal implementation, with as few as A + 2 data points needed in
which A represents the number of independent principal com-
ponents of the system input. Note that while Bayesian and
Gaussian process-based approaches can also be applied effec-
tively to similar optimization challenges, they tend to rely on
more sample-intensive strategies (e.g,, Monte Carlo sampling)
and thus often require significantly more data to achieve conver-
gence relative to the PREP method, particularly in complex or
high-dimensional settings.”’ Relative to non-linear modeling
approaches such as support vector regression, decision trees, and
Gaussian process regression that have also performed well for
predicting materials properties using relatively smaller sample
sizes, PREP offers a key advantage in that it is fundamentally a
linear latent variable-based framework, thus reducing the risk of
overfitting, making interpretability simpler, and facilitating more
robust extrapolation along well-defined latent variable directions
(the latter of which is particularly beneficial for inverse design).

4. Experimental case studies

To validate the performance of the PREP method for optimiz-
ing and controlling nanoparticle sizes and size distributions,
two case studies were performed.

4.1 Case study 1: multi-responsive microgels

Smart microgels that respond to external stimuli such as pH
and temperature are typically fabricated via a free radical pre-
cipitation polymerization by combining a temperature-sensi-

This journal is © The Royal Society of Chemistry 2025
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Fig. 2 Schematic illustration of the proposed PREP method. The green box represents the desired target output set. Blue boxes indicate the training
and validation data in which actual Y values are known and used for optimizing the PREP equation. Orange boxes depict the dataset of potential can-
didates, for which only X values are available. Candidates selected through the PREP method are prioritized for experimental testing.

tive monomer (most typically N-isopropylacrylamide, NIPAM),
and a pH-responsive comonomer selected among acrylic acid,
methacrylic acid, fumaric acid, maleic acid, or vinyl acetic
acid.”® Achieving precise control over microgel size thus
requires balancing of the different copolymerization kinetics
of the multiple comonomers incorporated, the different water
solubilities/hydrophilicities of the different comonomers, and
the interactions between any included surfactant with the
monomers and the growing copolymers. Our target was to fab-
ricate three microgels with the same crosslinking density and
an acid monomer content between 4-8 mol% (sufficient for
inducing pH-responsive effects or enabling ligand grafting
without compromising the desirable complementary tempera-
ture responsiveness®) but with as high as possible range in
particle size at pH 7.4 and 37 °C. The pre-existing microgel
dataset for this project is presented in Table 1. While the
dataset already included samples with moderate (~300 nm,
Sample 15) and large (~950 nm, Sample 12) sizes that met the
design criteria, the smallest microgel that met all the criteria
was Sample 4 (diameter ~175 nm), which was relatively close
to the moderate size microgel and significantly higher than
the ~100 nm particle size previously reported to bypass reticu-
loendothelial system clearance and pass through the liver sinu-
soidal fenestrae to promote long-term particle circulation.>® As
such, the optimization objective was to synthesize a 100 nm
microgel that would meet this criteria while maintaining the
same MBA content as Samples 12 and 15 (160 mg) and an acid
content remained within the targeted 4-8 mol% range.

4.1.1 Experimental details

Materials. N-Isopropylacrylamide (NIPAM) (Sigma-Aldrich,
97%) was purified by recrystallization with 60:40 toluene/
hexane mixture. N-N'-Methylene(bis)acrylamide (MBA) (Sigma-
Aldrich, 99%), vinylacetic acid (VAA) (Aldrich, 97%), sodium
dodecyl sulfate (SDS) (Sigma-Aldrich, 99%), potassium chlor-
ide (KCl) (Fisher Chemical, ACS grade), and ammonium per-
sulfate (APS) (Sigma-Aldrich, 98%) were all used as received.

This journal is © The Royal Society of Chemistry 2025

Table 1 Pre-existing microgel formulations and corresponding particle
size data. Bolded columns represent the data used as the input (MBA,
VAA, SDS) and output (size) variables for the PREP optimization process

Sample NIPAM MBA VAA SDS APS Size®
ID (g (mg) (mg) (mg) (mg) (nm)
1 1.6 160 342 57 50 126
2 1.6 160 114 57 50 283
3 1.6 160 80 57 50 177
4? 1.6 160 46 57 50 176
5 1.6 205 114 57 50 298
6 1.6 114 114 57 50 269
7 1.6 80 114 57 50 299
8 1.6 46 114 57 50 319
9 1.6 160 114 34 50 396
10 1.6 160 114 23 50 444
11 1.6 160 114 0 50 657
12? 1.6 160 342 0 50 954
13 1.6 173 45 12 50 190
14 1.6 244 176 24 50 332
150 1.6 160 228 57 50 300

“Sizes correspond to the intensity-averaged effective diameter
measured at pH = 7.4 and 37 °C. ” Represents the best available candi-
dates based on the existing dataset to meet the design criteria of creat-
ing a set of microgels with the same crosslinking density/acid content
but as different as possible particle sizes.

MilliQ-grade water (>18 Q resistance) was used for all
experiments.

Microgel synthesis. The initial dataset used in this study is
summarized in Table 1. For each synthesis recipe, specified
amounts of NIPAM, MBA, SDS, and VAA were combined in a
250 mL round-bottom flask containing 150 mL of MilliQ
water. The solution was deoxygenated by purging with nitro-
gen gas for 30 minutes at room temperature before being
transferred to an oil bath preheated to 70 °C, with nitrogen
purging continued throughout the process. Polymerization
was initiated by dissolving 0.05 g of APS in 10 mL MilliQ water
and introducing it to the flask using a syringe. The reaction

Nanoscale, 2025,17,19767-19784 | 19771
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proceeded under magnetic stirring at 160 rpm for 4 hours at
70 °C. Upon completion, the reaction mixture was cooled to
room temperature and dialyzed for six cycles, each lasting
6 hours, to remove residual surfactant and unreacted mono-
mers. The resulting microgel suspension was then lyophilized
and stored at ambient conditions.

Particle size measurements. The particle sizes of the
microgels were determined using dynamic light scattering
(Brookhaven 90Plus) operating at a fixed scattering angle of
90°. Measurements were performed at 37 °C in 10 mM KCl
solutions, with the pH adjusted to 7.4 using 0.1 M HCI
or NaOH. For each sample, five independent z-average
particle size measurements were taken, and the average value
of the intensity-weighted effective diameter was reported as
the particle size. All microgels displayed a unimodal
particle size distribution during analysis, such that the
effective diameter is representative of the full particle size
distribution.

4.1.2 Modeling preparation, integration, and iterations.
Since the amounts of NIPAM and APS remained constant
across the initial dataset, they were not considered in the
model and only the three variables that do change (MBA, VAA,
and SDS) were retained. Considering that each of these key
variables can affect the kinetics of the polymerization, the
nucleation mechanism of new polymer chains, and the
maximum size to which the precipitation polymerization pro-
ceeds, from a modeling perspective microgel formation is a
highly non-linear process and non-linear modeling approaches
represent an attractive option. While Artificial Neural
Networks (ANNs) are particularly appealing in this context
given that they can capture intricate non-linear relationships
in the data, ANNs require large amounts of training data to
achieve reliable results, a key challenge in product design in
which generating new data points is costly and time-consum-
ing. Instead, we implemented an approach of combining a
conventional LVMI with an optimization algorithm called
Inversion by Optimization (IbO) that utilizes a PLS model to
identify solutions in which the predicted outputs (Ypredicted)
closely match the desired targets (Ygesirable) While minimizing
certain soft constraints that help ensure statistical validity. The
optimization framework enforces key conditions (e.g., MBA =
160 mg and VAA mol% within the specified range) while mini-
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mizing PLS Hotelling’s 7> and SPE values. The complete
framework is presented in eqn (2).

min {wl (5 — yles) (e — yles)T 4 w,Hoteling 7%, + wgSSPExnew}
(2)

s.ty 9"V = 7Q"; " = PT; 7 = x"*VW*; where I'is a [L x L] diag-
onal matrix containing the weights assigned to each output
variable (emphasizing their relative importance). Given that
particle size is the only output variable in this scenario, this
term was simplified to w, (5™ — $°) in which w; represents
the weight of each term.

The number of PLS components in such cases is typically
determined using data-driven approaches such as cross-vali-
dation®” the eigenvalue-less-than-one rule,”® or based on
experimental knowledge of the dependencies among input vari-
ables. In this microgel dataset, the selection was guided by
experimental knowledge, as all three input variables—MBA,
VAA, and SDS—could be independently manipulated within
feasible ranges to synthesize new microgels. Consequently,
three PLS components were chosen to sufficiently capture the
relationships between the inputs and the output. Using this
PLS model, the optimization framework in eqn (2) was applied,
resulting in the recipe outlined in Table 2 (IbO 1st itr). The par-
ticle size obtained from this recipe (170 nm) was very close to
the smallest microgel already available in the dataset. This new
recipe was subsequently incorporated into the dataset, and the
optimization algorithm was executed again for the next iter-
ation. However, the synthesis of the suggested solution in the
second iteration (IbO 2nd itr in Table 2) resulted in aggrega-
tion. It is worth noting that the direct model inversion solution
was not applicable in this case, as it provided a single answer
that failed to meet the required conditions around the VAA
content (reaching as low as 2.4 mol%). As such, a more conven-
tional approach did not achieve the targeted particle size,
motivating the implementation of the PREP method, which
was applied next to overcome these constraints.

The PREP method was implemented by first identifying the
list of nearest neighbors; with three latent space components
and a single output variable, a minimum of A + 2 = 5 nearest
neighbors was required. To ensure clarity and avoid any per-
ception that PREP was enhanced by the IbO method and the

Table 2 Measured microgel particle sizes from optimized recipes generated by both the Inversion by Optimization (IbO) method and the PREP
method relative to the direct model inversion solution (target size = 100 nm). Bolded columns represent the data used as the input (MBA, VAA, and

SDS) and output (size) variables for the PREP optimization process

Sample ID MBA (mg) VAA (mg) SDS (mg) Size (nm) Comments

Direct Model Inversion 158 33 57 — MBA and acid content both too low
1bO 1* itr 160 62 65 170

1bO 2™ itr 160 108 74 — Sample showed large-scale aggregation
PREP 1% itr (L1) 160 92 91 144

PREP 1% itr (H1) 160 70 80 151

PREP 2" itr (L2) 160 84 134 104

PREP 2" itr (H2) 160 101 133 118
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similarity of the IbO 1% itr sample to a pre-existing datapoint
(Sample 4), the IbO 1st itr sample generated in the initial
attempt was excluded from the list of neighbors to ensure that
PREP started with the same dataset originally provided to IbO
method. Fig. 3 depicts all available datapoints and five nearest
neighbors to the target in both the input (a) and output (b)
spaces.

Subsequently, PLS and PCA models were constructed using
the selected neighbors followed by the creation of the
Potential Design Space (PDS). In this case, the number of PLS
components exceeded the number of output variables by two,
resulting in a two-dimensional null space (i.e. for any given
Yqesirable; there exists a two-dimensional surface in the input
and latent spaces where all points satisfy Ypredicted = Ydesirable)-
However, given the imposition of the constraint fixing the
MBA content at 160 mg to match the crosslink density of the
target microgel with the existing microgels in the series, the
number of degrees of freedom was reduced to collapse the
null space to a single dimension (i.e. a line within the original
two-dimensional space), as shown in Fig. 4(i). Further analysis
of the points along the blue line revealed that none of the can-
didates met the 4-8 mol% acid content requirement, necessi-
tating the creation of the Potential Design Space (PDS) using
an optimization-based algorithm. The algorithm generated a
list of 50 candidates whose predicted outputs (Ypredictea) Were
as close as possible to the desired target (Ygesirable) While still
satisfying all specified constraints. It is important to empha-
size that the list generated through this optimization process
fundamentally differs from the results obtained via IbO

a Input Space

* Available samples
= 5 Nearest neighbors(based on the outputs)

L]
1

°
11

200 e

100'\_/,/5/ (')/ 100
A 0o

MBA

View Article Online

Paper

approach; while the PREP optimization algorithm produces a
list of candidates by considering only the input range require-
ments, IbO yields a single solution by incorporating modeling
alignment metrics such as Hotelling’s 7° and Squared
Prediction Error (SPE). The new list generated by the
implemented optimization algorithm (the PDS) is also shown
in Fig. 4(i).

To identify the most relevant candidates for synthesis
within the Potential Design Space (PDS), model alignment
metrics were calculated for both the nearest neighbor samples
and the PDS members and then used together with the predic-
tion accuracy of the nearest neighbor samples to optimize the
PREP equation parameters (C and P in eqn (1)). The resulting
optimized PREP equation was then applied to rank all PDS
candidates, from which two samples corresponding to the
lowest (L-PREP) and highest (H-PREP) PREP scores were
selected for experimental synthesis. The results of the PREP
optimization and the ranking of Potential Design Space (PDS)
samples for iteration 1 are presented in Fig. 4 where panel (ii)
illustrates the relationship between the prediction accuracy
and the PREP score for the validation data points used in opti-
mizing the PREP equation and panel (iii) shows the PDS candi-
dates ranked by their PREP scores; the two selected formu-
lations for synthesis, corresponding to the highest ranked
(L-PREP) and lowest ranked (H-PREP) ranked candidates, are
also clearly highlighted. As expected, lower prediction accuracy
is associated with higher PREP scores, confirming the metric’s
effectiveness in assessing prediction reliability. The measured
particle sizes of the L-PREP and H-PREP recipes, as shown in

Output space _ b

[l Available samples
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Fig. 3 Visualization of all available datapoints alongside the five nearest neighbors to the target in both the input (a) and output (b) spaces derived

from the pre-existing dataset (Table 1).
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Fig. 4 Results from iteration 1 of the PREP implementation on microgel optimization. Sub-panel (i) represents the visualization of the Potential
Design Space (PDS) in the latent space, (ii) shows the outcome of the PREP equation optimization demonstrating the alignment of validation data
points along the optimized line (with higher PREP scores corresponding to lower prediction accuracy), and (iii) shows the ranked PDS samples based
on their PREP scores with the selected candidates for synthesis (L-PREP — highest expected reliability and H-PREP — highest uncertainty used to

enhance model refinement) highlighted.

Table 2, demonstrated that the samples suggested by the PREP
method outperformed all existing datapoints in the dataset as
well as those proposed by IbO approach. However, since the
particle sizes of these samples still did not meet the ~100 nm
target size, the newly synthesized samples from this first iter-
ation were added to the dataset, the list of nearest neighbors
was updated, and the PREP method was reapplied to generate
new synthesis recipes. Note that including the two recipes
from the first iteration (and thus removing the two samples
from the five nearest neighbors from the first iteration) results
in a 40% change in the dataset for the second iteration com-
pared to the first iteration, a key advantage of using a smaller
number of samples such that each sample carries dispropor-
tionately high weight in reframing the model (i.e. adding or
replacing even a few samples can substantially alter the
dataset, the model parameters, and thus the second iteration
predictions).

The updated latent space based on the revised dataset are
shown in Fig. 5(i). Note that enforcing all design constraints—
particularly the specified acid content range of 4-8 mol%—did
not yield a sufficient number of solutions within the actual
null space (NS); consequently, the Potential Design Space
(PDS) for the second iteration was expanded using the same
optimization-based approach as in the first iteration, ensuring
that all constraints were satisfied while generating at least 50
candidate datapoints within the PDS. The PREP equation para-

19774 | Nanoscale, 2025,17,19767-19784

meters (C and P) were then re-optimized and the resulting
equation was re-applied to rank all PDS candidates, with the
resulting H-PREP and L-PREP samples identified in Fig. 5(iii)
subsequently synthesized. As shown in Table 2, the L-PREP
sample demonstrates exceptional proximity to the target par-
ticle size, achieving a size of 104 nm. Correspondingly, as
shown in Fig. 5 panel (ii), the PLS model developed for the
second iteration demonstrates significantly improved accuracy
near the target output of 100 nm. Even the lowest-performing
validation sample achieved over 97% accuracy—an improve-
ment from 88% in the first iteration—indicating that the PREP
method effectively guided the dataset expansion toward the
desired region and enhanced model precision around the
target.

Table 2 provides a summary of the particle sizes of the syn-
thesized samples suggested by both the PREP and optimiz-
ation-based methods. The microgel recipes proposed by the
PREP method outperformed not only those generated by the
optimization-based approach but also all samples in the initial
dataset in terms of closeness to the target. The L-PREP and
H-PREP samples from the first iteration achieved 75% and
78% accuracy relative to the target (particle sizes = 151 nm
and 144 nm, respectively), while the second iteration recipes
achieved accuracies of 92% and 98% (118 nm and 104 nm)
that surpassed the predefined acceptable threshold of 95% clo-
seness to the target. The PREP method’s capacity to deliver an

This journal is © The Royal Society of Chemistry 2025
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enhance model refinement) highlighted.

optimized solution within just two iterations underscores the
method’s ability to handle dataset expansion rationally,
rapidly refine predictions, and adapt to challenging design
constraints in a highly non-linear system.

4.2 Case study 2: salt-stable polyelectrolyte complexes

Polyelectrolyte complexation presents several advantages over
other nanoparticle fabrication techniques including as rapid
self-assembly, relatively simple experimental setup, and the
potential to eliminate the use of organic solvents.’*
Polyelectrolyte complexes (PECs) are particularly beneficial for
delivering ionic therapeutics, which can either be used directly
as a building block for nanoparticle assembly (e.g. DNA
polyplexes®”®?) or as an additive with tunable release based on
the ionic interactions between the charged drug and its coun-
terion polymer.®*®> However, PECs are particularly sensitive to
the high ionic strength of physiological fluids due to their
reliance on electrostatic interactions for both intraparticle
stabilization and colloidal stability, both of which can be dis-
rupted at high salt concentrations due to charge screening.
Thus, identifying PEC formulations with improved stability at
high ionic strength without compromising either their favor-
able size for effective circulation (<200 nm to avoid splenic fil-
tration') or their capacity to load clinically-relevant concen-
trations of drug is of interest. Given the multiple variables that
can influence the size and stability of PECs including the

This journal is © The Royal Society of Chemistry 2025

molecular weight and charge ratios of the polyelectrolytes, the
pH, the ionic strength, and the drug concentration,>**® identi-
fying a formulation that meets both size and stability require-
ments typically necessitates the fabrication of an extensive
library of formulations that lends itself ideally to the
implementation of optimization models. The specific case
study selected involves the combination of sulfated yeast beta-
glucan (GS, anion, a carbohydrate with known immunomodu-
latory potential to reprogram macrophages away from a pro-
fibrotic state toward a pro-inflammatory state®”) with quater-
nized dextran (Dex, cation) and the cationic chemotherapeutic
drug doxorubicin (DOX), with the combination of the DOX
chemotherapeutic loading plus the immunomodulatory pro-
perties of GS offering potential benefits for cancer immu-
notherapy. The target was to achieve initial particle sizes as
small as possible and a polydispersity index (PDI) below 0.1
following fabrication in low ionic strength buffer and a final
particle size <200 nm (model target: 170 nm) and PDI <0.2
(model target: 0.15) upon transfer of the formed PECs to phos-
phate buffered saline matching physiological pH and ionic
strength.

4.2.1 Experimental details

Materials. Sulfated yeast beta glucan (glucan sulfate, GS)
from S. cerevisiae was prepared as described by Williams
et al.® (M, = 13.5 kDa, P = 5.5, sulfur degree of substitution =
0.33, charge density = 1.54 + 0.06 peq per mg). Cationic

Nanoscale, 2025,17,19767-19784 | 19775
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dextran (Dex-GTAC) was prepared via functionalization with
glycidyltrimethylammonium chloride in the presence of NaOH
according to previous methods®*”® (M,, = 3.7 kDa, P = 1.05,
nitrogen degree of substitution = 0.50, charge density = 2.09 *
0.1 peq per mg). Doxorubicin hydrochloride (DOX, 97.8%) was
obtained from Millipore Sigma and used as received. MilliQ-
grade water (>18Q resistance) was used for all experiments.
PBS stocks were prepared from PBS tablets (Millipore Sigma)
and adjusted to pH 6.5 prior to nanoparticle fabrication. Full-
strength PBS (150 mM ionic strength, 10 mM phosphate ions)
was denoted as “1x PBS”, with all other concentrations used
expressed as a fraction of the full-strength concentration.

Polyelectrolyte complex (PEC) fabrication. Polyelectrolyte com-
plexes were prepared using a flash nanoprecipitation method,
with the recipes comprising the initial dataset used for optim-
ization summarized in Table 3. GS, Dex-GTAC, and DOX were
dissolved in PBS prepared at the ionic strength identified in
Table 3, after which 3 mL of the GS solution was loaded into a
6 mL syringe and 3 mL of a 1:1 volume ratio of the Dex-GTAC
and DOX solutions was loaded into a second 6 mL syringe.
The syringes were loaded onto a confined impinging jet mixer
and co-jetted over ~2-2.5 seconds into a fresh scintillation vial
using a pneumatic plunger. The resulting PEC suspension was
left to stir for 10-15 minutes prior to analysis. Note that all for-
mulations followed the same general composition of GS mass
ratio > Dex-GTAC mass ratio > DOX mass ratio, maintaining a
sulfur : nitrogen ratio greater than 1 in each case.

PEC characterization. PECs were characterized for their size
and PDI as a function of time and ionic strength using
dynamic light scattering (Brookhaven NanoBrook 90Plus; Long
Island, NY, USA; temperature = 25 °C, N = 5 technical repli-

Table 3
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cates). Freshly prepared PECs were 0.2 pm syringe filtered into
a polystyrene cuvette prior to analysis. To assess the formu-
lation’s stability in physiologically relevant ionic strength, the
PECs were diluted (1:1 v/v) in concentrated PBS to a final
ionic strength corresponding to 1x PBS (~150 mM ionic
strength) and analyzed again via DLS. The intensity-averaged
effective diameter and PDI were reported as the average of 5
technical replicates.

4.2.2 Modeling preparation, integration and iterations. In
the available dataset, the PBS ionic strength (expressed as a
ratio of the physiological PBS ionic strength), the total polymer
concentration, and the GS and Dex-GTAC mass ratios were
selected as the system’s manipulatable parameters. DOX was
not included among the manipulatable variables given that all
GS and Dex-GTAC ratios were defined relative to DOX (DOX = 1)
in the key input variables used for modeling; as such, the DOX
concentration was represented as a normalized variable across
all samples. Since the objective was to achieve final particle
sizes <200 nm and PDI values <0.2 after exposure to physiologi-
cal ionic strength solutions, the 1x PBS column from Table 3
was used as the model output. Fig. 6 illustrates how well this
target aligns with the existing dataset. While some samples
met the size requirement, no sample achieved sufficiently low
polydispersity; alternately, other samples met the polydispersity
requirement but failed to achieve the target particle size. As
such, the optimization approach aimed to identify formu-
lations that satisfied both criteria simultaneously.

Although four input variables were available for manipu-
lation, an additional constraint was imposed to require that
samples have a higher GS concentration relative to Dex-GTAC
concentration such that the nanoparticle surface is GS-rich (to

Initial dataset of PEC formulations. Bolded columns represent the data used as the input variables (assembly solvent as a fraction of full-

strength PBS, total precursor concentration added, GS : DOX ratio, and Dex-GTAC : DOX ratio) and output variables (size and PDI in 1x PBS) for the

PREP optimization process

Assembly
Total Pre-assembly solvent 1x PBS
Assembly  precursor Pre-assembly  Dex-GTAC Pre-assembly Dex-
solvent conc. GS conc. conc. DOX conc. GS:DOX GTAC:DOX  Size Size
Sample ID  [x PBS] [mgmL™] [mgmL™] [mg mL™"] [mg mL™] ratio ratio [nm] PDI [nm] PDI
1 0.5 0.5 0.750 0.200 0.050 15.0 4.0 156 0.11 208 0.11
2 0.1 0.5 0.750 0.200 0.050 15.0 4.0 109 0.13 362 0.04
3 0.5 0.75 1.125 0.300 0.075 15.0 4.0 147 0.14 229 0.09
4 0.1 0.75 1.125 0.300 0.075 15.0 4.0 110 0.14 357 0.08
5 0.5 1 1.500 0.400 0.100 15.0 4.0 161 0.15 260 0.06
6 0.1 0.25 0.375 0.100 0.025 15.0 4.0 133 0.18 326 0.11
7 0.5 0.5 0.750 0.188 0.063 12.0 3.0 146 0.09 217 0.11
8 0.1 0.5 0.750 0.188 0.063 12.0 3.0 124 0.16 298 0.08
9 0.1 0.75 1.125 0.281 0.094 12.0 3.0 123 0.19 313 0.05
10 0.5 1 1.500 0.375 0.125 12.0 3.0 164 0.10 243 0.05
11 0.1 1 1.500 0.375 0.125 12.0 3.0 124 0.20 744 0.25
12 0.5 0.5 0.750 0.125 0.125 6.0 1.0 141 0.10 170 0.21
13 0.5 0.5 0.727 0.182 0.091 8.0 2.0 153 0.03 409 0.12
14 0.26 0.72 1.119 0.255 0.067 16.7 3.8 113 0.08 142 0.28
15 0.17 0.83 1.275 0.311 0.074 17.2 4.2 112 0.07 150 0.26
16 0.2 0.82 1.269 0.292 0.079 16.1 3.7 113 0.11 137 0.21
17 0.16 0.78 1.206 0.279 0.075 16.0 3.7 116 0.08 141 0.23
18 0.17 0.53 0.875 0.116 0.068 12.8 1.7 117 0.22 142 0.31
19 0.1 0.54 0.882 0.130 0.068 12.9 1.9 144 0.23 171 0.21
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Fig. 6 Visualization of all available data points along with the five nearest neighbors to the target in the input space (a) and output spaces showing
all samples (b) and only the nearest neighbors (c) as derived from the pre-existing dataset summarized in Table 3.

promote nanoparticle/macrophage interactions) and the final
net charge in the PEC is anionic, key to minimize interactions
with proteins in physiological fluids and representing a
common design criteria for PECs.”"”® As a result, the number
of truly independent variables was reduced to three, and the
number of PLS components was set to three, and the number
of nearest neighbors to activate the PREP analysis was 4 (= 3) +
2 = 5. Fig. 6 illustrates all available data points and highlights
the five nearest neighbors to the target in both the input space
(a) and the output space (b), with panel (c) representing a
zoomed-in version of the area around the target in panel (b).

Next, the PREP method was iteratively applied to the
dataset following the same structured sequence of steps
described in Case Study 1 for each iteration: developing PLS
and PCA models, generating the PDS, optimizing the PREP
equation, ranking the PDS, selecting the L-PREP and H-PREP
candidates, synthesizing the L-PREP and H-PREP recipes, eval-
uating whether the target was met, and (if necessary) updating
the list of nearest neighbors before repeating the process until
satisfactory experimental results were achieved. Given the
number of measurable variables and the number of PLS com-
ponents, the dataset had a one-dimensional null space, ie.
there exists a line in the three-dimensional latent space along
which variations do not affect the predicted Y. All points on
this line, provided they satisfy the constraint GS mass > Dex-
GTAC mass, constitute the PDS and were ranked based on
their PREP score.

The outcomes of PREP implementation for the first two
iterations are presented in Fig. 7. In each sub-figure, panel (i)

This journal is © The Royal Society of Chemistry 2025

illustrates the limited portion of the null space (NS) that is
spanned by the Potential Design Space (PDS) within the latent
space, panel (ii) displays the results of the PREP equation
optimization, highlighting the alignment of the validation
data points along the optimized trend line according to the
calculated PREP scores, and panel (iii) shows the PDS candi-
dates for each iteration ranked by their PREP scores; the two
selected candidates for experimental synthesis denoted as
L-PREP (low PREP score, high reliability) and H-PREP (high
PREP score, high uncertainty) are clearly indicated in the
graph and consistently labeled as Lx or Hx where x is the iter-
ation number. The first iteration of the model exhibited rela-
tively poor predictive performance near the target output
(Fig. 7(a)), with two of the validation data points yielding pre-
diction accuracy values as low as 60%. However, in the second
iteration (Fig. 7(b)), model accuracy improved substantially,
with the lowest prediction accuracy among the validation data
points showing a prediction accuracy of 85%. Table 4 confirms
that the optimization objectives were successfully achieved
within just two iterations, yielding a particle with a size of
171 nm (target <200 nm) and a polydispersity index of 0.19
(target <0.2). Nonetheless, two additional iterations (Fig. 8(a)
and (b)) were conducted to explore the possibility of further
improving the dispersity, leading to the synthesis of a more
narrowly dispersed PEC with a particle size of 182 nm and a
PDI of 0.15 (Table 4) that precisely matched the model’s tar-
geted dispersity value. Note that by the fourth iteration
(Fig. 8(b)) even the least accurate validation sample achieved a
prediction accuracy above 93%, showing the relevance of the

Nanoscale, 2025,17,19767-19784 | 19777
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Fig. 7 Results from iteration 1 (a) and iteration 2 (b) of the PREP implementation on PEC optimization. In each sub-panel, (i) represents the visualiza-
tion of the Potential Design Space (PDS) in the latent space, (ii) shows the outcome of the PREP equation optimization demonstrating the alignment
of validation data points along the optimized line (with higher PREP scores corresponding to lower prediction accuracy), and (iii) shows the ranked
PDS samples based on their PREP scores with the selected candidates for synthesis (L-PREP — highest expected reliability and H-PREP — highest

uncertainty used to enhance model refinement) highlighted.

PREP method to improve model outputs in minimal iterations.
It is important to note that conducting the PREP algorithm
over another two iterations (Table 4) did not yield further
improvements over the best sample obtained in iteration 4
(Sample L4), consistent with the high accuracy of the model
already achieved at iteration 4 such that additional iterations

19778 | Nanoscale, 2025, 17,19767-19784

did not offer significant further benefits in model prediction
accuracy (Fig. S1(a) and S1(b)). This behavior is consistent with
the probabilistic nature of the PREP algorithm, which while
generally effective in guiding dataset expansion does not guar-
antee monotonic performance improvement across iterations.
As shown in our prior work, the sample rankings based on

This journal is © The Royal Society of Chemistry 2025
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Table 4 PEC recipes and particle size results from the iterations generated by PREP model. The sample names correspond to either the H-PREP (H)
or L-PREP (L) samples synthesized in each iteration (the number) of the PREP algorithm. Bolded columns represent the data used as the input vari-
ables (assembly solvent as a fraction of full-strength PBS, total precursor concentration added, GS:DOX ratio, and Dex-GTAC : DOX ratio) and

output variables (size and PDI in 1x PBS) for the PREP optimization process

Assembly
Total Pre-assembly  Pre- solvent 1x PBS
Assembly precursor Pre-assembly ~ Dex-GTAC assembly Dex-

Sample  solvent conc. GS conc. conc. DOX conc. GS:DOX  GTAC:DOX Size Size

D [x PBS] [mg mL™"] [mg mL™] [mg mL™"] [mg mL™] ratio ratio [nm] PDI [nm] PDI
L1 0.18 0.40 0.625 0.102 0.073 8.6 1.4 121 0.23 178 0.34
Hi 0.13 0.86 1.341 0.309 0.070 19.1 4.4 105 0.14 126 0.23
L2“ 0.50 0.88 1.257 0.274 0.229 5.5 1.2 97 0.21 171 0.19
H2 0.46 0.88 1.178 0.447 0.135 8.7 3.3 96 0.06 131 0.24
L3 0.30 0.83 1.273 0.306 0.081 15.8 3.8 94 0.02 125 0.27
H3 0.76 0.66 0.924 0.066 0.330 2.8 0.2 108 0.25 118 0.4
L4“ 0.10 0.80 1.060 0.353 0.186 5.7 1.9 111 0.02 182 0.15
H4 0.13 0.94 1.436 0.368 0.075 19.1 4.9 93 0.09 126 0.23
L5 0.10 0.65 1.000 0.250 0.050 20.0 5.0 106 0.10 131 0.25
H5 0.10 0.71 1.061 0.300 0.060 17.7 5.0 126 0.11 166 0.20
L6 0.59 0.65 1.128 0.120 0.052 21.6 2.3 108 0.25 105 0.39
H6 0.33 0.51 0.862 0.128 0.030 29.0 4.3 81 0.18 104 0.51

“Best performing samples.

PREP scores do not always correspond directly to prediction
accuracy, and in some iterations high PREP score candidates
may unexpectedly yield better results than low PREP ones (pre-
sumably by exploring less explored parts of the design space
that have higher prediction errors but yield superior perform-
ance). This highlights the value of PREP’s dual-candidate strat-
egy (L-PREP and H-PREP) while also illustrating the conver-
gence limits of the model once optimal regions of the design
space have been sufficiently explored. Collectively, these
results illustrate PREP’s capacity to efficiently converge on an
optimal solution within a constrained design space while
requiring minimal experimental effort.

Fig. 9 illustrates the outcomes of each iteration alongside
the initial nearest neighbors from the pre-existing dataset in
the output space, highlighting the proximity of each iteration
result to the target. Notably, while the L2 (second iteration
L-PREP) sample significantly outperformed all other samples
in the dataset (i.e. was positioned closer to the target within
the output space), the third iteration H-PREP and L-PREP
samples both significantly underperformed the initial nearest
neighbor samples; however, extending the iterations for one
more cycle resulted in the L4 formulation that improved on
the performance of L2. This example shows that the aggres-
siveness of the PREP method in terms of revising the number
of nearest neighbor and thus “historical” samples in each iter-
ation can lead to some significant iteration-to-iteration varia-
bility but ultimately converges faster on a recipe with target
properties. Of note, the optimized L4 recipe resulted in a DOX
encapsulation efficiency and loading capacity of 31% and
2.3 wt%, respectively; while this result represents a modest
encapsulation efficiency, the loading capacity is significant
and the potent nature of DOX (ICs, values in the micromolar/
nanomolar range’*”?) is relevant for practical chemotherapeu-
tic use. Furthermore, if additional optimization of the DOX

This journal is © The Royal Society of Chemistry 2025

content within these PECs is desirable, the PREP method may
be applied to the same system while adding DOX loading as
an additional target property.

Relative to the first case study, this case presented
additional challenges associated with a greater number of
output variables, a lower degree of freedom in the null space
(1D compared to 2D in the first case study), and the need to
optimize properties that were not intrinsic to the initially syn-
thesized particles but instead emerged after their introduction
into a higher ionic strength solution. The successful
implementation of PREP in this complex scenario further
underscores its potential for handling high-dimensional
systems with greater complexity.

5. Discussion

The implementation of the PREP method for nanoparticle size
control demonstrates its strong potential as a data-driven
optimization tool in scenarios in which existing datasets are
limited in their coverage of the desired output space. One of
the most notable strengths of PREP observed in this work is its
ability to extrapolate beyond the bounds of the original dataset
while preserving the fundamental correlations inherent to the
system. This capability is especially valuable in nanoparticle
design, in which the empirical design space defined by avail-
able experimental data may not sufficiently explore the para-
meter space associated with more challenging design targets.
For example, in Case Study 1, despite no sample in the initial
dataset having a size below 170 nm within the targeted cross-
linker/acid concentrations, PREP successfully leveraged the
underlying statistical structure of the data to suggest a formu-
lation that resulted in a microgel significantly smaller than
any previously observed sample. A similar advantage was

Nanoscale, 2025,17,19767-19784 | 19779
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Fig. 8 Results from iteration 3 (a) and iteration 4 (b) of the PREP implementation on PEC optimization. In each sub-panel, (i) represents the visual-
ization of the Potential Design Space (PDS) in the latent space, (ii) shows the outcome of the PREP equation optimization demonstrating the align-
ment of validation data points along the optimized line (with higher PREP scores corresponding to lower prediction accuracy), and (iii) shows the
ranked PDS samples based on their PREP scores with the selected candidates for synthesis (L-PREP — highest expected reliability and H-PREP —

highest uncertainty used to enhance model refinement) highlighted.

observed in Case Study 2, in which the initial dataset included
samples that met one of the low particle size or low polydisper-
sity index design criteria but not both; PREP was able to ident-
ify and prioritize formulations that bridged this gap, produ-
cing nanoparticles that simultaneously satisfied both the size
and polydispersity targets in only two iterations. As such, the

19780 | Nanoscale, 2025, 17, 19767-19784

PREP method has clear utility not just in optimizing within
known boundaries but also in directing the evolution of the
dataset toward previously unexplored but desirable regions of
the output space. In particular, while previously published
work has focused primarily on forward modeling approaches
(i.e. developing models to predict particle size or other pro-

This journal is © The Royal Society of Chemistry 2025
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Fig. 9 Assessment of iteration results relative to the target particle size
the proximity of each datapoint to the target size.

perties based on known input variables), the PREP method
offers improved predictive performance when inverting the
problem (i.e. suggesting new formulations dissimilar to the
training data but that can yield specific desired outputs), par-
ticularly under data-limited conditions.

The iterative feedback structure of PREP is also highly advan-
tageous in that it allows the PREP method to rapidly incorporate
new data and revise its predictions, offering an efficient means
of dataset expansion with each iteration contributing meaning-
ful directional insight. These results suggest that PREP is par-
ticularly well-suited to systems in which the relationships among
input variables are complex, the output space is multidimen-
sional, and the design goals are not fully represented in the
initial data. More specifically, the second case study presented
additional challenges due to a higher number of output vari-
ables, reduced flexibility in the null space, and the need to opti-
mize properties that emerged only after the particles were intro-
duced into physiological conditions, all challenges that were suc-
cessfully navigated by the PREP algorithm.

The success of PREP in these studies highlights its potential
as a transformative tool for nanoparticle design and optimiz-
ation. By leveraging data-driven modeling, PREP offers a sys-
tematic approach to refining synthesis protocols, reducing
resource-intensive trial-and-error processes, and ensuring
precise control over key material properties. Note that while the
case studies described here in focus only on particle size optim-
ization for two types of systems (covalently-crosslinked micro-
gels and polyelectrolyte complexes), we expect the underlying
PREP framework to be broadly applicable optimizing the size
or other property of other types of nanoparticle systems in
which the experimental design variables (inputs) and measured

This journal is © The Royal Society of Chemistry 2025

and polydispersity expressed relative to (a) the actual output space and (b)

properties (outputs) can be organized into well-defined multi-
variate X and Y blocks respectively. Moving forward, the appli-
cation of PREP to datasets with an even higher degree of input
and output complexity remains an open avenue for exploration,
presenting opportunities to further extend its impact across a
broader range of nanoparticle engineering challenges.

6. Conclusions

The Prediction Reliability Enhancing Parameter (PREP) method
was successfully applied to streamline the synthesis and optimiz-
ation of nanoparticles with precise size and size distribution
characteristics. Across two distinct case studies involving very
different types of nanoparticles and nanoparticle fabrication
methods (precipitation polymerization of dual pH- and tempera-
ture-responsive microgels and physical self-assembly of polyelec-
trolyte complex nanoparticles), PREP effectively achieved target
size and/or polydispersity properties in just two iterations while
achieving highly accurate results under complex design con-
straints, overcoming the limitations of traditional approaches
that consistently failed to reach the desired size. As such, the
application of PREP offers significant potential to address other
types of nanoparticle optimization challenges and other
complex materials design challenges, leveraging its demon-
strated reliability in high-dimensional optimization problems.
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