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A new computational approach for evaluating bending rigidity
of graphene sheets incorporating disclinations

A hybrid approach integrating molecular dynamics simulations
and Helfrich membrane theory was developed to evaluate

the bending rigidity of graphene sheets (GSs) incorporating
disclinations. Introduction of positive and negative disclinations
induces curvature effects in initially flat GSs, resulting in
out-of-plane deformations characterized by conical and
saddle-like surfaces. This investigation elucidates disclinations
in governing the mechanical properties of GSs and proposes

a strategy for design of shape-adaptive nanostructures. These
findings provide disclination-driven mechanical phenomena
potential of disclination engineering to realize flexible and
stimuli-responsive nanodevices.
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Two-dimensional (2D) materials exhibit remarkable flexibility and can be transformed into various shapes.
Graphene sheets (GSs), in particular, can form conical or saddle-like shapes through the introduction of
lattice defects known as disclinations, represented by 5- and 7-membered rings, respectively. These
rotational-type lattice defects possess relatively large spontaneous curvature and significantly affect the
bending rigidity of the GS. Despite increasing interests in exploiting such deformations for material
design, evaluating the bending rigidity of GSs with lattice defects remains challenging owing to the com-
plexity introduced by curvature and defect configurations. In this study, we propose a novel compu-
tational method that integrates the Helfrich theory of membranes with molecular-dynamics simulations
to analyze the effect of curvature and defect patterns on the bending rigidity of GSs. This hybrid approach
enables the direct evaluation of bending rigidity from atomic and geometric structures, eliminating the
need for experimental bending tests. Using this method, we reveal, for the first time, contrasting trends in
bending rigidity between GSs with monopole and dipole disclinations. In the presence of disclination
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monopoles, the bending rigidity remains independent of the specific structural pattern. Conversely, discli-
nation dipoles, comprising both conical and saddle-shaped surfaces, induce local shape distortions that
lead to localized variations in bending rigidity. These findings provide important guidelines for the design
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1. Introduction

Two-dimensional (2D) materials exhibit remarkable flexibility
and can be folded into a variety of shapes as in origami.'
Moreover, lattice defects are known to induce out-of-plane
deformation in 2D materials.” For example, introducing 5- or
7-membered rings into the hexagonal lattice of a graphene
sheet (GS) can produce conical or saddle-shaped shapes,
respectively (Fig. 1). These structures arise from the removal or
insertion of equilateral triangles in a GS, forming rotational-type
lattice defects termed disclinations (Fig. 1(a)).> An extracted tri-
angle, resulting in a 5-membered ring, constitutes a positive dis-
clination monopole, while an inserted triangle, forming a
7-membered ring, corresponds to a negative disclination mono-
pole. In both cases, the magnitude of the Frank vector is m/3.
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of 2D materials with specific bending rigidities, supporting the development of new materials.

When 5- and 7-membered rings are positioned adjacent to each
other, the resulting configuration is referred to as a connected
disclination dipole, or more generally, a dislocation monopole,
which is a type of line defect in a crystalline lattice; this atomic
mismatch is characterized by a Burgers vector b.* Although such
disclinations induce local curvature and may affect mechanical
properties,’ a reliable method for calculating the bending rigid-
ity of GS with lattice defects has yet to be established. This is pri-
marily due to the complexity introduced by curvature and defect
patterns. Therefore, the aim of this study is to establish a robust
and efficient computational method for quantifying the
bending rigidity of GSs with disclinations.

In recent years, GS-based materials with various shapes
have been developed by utilizing the chirality-altering func-
tionality and curvature-stabilizing effects of disclinations. For
example, carbon nanohorns® are a combination of fullerene
and conical graphene and contain a 5-membered ring near the
apex (Fig. 1(b)). These nanohorns have been experimentally
observed and considered promising for applications such as
chemical sensing” and molecular delivery.® In hybrid materials
of GS and carbon nanotubes (CNTs),” 7-membered rings are
observed at their linkages (Fig. 1(c)). Wave-shaped GSs, known
as egg-tray graphene, feature periodic arrangements of 5- and
7-membered rings (Fig. 1(d)),'® and have attracted attention as

This journal is © The Royal Society of Chemistry 2025
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Fig. 1
nanotube, and (d) egg-tray graphene.

impact-resistant materials as their resistance to impact is
strongly influenced by the local curved-surface structure.'’
Furthermore, this wave-shaped GS has a negative Poisson’s
ratio.'” Conversely, GSs with 7-membered rings can form
saddle-shaped surfaces with negative Gaussian curvature, ren-
dering them promising candidates for nanospring appli-
cations, where the geometry acts like a strong elastic spring."®
Thus, disclinations have a significant impact on the shape and
mechanical properties of materials and play an important role
in material design. Changes in chirality and spontaneous cur-
vature in 2D materials affect bending rigidity.'*'* In experi-
mental studies, the bending rigidity, of ideal GSs without dis-
clinations has been measured using atomic-force microscopy
(AFM)'® or by fabricating GSs on atom-sized steps'’ with a
range of 1.2-4.13 eV. In simulation studies, the bending rigid-
ity has been assessed using molecular-dynamics (MD)
methods,'®?® density-functional theory (DFT),>**® and conti-
nuum theory.>® The MD method has been used in the range
0.7-2.27 eV and the DFT in the range 1.4-1.49 eV. These
studies have provided valuable insights into the intrinsic pro-
perties of flat GS. However, the bending rigidity of GS with

This journal is © The Royal Society of Chemistry 2025
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(a) Creation of a kirigami model of GS with disclinations and analytical model, (b) carbon nanohorn, (c) hybrid material of GS and carbon

lattice defects remains poorly understood owing to the sub-
stantial variability introduced by local curvature, defect pat-
terns, thickness, and defect density, which complicate sys-
tematic evaluation. Liu et al.* analyzed the bending rigidity of
planar graphene allotropes containing 5- and 7-membered
rings and showed that the bending rigidity decreased with
increasing defect density. Wang et al®' also analyzed the
bending rigidity of egg-tray graphene and showed that the
bending rigidity increases linearly with thickness when the
effects of curvature and structural pattern are ignored.
Nevertheless, these studies provided limited insights into the
effect of local curvature and structural patterns on bending
rigidity. Furthermore, conducting bending tests that directly
measure the bending rigidity of GS with disclinations is tech-
nically difficult because the inherent curvature of the GS
reduces its accuracy. In addition, theoretical estimates based
on continuum plate theory®” give bending rigidity values of
approximately 20 eV, significantly higher than experimental
and simulation-based results.

To address these issues, we develop a hybrid approach that
unifies the Helfrich theory of membranes**** and the MD

Nanoscale, 2025, 17, 1812-18126 | 18113


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5nr01102g

Open Access Article. Published on 21 July 2025. Downloaded on 1/30/2026 10:09:13 AM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Paper

method. Although originally developed for fluid membranes
such as lipid bilayers, the Helfrich theory can be adapted to co-
valently bonded 2D materials owing their geometric and
mechanical similarities. For example, the formation of fuller-
enes, a type of nanocarbon material, is similar to the vesicle
formation process of lipid membranes.?® By applying energy
minimization using the MD method, we construct atomic-
scale models and quantify the bending response induced by
lattice defects. To validate the proposed method, we evaluate
the bending rigidity of GSs with disclinations as a representa-
tive case. The proposed method enables direct evaluation of
bending rigidity from lattice defect-induced out-of-plane defor-
mations, eliminating the need for bending tests.

The results of this study provide a generalizable and robust
approach applicable to a wide range of 2D materials, offering
fundamental insights for the design of curvature-engineered
functional nanomaterials.

2. Analytical models

Different types of disclinations induce varying spontaneous
curvatures. These, along with the interactions between adja-
cent disclinations, lead to diverse arrangements and disclina-
tion densities, which in turn result in variations in the curva-
ture of graphene sheet (GS) surfaces. Four types of analytical

View Article Online

Nanoscale

models were built in this study: a positive disclination mono-
pole (Fig. 2(a)), a negative disclination monopole (Fig. 2(b)), a
connected disclination dipole (CDD) (Fig. 2(c)), and a separ-
ated disclination dipole (SDD) (Fig. 2(d)). In the monopole-
defect models (Fig. 2(a) and (b)), the lattice-defect core was
placed at the center of the analytical models. Single positive
and negative disclinations were placed in the dipole models
(Fig. 2(c) and (d)), and the number of six-membered rings (n =
1, 5, 10-50) between them was varied.

After constructing the atomistic model with reference to the
paper-cut model, we conducted structural optimization of the
analytical model was performed via MD simulations using the
open-source, large-scale atomic/molecular massively parallel
simulator (LAMMPS) (version 23Jun2022).***” The optimiz-
ation was performed using the conjugate-gradient method,
and post structural optimization, we computed the potential
energy and in-plane stress of optimized structure.

The interactions between carbon atoms were described by
adaptive intermolecular reactive bond order (AIREBO) poten-
tials,”® which can describe covalent and non-covalent bonds
between carbon atoms, as well as dihedral angles, and both in-
plane and out-of-plane deformations of the GS caused by dis-
clinations. The details of AIREBO are provided in ESI Section
1.1 eqn (S1) and (S2).t The cutoff distance was 1.70 A; the
simulation time step was 1 fs; temperature was set to zero,
corresponding to a minimum energy state with no thermal

Fig. 2 Analytical models using: (a) positive disclination monopole, (b) negative disclination monopole, (c) connected disclination dipole, (d) separ-

ated disclination dipole.
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fluctuations (i.e., absolute zero). Furthermore, the total
number of atoms was set to 120 000-125 000 atoms, for all
models, to minimize the effect of size differences on the
bending rigidity.*® After structural optimization, the atomic
structures were visualized using the Open Visualization Tool
(oviTo).*

3. Methods

Disclinations cause large deformations in GSs; hence, the use
of thin-membrane theory is appropriate to account for out-of-
plane deformations. In general, the bending rigidity of a rigid
plate is calculated using x, = Et*/12(1 — ) where E is the
Young’s modulus, v is Poisson’s ratio, and the plate thickness
is t.3> However, the physical justification for the application of
plate theory is not guaranteed in the case of GS, which cannot
be regarded as uniformly elastic. Therefore, we use the total
strain energy Uoar Of the GS as expressed by the following
equation:*°

Utotal = Us + Up + Uedge (1‘1)

Et v
U, = ( 2 2)ds 12
s J]z(1+u) S AL (1.2)
Uy = [| (2kH? + kK)dS (1.3)
Ucdge = (const.) (1.4)

The first term represents the stretching energy Us due to in-
plane strain. The second term represents the bending energy
Uy due to the out-of-plane deformation based on the Helfrich
theory of membrane bending. U4, represents the free surface
energy, the deformation considered in this study does not
change this energy, and thus it can be neglected. Here, we
adopt the Einstein summation convention, where
repeated indices imply summation, &;(i, j = x, y) are the in-
plane strains, and g = &, + &,. In the bending-energy term, H
is the mean curvature, K is the Gaussian curvature, and g is
the Gaussian rigidity. The spontaneous curvature represents
the curvature at which the membrane segment has minimal
energy when considered locally. In this study, we assume the
spontaneous curvature to be zero. The integration was per-
formed over the entire area with respect to dS. The disclination
core is treated as a singularity; hence, eqn (1.1) cannot be
applied.

The Helfrich theory of membrane bending can effectively
describe the out-of-plane deformation of fluid membranes,
such as lipid bilayers. This theory is applicable to GSs due to
shared characteristics between 2D thin films, such as large
out-of-plane deformations,*’ small values of bending rigid-
ity,> and thermal fluctuations.*> For GSs with interatomic
bonds, in-plane stress must also be considered; hence, eqn (1)
represents a combination of stretching and bending energies.
The generalized Foppl-von Karman equations, which account
for both in-plane and out-of-plane deformations, are used to
describe the stress fields of GSs with lattice defects.*®**

This journal is © The Royal Society of Chemistry 2025
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However, these equations are notoriously difficult to solve. In
this study, we simplify the analysis by calculating in-plane
stress through energy optimization using MD simulations
and curvature using differential geometry, directly applying these
to eqn (1). The method also has the advantage that bending
rigidity can be assessed without the need for bending tests.

3.1. Stretching energy

By rewriting the stretching energy Us in the first term of eqn
(1) into an expression for stress oy(i, j = x, y) using Hooke’s
law, we obtain the following equation:

U, = Hé (02> + 0y% — 20050y + 2(1 + V)oy?)dS (2)
where the Young’s modulus E = 962 GPa and Poisson’s ratio
v = 0.143 were independently calculated from tensile tests on a
flat GS, as described in ESI Section 1.2.F The Young’s modulus
in Fig. S1f is consistent with values reported in previous
studies.”® For the film thickness, the interlayer distance of
graphite, ¢ = 3.34 A, was used.*’ The presence of disclinations
generates in-plane strain, which in turn generates static in-
plane stress. This in-plane stress is calculated for each atom
during structural optimization of the analytical model by MD
simulation (stress distributions are shown in ESI Section 2
Fig. S3T). Notably, no bending tests were carried out. This
method accounts for the effects of out-of-plane deformation
on the in-plane stresses.

3.2. Bending energy

The mean curvature H and the Gaussian curvature K are calcu-
lated using the principal curvatures k; and k,.**

H = M (3)
2
K = k1k2 (4)

when the surface is given by z = f(x,y), the mean curvature and
Gaussian curvature are as follows:

(1 +£2 M + (L6 — 2fhfy

H = 5
N ) “
_ 2
o= e o ©)
(1+£2+4%)
where the following definitions apply.
_U of . _Of . _Of o’f

= b = oyl =gl =g Fo =gy )

The function z = f(x,y) is expressed in Monge’s form, which
is valid in this case because the deformation is not large. For
large deformations, the surface has to be considered as a
manifold. In such cases, the coordinates can be locally rede-
fined so that the formulation takes the same form of eqn (1).
In this study, an approximate surface approach was adopted to
calculate the local mean and Gaussian curvature at each atom
of the GS (Fig. 3).

Nanoscale, 2025, 17,18112-18126 | 18115


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5nr01102g

Open Access Article. Published on 21 July 2025. Downloaded on 1/30/2026 10:09:13 AM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Paper
(a)
(b) Disclination A
0.7 f-core [R=230 1440
S o6 . f {1.432
% [l Regionof | | * Yol —
~ 1 . 1 * o<:
<05t calculation ! | x/ 11.424°Z
=] 1 1 ~
S 04t 5 11416
Bt : 2
§ 0.3} : ” 1.408 2
K| ! =
o o2f r1=13968 A ‘_ 1.400 5
RS ; [a)
E i ]
Z 0.1} : ._ 1.392
0.0 : 1.384
0 50 100 150 200 250 300 350 400
Distance from disclination core R (A)
Fig. 3

View Article Online

Nanoscale

__ Plane

_ created by
" neighboring
i~ atoms

Graphene

Fittin
curve
surface

Disclination
core

2304

. Region of
< calculation

Utotal (CV)
P5.14x10°
"

o

z

(a) Surface approximation. (b) Relationship between the distance from the defect core and strain energy and bond length, and (c) strain-

energy distribution diagram of the GS with the positive disclination monopole.

The calculation procedure is as follows:

1. The nearest-neighbor atoms A, B, and C of the focus
atom, I, are selected.

2. The plane connecting these three points are defined as
the ABC plane and its perpendicular unit normal vector
considered.

3. An orthonormal basis v;, v,, v3 is constructed with
respect to the unit normal vector.

4. An orthogonal transformation of the atomic coordinates
is performed using the basis.

5. The aforementioned process is repeated for atoms A, B,
and C.

Up to 9 atoms, including neighboring atoms, to the quadra-
tic surface equation.

(8)

Then, an approximate surface was created. The coefficients a; —
as were calculated using the least squares method as in eqn (8).

(9)

Furthermore, in eqn (1), the Gaussian rigidity is the resis-
tance of the material to topological changes in the absence of

f(x,y) = a1 + axx + asy + aix® + asxy + agy®

a =fx,as :fy72a4 = fxx, Gs :fxyyzae :fyy

18116 | Nanoscale, 2025, 17, 18112-18126

edges.”® For closed surfaces such as fullerenes, the Gaussian cur-
vature term becomes a constant and vanishes, in accordance with
the Gaussian-Bonnet theorem.*® Strictly speaking, disclinations
are topological changes in the material; because the analytical
models used in this study have edges, the bending and Gaussian
rigidities must be discussed simultaneously. However, simul-
taneously determining these properties requires solving for two
variables, which is a highly challenging task. Although several
attempts have been made to derive the Gaussian rigidity, various
issues remain unresolved. In this study, the Gaussian curvature is
close to zero (ESI Section 2 Fig. S47), except close to the defects;
therefore, the Gaussian curvature term is neglected in the calcu-
lation of eqn (1).

3.3. Bending rigidity

The relationship of the strain energy per atom uo, the

stretching energy ug, and the bending energy u,, can be
obtained using eqn (10),
Up = Utotal — Us = ZKbHZS (10)

where the per-atom strain energy u, can be calculated as the
absolute value of the difference between the potential energy

This journal is © The Royal Society of Chemistry 2025
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of a GS with disclinations and that of an ideal GS calculated
using MD simulations. The distributions of 2x,H>S and u, is
shown in ESI Section 2 Fig. S5 and S6.1 The area per atom is
calculated using the following formula:

331

4

s (11)
where [ is the length of the bonds between carbon atoms, cal-
culated from an ideal GS to be I = 1.3968 A. The relative error
between a GS with positive disclination and an ideal GS in the
region of calculation is only 0.036%, confirming the validity of
this assumption (Fig. 3(b)). Furthermore, as nonlinearity
occurs when the curvature is large,”” cutoff values were set to
eliminate the effects of the free surface and disclination core.
Specifically, a range R < 230 A (R is the distance from the
center of the analytical model) was cut off at a sufficient dis-
tance from the free surface, and the curvature and energy
cutoff value 2H>S = 5.34 x 1073, and wpra = 5.14 x 107° eV
determined from CNTs as shown in ESI Section 1.3 Fig. S2 and
Table S2 were applied. Linear fitting was performed using the
least-squares method.

4. Results and discussion
4.1 Disclination monopole

We first calculated the bending rigidity of a GS with a positive
disclination monopole that formed a conical surface. The ato-
mistic-model diagram in Fig. 4(a) shows the GS with a positive
disclination monopole, indicating that the disclination core
and free surface were removed. The disclination core was trun-
cated to a circular shape, corresponding to the mean curvature
and the bending-energy distribution, and its size was approxi-
mately R = 10.7 A. The bending energy and 2H>S show an
approximately linear relationship (Fig. 4(a)). By performing a
linear fit, we determined the slope of this relationship, which
represents the bending rigidity, to be 0.952 eV. The result of
the fitting with errors in the least squares method are shown
in ESI Section 1 Tables S3 and S4.7

The bending rigidity of an ideal GS without disclinations is
0.967 eV in the analysis using the MD method with the
AIREBO potential;** this is greater than 0.952 eV indicating
that the bending rigidity is lower and more flexible due to the
presence of disclinations. In addition, previous studies have
reported that for the same aspect ratio, bending rigidity
increases with size and converges when a certain value is
reached.*® We investigated the effect of size on GS with discli-
nations. As shown in ESI Section 2 Fig. S7 and S8,1 we selected
regions with low energy and stable structure to ensure linearity
in all analytical models. The results showed that the bending
rigidity of the GS with disclinations increases with increasing
size and eventually converges (Fig. 4(b)). This is because
increasing the size of the structure increases the number of
unaffected atoms and enhances the statistical weight of the
effective linear region, which in turn stabilizes the overall

This journal is © The Royal Society of Chemistry 2025
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structure. Moreover, the analytical model employed in this
study is sufficiently large and the effect of size is negligible.

Next, bending rigidity was calculated for a GS with a nega-
tive disclination monopole, forming a saddle-shaped surface.
The disclination core in the negative disclination was shaped
like a quatrefoil, which aligns with the observed mean curva-
ture and bending energy distribution. The presence of negative
bending energy is caused by an over-calculation of the stretch-
ing energy in eqn (10); this region may be inelastic. The
bending rigidity for the GS with negative disclination was cal-
culated to be 0.939 eV, which is slightly lower than that of the
positive disclination monopole. Furthermore, the plots for the
negative disclination varied and exhibited nonlinear behavior
(Fig. 4(c)). This is attributed to the saddle-shaped deformation
of the negative disclination, which is not axisymmetric like the
positive disclination with core deformation and depends not
only on the distance from the core, but also on the azimuth.
Assessments of surface shape are generally made by Gaussian
curvature, with positive disclinations representing spherical or
conical surfaces, negative disclinations representing saddle-
shaped surfaces, and zero representing developable surfaces
such as cylindrical surfaces. Surfaces of negative disclination
are saddle shaped (negative Gaussian curvature) when viewed
as a whole; however, when local Gaussian curvature is calcu-
lated for each atom on the surface, both positive and negative
Gaussian curvatures are present (Fig. 4(d)). This phenomenon
is not captured by continuum theory and is unique to GSs
with atomic-scale structures, where curvature varies with
interatomic distances and bond angles. Atoms with negative
Gaussian curvature are shown to exhibit higher stretching
energy than those with positive Gaussian curvature (Fig. 4(e)).
Furthermore, a comparison with the bond lengths in an ideal
GS reveals that tensile and compressive deformations are
asymmetrically distributed around these atoms (Fig. 4(f)).
These factors are thought to be responsible for the variation in
the structure. When only atoms with positive Gaussian curva-
ture were extracted for the negative disclination, the nonlinear-
ity disappeared (Fig. 4(d)). This indicates that the cause of the
nonlinearity lies in the atoms with negative Gaussian curva-
ture. The bending rigidity was 0.950 eV. These results demon-
strate that in disclination monopoles with low disclination
density and simple geometry when nonlinearity is eliminated,
the bending rigidity is approximately the same, for both posi-
tive and negative disclinations, despite differences in struc-
tural patterns. The difference between the behavior of
bending rigidity in positive and negative disclinations is
related to the strength of the nonlinearity. This indicates that
bending rigidity is not a property of the disclination itself, but
a local property of the GS due to the local deformation by the
disclination.

Comparing the bending rigidity values of the present
study with those of previous studies (Fig. 5), we conclude that
the results of the present study lie within a reasonable range of
the bending rigidity values calculated by the MD
method in previous studies, indicating the validity of our
results (the 2D Young’s modulus Y is calculated by Y = Et).
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These results indicate that the method used in this study can
be applied for the calculation of the bending rigidity of GS
with disclinations.
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4.2. Connected disclination dipole

Surfaces with CDDs combine conical and saddle shapes due to
the presence of adjacent positive and negative disclinations,
which influence the surrounding atomic structure. Therefore,
the shape of the disclination core is also affected by both cur-
vature type. If the CDD is regarded as a dislocation monopole,*
at a distance approximately R = a|b| (@ = 3-6) are deleted,
which is a valid defect core (the magnitude of the Burgers
vector |b| is 2.46 A). The bending rigidity is highly scattered
and very weakly correlated with CDD compared with disclina-
tion monopole (Fig. 6); there is minimal linear correlation
between 2H>S and the bending energy. This suggests that eqn
(10) cannot be directly applied to composites with multiple
surfaces curvatures. One factor contributing to the nonlinear-
ity is that the CDD contains a negative disclination (a 7-mem-
bered ring). When analyzed in the same manner as the nega-
tive disclination monopole, the large stretching energy and
negative Gaussian curvature emerge as key contributing
factors. In the positive disclination monopoles, the stretching
energy was below 3.81 x 107> €V in all ranges. Therefore, we
first eliminated the nonlinear region by selecting atoms with
stretching energy less than 3.81 x 107> eV and positive
Gaussian curvature, and then plotted these atoms. However,
the variation remained too large to accurately determine the
bending rigidity (Fig. 6(c) and (d)). Next, we refind the analysis
by separating the regions strongly affected by each of the posi-
tive and negative disclinations. Specifically, the midpoint of
the line connecting the two centers of disclination core was set

Table 1 Comparison of results with prior studies. Y is the 2D Young's modulus and «, is the bending rigidity

Authors Y(Nm™) Kp (€V) Models Methods Ref.
Brenner 236 0.83 Ideal GS MD 18
Yakobson 363 0.85 Ideal GS MD 19
Stuart 279 1.56 Ideal GS MD 20
Brenner 243 1.41 Ideal GS MD 21
Sears 304 1.63 Ideal GS MD 22
Wang 337 0.80 Ideal GS MD 23
Lebedeva 407 1.02 Ideal GS MD 24
Lebedeva 236 0.80 Ideal GS MD 24
Lebedeva 243 1.40 Ideal GS MD 24
Lebedeva 277 0.97 Ideal GS MD 24
Lebedeva 243 1.40 Ideal GS MD 24
Lebedeva 315 0.73 Ideal GS MD 24
Lebedeva 280 2.27 Ideal GS MD 24
Lebedeva 449 1.60 Ideal GS MD 24
Lebedeva 265 1.36 Ideal GS MD 24
Yan 235 0.81 Ideal GS MD 25
Kudin 345 1.49 Ideal GS DFT 26
Munoz 394 1.48 Ideal GS DFT 27
Wei 357 1.44 Ideal GS DFT 28
Atalaya 220 0.80 Ideal GS Other methods 48
Wu 235 0.80 Ideal GS Other methods 49
Tu 358 1.62 Ideal GS Other methods 50
Zhou 377 1.14 Ideal GS Other methods 51
Liu 298 1.15 Rs5 DFT 30
Liu 243 1.18 C-57 DFT 30
Liu 309 1.12 Hse, DFT 30
Liu 283 1.42 PSI-graphene DFT 30
Kunihiro 321 0.952 Positive disclination MD + Helfrich This work
Kunihiro 321 0.950 Negative disclination MD + Helfrich This work

This journal is © The Royal Society of Chemistry 2025
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at z = 0, and the region was divided into a region above z > 0
and a region below z < 0. This enables a forced division of the
region into positive and negative disclination portions.

We divide the structure into two regions based on the
z-height (z > 0 and z < 0), as indicated in Fig. 7(a), which
shows a spatial partition of the structure presented in
Fig. 6(d), color-coded by z-height. Fig. 7(b) and (c) are plots of
regions divided by z-height. Evidently, linearity was observed
within each region divided by z-height. The bending rigidity
calculated in the z > 0 region was 0.963 eV (Fig. 7(b)), which
closely matches the result of the disclination monopole.
Conversely, the z < 0 region (Fig. 7(c)) was further divided into
two regions. This indicates a localized change in bending
rigidity, which was calculated to be 1.916 eV for the upper side
(blue) and 0.097 eV for the lower side (green) (Fig. 7(c)). In par-
ticular, the bending rigidity on the lower side was very low,
indicating almost no resistance to bending, despite the pres-
ence of curvature. This phenomenon may be attributed to the
simultaneous influence of positive and negative disclination,
which may locally relax the in- and out-plane stress in this
region, resulting in almost no bending energy. These results

18120 | Nanoscale, 2025, 17, 18112-18126

indicate that in CDD, both positive and negative disclinations
affect the local bending rigidity. In addition to stretching
energy, another possible cause of variation in CDD is the effect
of the Gaussian curvature term, which is neglected in eqn (1).
Gaussian rigidity will need to be considered in this context.
These findings must be carefully considered when designing
GS-base materials with various geometries.

4.3. Separated disclination dipole

We then investigated the effect of varying the disclination dis-
tance by inserting a six-membered ring between the disclina-
tions in CDD. We observed that the z-height of GS increased
with the distance between the disclinations (Fig. 8).
Specifically, the height of disclinations increased linearly,
while the height of the analytical model initially increased
rapidly and then more gradually (Fig. 8(d)). This phenomenon
may be attributed to the fact that the curvature of the entire
analytical model changed along with the change in height.
Previous studies have shown that height and bending rigidity
increase linearly when curvature and structural pattern are
kept constant.’® In this study, simultaneous changes in height

This journal is © The Royal Society of Chemistry 2025
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and curvature were analyzed using the disclination dipole Then the bending rigidity was evaluated by dividing the region
model. For the bending rigidity calculations, atoms with posi- according to z-height. Fitting results for all analytical models
tive Gaussian curvature and in-plane energy u, < 3.81 x 107> eV are shown in the ESI Section 2 Fig. S9.f In SDD, the behavior
were selected to avoid nonlinearity, as was in the CDD analysis. of bending rigidity was found to vary with the number of six-
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member rings n between disclinations. Specifically, for the n =
1 (Fig. 9(a)-(c)) and n = 5 models, two bending rigidities were
calculated for both z > 0 and z < 0; for the n = 10 (Fig. 9(d)-
(f)), two bending rigidities were calculated for z < 0 only; after
the n = 20 (Fig. 9(g)-(i)), one bending rigidity was calculated
for both regions, and each value was almost identical. When n
= 1, the overall fitting was also divided into two regions
(Fig. 9(a)). The results showed that after n = 20, there was no
need to separate the regions, and linearity was observed
throughout the structure. This suggests that the structure
becomes more stable as the distance between disclinations
increases, a phenomenon explained by the convergence of the
SDD energy of the SDD to that of a disclination monopole
when the separation is sufficiently large.” Notably, after n = 20,
the SDD begins to exhibit behavior similar to that of a disclina-
tion monopole. The differences in behavior between mono-
poles in CDD and SDD may stem from the exclusion of the
Gaussian curvature term in eqn (1), which can lead to inac-
curacies in energy estimation when the distance between the
disclinations is short. Furthermore, the limitations of applying
the Helfrich theory to GS with discrete structures, and the
coupling between in-plane and out-of-plane deformations that
interact between closely spaced disclinations need to be care-

18122 | Nanoscale, 2025, 17, 18112-18126

fully considered. A more stringent analysis would require an
energy model that considers the effects of Gaussian rigidity
and interactions.

In addition, a weighted average k, was calculated for each n
using the number of atoms as weights, to observe the overall
trend, using the following formula:

m

Z KNk
R = o (12)

> Nk

k=1

where k. is the bending rigidity values in each of the regions,
Ny is the total number of atoms in each region and m rep-
resents the number of regions present. eqn (12) may be
broadly applicable to GSs characterized by localized bending
rigidities, and is applied in this study to both CDD and SDDs.
When the distances between disclinations are minimal, there
are two bending rigidities at z > 0 or z < 0 or both (Fig. 10(a)
and (b)). This phenomenon is attributed to the interaction of
both positive and negative disclinations and the instability of
the structure. This instability can be attributed to the rapid
increase in z-height that occurs when a single six-membered

This journal is © The Royal Society of Chemistry 2025
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10, and (g—i) n = 20. Atomic figures show the region where the fitting was done.

ring is inserted between disclinations (Fig. 8(d)). Conversely,
as the distance between disclinations increases, both the
bending rigidity of each region and the weighted-average
bending rigidity converges to a constant value of approximately
0.940 eV (black line in Fig. 10). This is because the energy and
curvature changes become smaller and more stable as the dis-
tance between disclinations increases (Fig. 10(d)).
Interestingly, the bending rigidity decreases from large values
in the z > 0 region and increases from small values in the z <0
region, finally converging to identical values in both regions.
This confirms that the structure stabilizes with increasing dis-
tance between the disclinations. The convergence value
(approximately 0.940 eV) is slightly lower than the bending
rigidity of the flat GS (0.967 eV) and the disclination monopole
(approximately 0.950 eV). This result indicates that the
bending rigidity is lower for higher disclination densities. The
trend is consistent with previous studies showing that planar

This journal is © The Royal Society of Chemistry 2025

GS allotropes with higher defect density have lower bending
rigidity than GSs without defects.*® In this study, bending
rigidity was evaluated by introducing one or two disclinations
in the center of the analytical model. Slight differences in
bending rigidity were observed even for models with very small
disclination density, suggesting that disclination density is a
strongly influential factor on bending rigidity. The results also
showed that the bending rigidity decreased as the height of
the analytical model increased. This finding contrasts with the
linear relationship between height and bending rigidity
reported in previous research.>® The discrepancy is likely due
to the simultaneous variation of both height and curvature in
the model used in this study. These results suggest that, for
GSs with disclination dipoles where height and curvature
change simultaneously, the bending rigidity is more strongly
influenced by the disclination density than by the height. To
summarize for SDD, when the distances between disclinations

Nanoscale, 2025, 17,18112-18126 | 18123
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are close, the local bending rigidity trends are different due to
the instability of the structure. Furthermore, as the distance
between disclinations increases, the structure stabilizes, and
the bending rigidity converges to a constant value (0.940 eV).
The results also suggest that the bending rigidity of the GS is
more strongly affected by the disclination density than by the
height. This finding suggests that the control of disclination
density is important in the design of GS materials.

5. Conclusions

In this study, we investigated the bending rigidity of GSs with
disclinations using a novel approach that combines MD simu-
lations and the Helfrich theory of membranes. The results
revealed a distinct trend in bending rigidity associated with
disclination monopoles and dipoles. For the disclination

18124 | Nanoscale, 2025, 17, 1811218126

monopole, the bending rigidity exhibited slight variations
depending on the structural pattern, primarily due to the non-
linearity associated with negative disclination. For the disclina-
tion dipole, the combination of conical and saddle-shaped sur-
faces caused a local shape change; a corresponding local
change in bending rigidity was observed. These findings high-
light the potential of designing GSs with specific bending
rigidity characteristics, such as saddle-shaped nanosprings
that combine flexibility and rigidity, or egg-tray graphene with
localized impact resistance. However, the limitations of the
Helfrich theory of membrane bending, particularly for surfaces
with negative Gaussian curvature, highlight the need for
further research to clarify the relationship between defect pla-
cement, density, and rigidity. Such efforts are expected to
provide a deeper understanding of the deformation mecha-
nisms of GS with disclination and to facilitate the design of
GS-based materials with diverse mechanical properties.

This journal is © The Royal Society of Chemistry 2025
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GS Graphene sheet

2D Two-dimensional

CNTs Carbon nanotubes

AFM Atomic-force microscopy

MD Molecular-dynamics

DFT Density-functional theory

CDD Connected disclination dipole

SDD Separated disclination dipole

LAMMPS Large-scale atomic/molecular massively parallel
simulator

AIREBO  Adaptive intermolecular reactive bond order

OVITO Open visualization tool
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