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MINFLUX microscopy opened unique opportunities to investigate

complex molecular systems at a single molecule level with µs tem-

poral and nm spatial resolutions in 3D. Here, we demonstrate its

use for the characterization of nanomaterials, providing a frame-

work for MINFLUX imaging and data analysis tailored to under-

standing the complex dynamics of nanosized Silica-Supported

Lipid Bilayers (SSLBs).

MINFLUX1 (minimal fluorescence photon fluxes microscopy)
is currently the optical imaging method with the highest tem-
poral and spatial resolutions (<5 nm & 10’s µs). In MINFLUX a
donut-shaped excitation beam is scanned around a molecule
of interest to calculate the position of the molecule in 3D
based on the fluorescent signal that was emitted for the indi-
vidual scanned positions. This “triangulation” procedure
allows MINFLUX to locate the molecules positions resulting in
two key advantages: (i) the molecule of interest can be loca-
lized and tracked with extremely high resolution and (ii) it
minimizes bleaching as the molecule is close to the center of
the donut shaped beam which features zero-intensity allowing
it to be tracked for very long times. This represents a paradigm
change in fluorescence imaging: the position of a molecule is
precisely determined not by localizing it but rather detecting
its influence in the surrounding volume, minimizing the
photons needed for localization. Introduced in 2017, it has
been applied to biological systems,2,3 specifically to image and
track intracellular locations and processes,2–8 such as nuclear
pores, lipid diffusion, clathrin, and even individual proteins,
such as kinesin-1 motion.

Yet MINFLUX holds vast potential across a range of appli-
cations beyond biology, of which nanomaterials are currently

unexplored. Here we report the application of MINFLUX for
the first time to study nanomaterials, explicitly the inherent
dynamic lipid mobility within Silica-Supported Lipid Bilayers
(SSLB). SSLBs have been applied to a range of applications,
such as drug delivery systems, due to their inherent bio-com-
patibility and the tunability of the lipid bilayer over the solid
silica core in terms of fluidity, dynamics, and temperature-
responsivness.9–14 Lipid mobility is of great interest for several
biomedical applications as it allows surface ligands (e.g., tar-
geting moieties) to be dynamic on the particle surface and
adapt or reconfigure themselves for target binding. In this
context it is crucial to assess the inherent lipid mobility and
provide a quantitative estimation of their motion.

Previous Fluorescent Response After Photobleaching
(FRAP)11,15 and molecular dynamic simulations16 looked at
lipid diffusion on flat surfaces or around microparticles,
placing either the bulk diffusion, or an expected value of
single lipid mobility within such layers around 1–10 µm2 s−1.
These yield valuable information, however, FRAP cannot be
applied to nanoparticles due to its lack of resolution (both
spatially and temporally), whilst diffusion properties of lipids
on nanoscale substrates are still unknown. Moreover, FRAP
provides only bulk data missing the heterogeneity within and
between lipids and other rare events. To this end, this is the
first attempt to image and track individual molecules within
such a nano-system bridging between bulk FRAP investigations
and the more detailed simulations. The acquired results on
two different Silica (Si) SSLB systems, namely one coated with
Dioleoyl phosphatidylcholine (DOPC), and another with
Dipalmitoyl phosphatidylcholine (DPPC), indicate that
MINFLUX is ideal for studying these systems, giving new infor-
mation at a single molecule level across a number of particles,
in line with previous studies.11,15–21

A schematic representation of the MINFLUX experimental
system is presented in Fig. 1, with a sample result from a Si-
DOPC SSLB also shown. We previously stated that these
systems are interesting for drug delivery as the mobility of the
lipids may allow for the adaption of the ligand distribution to
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the target cell, but it was previously impossible to measure
such mobility before due to the lack of suitable techniques.
Particles were physisorbed on a glass slide and a sub-set of the
lipids within the SSLB was labelled with a photoactivatable
fluorophore, CAGE 635 (Abberior). This fluorophore is a rhoda-
mine caged with a diazo-indanone group that is cleaved with
UV irradiation, releasing nitrogen and restoring its fluo-
rescence in an irreversible fashion.22 A low UV irradiation
power was used in order to be sure to activate only one mole-
cule per particle at the time (Fig. 1B). Once uncaged the
Targeted Coordinate Pattern (TCP) begins to focus in on it
(Fig. 1C). The microscope triangulates the donut-shaped beam
around the molecule and if the collective response over the
dwell time is above a fixed photon threshold, the position of
the molecule is calculated with a certain precision. This
process is re-iterated, tracking the fluorophore in 3D, stopping
only once the emission from the fluorophore is no longer
detectable (Fig. 1D). Within the samples of interest, this
results in a 3D point cloud of recorded averaged localizations
that relate to the movement of the labelled lipid. An example
of such a point cloud (Fig. 1E) shows that the localizations
allow the reconstruction of the underlying particles size and
shape with nanometric precision. Furthermore, the point-to-

point tracking (Fig. 1F) yields diffusion coefficient, speed, and
confinement quantifications.

An extensive custom analysis pipeline23 including a GUI
was developed with the purpose to assess multiple aspects of
the acquired MINFLUX localizations (Fig. 2), which aims to
visualize the raw data together with the results of the post-
acquisition data assessment employed. We believe that this
may simplify the data analysis for non-experts and make
MINFLUX imaging more accessible to the nanotechnology
community. Therefore to facilitate the access of MINFLUX to
all the community we also made this script freely available.23

The GUI automatically plots raw data (localization map, par-
ticle size, velocity, and time intervals), the filtered (>100
photon) and the processed data, to display parameters like
MSD and diffusion coefficients.

This custom data processing and analysis workflow is
explained here and facilitates the analysis of the lipid mobility
on silicon nanoparticles. Trajectories from fluorescent mole-
cules are pre-processed and reconstructed from MINFLUX
data, to quantify the underline diffusion properties, as a
readout of the lipid mobility. The pre-processing, reconstruc-
tion, and visualization of the MINFLUX tracking data are all
done through custom written MATLAB scripts and GUI tools.

Fig. 1 Not to scale schematic representations of (A) the mobile silica-supported lipid bilayer (SSLB), with a subset of the lipid bilayer labelled with a
caged dye, which is then activated by UV radiation (B). 3D MINFLUX utilizes a triangulation called a Targeted Coordinate Pattern (TCP) ca.
70–100 nm in size (C) to locate the single fluorophore, which enables single molecule tracking and the path around the SSLB shows the freedom of
movement of the lipid around the SSLB (D). Experimentally acquired data (E), showing the acquired localization around a single SSLB with the
expected Silica Core location (green) displayed for illustrative purposes. A subset of the tracking is shown colored in magenta (F) to show the
freedom of movement of this particular lipid within this particular domain.
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In the first pre-process step, we performed a set of filtering
to the MINFLUX raw data to remove noise and data that was
not suitable for processing. We start with the raw data that was
exported to MATLAB data (.mat) format. MINFLUX gathered
tracking yields groups with an assigned unique ID to each
track, denoted as ‘tid’. The ‘tid’ attribute is assigned to every
localization as part of the raw data. Therefore, we first
extracted 3D coordinates, the associated time stamp, and
associated ‘tid’ of all valid localizations from the raw data for
pre-processing.

The pre-processing on the raw data consists of filtering and
then a clustering step.

Spatial filtering was done on the localization data, by
removing data located near the border (within 1% of the
border) of the XY field of view. To ensure the completeness of
tracking data at this stage, the filtering is at the track level. It
means if any data point falls into the 1% marginal region, an
entire track containing that data point is discarded.

At this stage, a refractive index mismatch24,25 (RIM) correc-
tion is also performed, to compensate for the axial aberration.
To do this, we measured and equalized the spatial spread in
each axis for every track. For a given trace, we compute first the
interquartile range (iqr) between 25% and 75% percentile of X,
Y, and Z axis of the data. And then we calculate the ratio of XY

geometrical mean over Z iqr value, as the RIM score for each
track. Finally, we calculated a weighted mean of the RIM
scores from all the tracks, based on the number of data points
within each track, to generate the final RIM correction factor.
The RIM correction factor is measured on a daily basis and
applied to all tracking experiments in the same day. For the 3
consecutive days of imaging, we measured the RIM correction
factors as 0.6232, 0.6388, and 0.6237 (Fig. 3), indicating rather
low variation of the axial aberration across days of imaging.

Each MINFLUX tracking process takes roughly tens of data
point to stabilize. As a result, tracks can exhibit a short tail-like
portion in the beginning which reflects this initial targeting
process. A given track ends normally when the tracking
process slowly loses the currently tracked molecule, which can
result in relatively low-quality data at the end of tracks.
Therefore, for each track we discarded 100 data points both
from the beginning and at the end of the track. By visual
inspection, this filtering procedure effectively removes the
‘tail-like’ portion of each track. Shorter tracks that contain no
more than 200 data points are discarded at this step.

The time stamps for each localization were exported with
effective precision in the range of tens of microsecond. We
extracted time intervals as the increment between time stamps
of two adjacent localization events and rounded it to 0.1 milli-
second (ms) precision for the MSD computation and diffusion
analysis for this study.

After the filtering step, we then spatially clustered the pro-
cessed data with a density-based scan (DBSCAN). We make use
of the track identity of the data, to cluster on the track level,
rather than individual localization data points. This way, the
clustering process is sped up significantly, while the compu-
tation workload is greatly reduced. We first calculated the cen-
troid coordinates of all tracks. Then all the centroid coordi-
nates are clustered such that any pair of track centroids
located within a radius of 200 nm to each other will be clus-
tered together. A cluster ID is then assigned to each data
point, similarly to the track ID. Naturally, data belonging to
the same track also belongs to the same cluster.

We then fit a spherical shell to the clusters with the least
square method. This fitting approach minimizes the residual
sum of squared distance (error) of all points to the sphere
surface. If the fitting error is too large, or the fitting result devi-
ates enough from expected geometry (e.g.: points form a plane
rather than a 3D spherical surface), the fitting is considered
failed. Clusters with failed fitting are marked but kept for
down-stream diffusion analysis. This is because when two or
more silicon cores are close to each other, nanoparticles
imaged on their surface sometimes cannot be distinguished
by spatial clustering. Such cases would result in a cluster with
failed sphere fitting but still contain meaningful data that can
be visually categorized and further analyzed. Nevertheless, suc-
cessful fitting results are also marked, and better fitting
results with smaller fitting errors are sorted more to the front
as good candidates for further inspection and analysis.

To analyze diffusion behavior, we compute mean squared
displacement (MSD) and diffusion coefficient for each cluster.

Fig. 2 Data visualizations with the custom-made GUI tool, showing
representative Si-DOPC data over, the total area of acquisition (A), and
the localization around a single identified SSLB with two tracks around
the core (B). The displacement over time (C), the instantaneous velocity
(D) and time intervals (E) of the raw data tracs shown in (B). Finally, the
MSD per time interval (F), the histogram of diffusion coefficients (G) and
the cumulated frequency of acquire diffusion coefficients (H) of the
same data post filtering.
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As mentioned previously we extracted time intervals (dt )
between each adjacent localization and assessed this. It is
obvious that the time intervals from MINFLUX tracking experi-
ment are not always consistent, and instead roughly segregated
into different levels (Fig. 2E). These levels are in fact corres-
pond to the 1, 2, 3, or more rounds of MINFLUX beam pattern
scanning on the tracked molecule. Since more rounds of scan-
ning are made only when previous round(s) failed to locate the
molecule, larger time interval is also normally associated with
larger uncertainty in localization. To account for this, we break
a filtered complete track into shorter track segments, around
these large time intervals. We define a breaking criterion that
only allows a maximum of 2 rounds of scanning within a given
track segment. This is implemented by estimating the base
level time interval minDt, which corresponds to only 1 round
of scanning. We then set a threshold to the time intervals as
2.5 × minDt, to be the breaking criterion. This proven to be
sufficient to effectively distinguish between 2 and 3 rounds
scanning in the data. The track segments from all tracks
belonging to a given cluster are stored and used in subsequent
MSD computation.

To compute the MSD associated with each unique time
interval, we used a modified version of msdanalyzer (https://
tinevez.github.io/msdanalyzer), a designated MATLAB class to
perform MSD computation and analysis. The main advantage
of this package is it can deal with non-equidistant time inter-
vals, which is better suited for this type of MINFLUX tracking
data. We adopted a vectorized approach to save CPU time for
the MSD computation in MATLAB, at the expense of RAM.
With our code, the memory required to process a complete
track segment consisting of ∼40 k data points would be
roughly 128 Gb, as assessed on a Windows 10 machine with
MATLAB 2023b. However, given the average time interval from
MINFLUX tracking data is in the range of several hundreds of
microseconds, we haven’t encountered any complete track seg-
ments containing more than 10 k data points so far. In
addition, for the objective of this study, we are mainly inter-
ested in the fast component of diffusion behavior and as a
result we would not necessarily need the MSD computed from
such long track segments. For each track segment extracted in
the last step, all possible time intervals, dt, are calculated.
Then MSD values corresponding to each unique dt values are

Fig. 3 Full experimental field of view displaying final filtered and clustered data. Displaying a DOPC (left), and a DPPC (right) field. The stark differ-
ence in the distribution of responses is apparent and attributed to the increased confinement within the DPPC structure. Furthermore, variations
within the responses can clearly be seen from 3 examples taken within the respective fields of view (1–3). Within the DOPC system, localizations per
track can run into the thousands (A), the dataset is capable of yielding the fitted inner particle size of ca. 150 nm (B), with thousands of corres-
ponding datapoints for the various characteristics such as diffusion coefficient (C) showing a wide variance even between particles (D).
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computed. The MSD and dt pairs are computed and stored for
each track segment. We also computed cluster-wise weighted
average values, with the same procedure that is described in
msdanalyzer. Shortly paraphrasing, the weights are taken to be
the number of averaged delay (time interval), which favors
short delays.

The diffusion coefficient can be calculated for each pair of
MSD and dt as D = MSD/(2 × ndim × dt ), with ndim being the
dimensionality of the trajectory. Therefore, in the 3D tracking
case, diffusion coefficient D is thus calculated as MSD/(6 × dt ).

The analysis results from the above filtering, clustering,
sphere fitting, and MSD analysis steps are all stored and
exported to MATLAB data file format. The result file can be
loaded into MATLAB for data visualization and further ana-
lysis, or to be loaded with the custom data visualization tool
that is created together with the analysis scripts.

To facilitate data visualization and further analysis, a GUI
tool which generates MATLAB figures is also created, as part of
the analysis workflow (Fig. 2). The first overview figure displays
coordinates of the processed data as a 3D scatter plot. It
enables data load, coloration, and data selection through
custom designed buttons (Fig. 2A). The ‘color’ toggles between
3 different color modes of the scatter plot: colored by track,
colored by cluster, or colored by selected cluster, which is dis-
played in a second cluster view figure. The cluster view figure
shows the selected cluster as a 3D scatter plot and uses
different colors to differentiate different tracks belonging to
the same cluster. If the sphere fitting was successful, a semi-
transparent sphere shell is generated based on the fitting para-
meters and overlay with the scatter plot (Fig. 2B). We made 6
subplots to further display the properties of the tracking data
and tracking result. The 6 subplots are gathered in 2 groups:
the top 3 subplots show displacement, velocity, and time-inter-
vals against time; the bottom 3 subplots show the MSD vs.
time interval plot, histogram of the diffusion coefficient, and
cumulative frequency of the diffusion coefficient. A time slider
is also implemented to highlight tracking data and values (in
the top 3 subplots) corresponding to the slider indicated time
point.

Fig. 2 shows a typical output for a DOPC SSLB. Our analysis
shows the overview of all the particles in the field of view that
are clustered for further analysis (2A) and highlighting one
selected particle and its tracks in different colors (2B). It is
clear how single trajectories can feature hundreds of localiz-
ations due to minimal bleaching and can span the whole
nanoparticle showing no confinement of DOPC as expected.
With enough positions within the distribution of recorded
localizations the size of the NP can be inferred by a sphere
fitting (green shape). Then displacement (2C), velocity (2D),
and time interval (2E), are extracted and plotted for quality
readout. Finally, 2F–H shows the analysis of assessed diffusion
coefficient (D), based on the highest quality filtered data.

For micro-scale or bulk lipids, the literature values for
diffusion coefficient range from 1–10 µm2 s−1.15,18,26,27 Whilst,
here in the example shown the Diffusion Coefficient for the
choice of lipids is around 0.25 µm2 s−1. There are no compar-

able measurements on nanoscale-systems and theoretical pre-
diction assumes the diffusion coefficient to decrease for
smaller particles, which is in line with our observations. The
difference can also be potentially due to the difference in tem-
poral resolution between nanosecond simulations and sub
millisecond experimental observations. Furthermore, we want
to also highlight the limitations of MINFLUX as per the acqui-
sition method and quality assessments, it is possible to lose
tracks of fast molecular motion. Depending on the purpose,
different quality thresholds can be applied reaching different
trade-offs between data quality, precision, and speed.

With this tool, we moved on to analyze the differences in
motion between DOPC and DPPC SSLB, two standard systems
used in the literature. In all 144 individual clusters for DOPC
SSLB’s and 243 individual clusters for DPPC SSLB’s were
imaged and analyzed, and the results are shown in Fig. 3. A
selection of both the Si-DOPC and Si-DPPC results from the
GUI are given in the ESI (Fig. S1†), showing the heterogeneity
of both systems. Naturally, DOPC should exist as a mobile
phase, whilst DPPC is more gel like. As shown in Fig. 3, across
the DOPC samples, localizations can be seen to range from
partial surface, to near full surface coverage, indicating that
the lipids are free to diffuse and explore the whole particle
within the measurement time. It also shows that a single lipid
can explore the whole nanoparticle during the time lapse of
the measurement. Due to the inherent nature of the sample
this is expected as the mobility of lipids within such layers
should be relatively high and restricted only to stochastically
random walks within the lipid layer. After this qualitative
observation we moved to look at the quantitative mobility data.
In keeping with the quality thresholds previously discussed,
multiple MSD curves are found for each particle, which can
vary significantly. Due to the random nature of the motion,
coupled with the relevant timescale, events ranging from sub
diffusion to super diffusion can be seen. However, super
diffusion is most likely attributed to the inherent random
nature of molecule mobility, rather than any active motion
within the sample, although it may be attributed to potential
thermal effects.

There is a significant heterogeneity between the particles,
as shown in DOPC (A–D). This can be seen as both a variance
in the amount of the response as well as the surface coverage.

Fig. 3A shows the distribution of molecule counts per nano-
particle. This shows a statistical distribution related to the
random incorporation of the labeled lipid. The 3D localization
clouds can also be used to fit the particle size as shown in
Fig. 3B. In most cases within the DOPC system, the core was
fitted quite well once the localizations last long enough to
span a significant proportion of the particles surface. On the
contrary for DPPC we observed highly localized tracks with
molecules wiggling around a fixed position. This agrees with
the gel-like nature of DPPC. Consequently, the whole NP is not
explored, and the particle size cannot be extracted. Fig. 3B
shows some expected polydispersity of NP size, expected from
the synthesis. Interestingly Fig. 3C and D shows the results of
Diffusion coefficient measurements both collectively analyzed
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and on particle-by-particle basis. While most of the particles
have comparable D, due to the similar lipid composition,
there are some variations due to stochastic variation of NP
composition and some outliers, probably NPs where there are
imperfections in the synthesis that strongly alter molecule
diffusions.

Fig. 4 shows a quantitative comparison between the DOPC
and DPPC systems. While there is a visual difference between
the particles it is not obvious how this translates in motion
quantitation and which parameter is more meaningful to
compare. In the case of the selected particle, the area in which
a lipid can traverse within the DOPC SSLB is quite substantial
compared to the area the DPPC can move in. This is the most
common result across all the acquired data. In general, within
the DOPC system the individual lipid can be seen to move
freely around the surface, whilst regional confinement is seen
within the DPPC system. Surprisingly, the global MSDs
measured at 0.16 µm2 s−1 ± 0.01 µm2 s−1 (DOPC) and 0.11 µm2

s−1 ± 0.01 µm2 s−1 (DPPC), for both systems are not as
different as expected. Indicating that confinement is more sig-
nificant than the mobility within the lipid layer. This outcome
is in keeping with the selection shown in Fig. 3, where the step
size (average distance between consecutive localization) is a
preliminary way to show MSD and shows the lipid mobility is
similar in both. In accordance with the tracking method
employed by MINFLUX, the resulting positions which are
recorded relate to a cartesian XYZ point for the average fluoro-
phore location. This leads to an associated error as the fluoro-
phore is moving on a curved surface, which can impact the cal-
culated MSD and as such an approximation was performed to
assess its impact (Fig. S1†). Found to be less than a 1% error,
its impact for now can be considered low. Therefore, MINFLUX

can be readily applied to assess molecules around other SSLB
architectures or systems of a comparable size.

We present the application of MINFLUX to the novel study
of single molecule lipid mobility around the surface of Silica
Supported Lipid Bilayers (SSLB’s). MINFLUX can assess these
systems and with the help of a custom developed analysis pipe-
line and GUI, yield results pertaining to the estimated size of
the underlying Silica core, the diffusion coefficient of the
lipids mobility, in addition to the further assessment of the
confinement ratio of the system. We demonstrated this with a
custom developed image analysis pipeline and GUI and
further data analysis to extract and combine the data to yield
combined results.

From the DOPC SSLB’s, the fitted core was found to be
165 nm nominally. Whilst for the DPPC particles the fitting
was not successful, which is due to the increased confinement
found within that system. The global diffusion coefficient for a
lipid coming from the filtered data from all particles within
the DOPC system was found to be ca. 0.16 µm2 s−1 whilst it
was 0.11 µm2 s−1 for the DPPC system. These values are below
the known literature values for diffusion on larger and non-
supported particle systems. However, literature MSD is seen to
vary between 1–10 µm2 s−1, where the size of the core particle
is bigger than what studied here. Furthermore, the trend is
that MSD is linear with particle size, so smaller particles
should yield a slower observed MSD is, as such our results are
in keeping with the current trend observed. In addition, the
mode of operation of MINFLUX may be biased towards slower
events as fast movements can be lost.

In summary, thanks to MINFLUX we were able to track indi-
vidual lipids and gain new insights into their mobility within
the DOPC and DPPC silica-supported bilayers. This is a proof-
of-concept showing that MINFLUX can be applied beyond bio-
logical systems and can potentially impact nanoscience and
material chemistry. We envision MINFLUX to be applied in the
chemistry field to answer questions still open due to the lack
of techniques able to investigate materials at the nm level in
wet native conditions. MINFLUX imaging’s spatial resolution
can be used to find molecular distributions at the nanoscale,
such as ligand distribution on nanoparticles while MINFLUX
tracking’s temporal resolution could be a unique tool to
measure dynamic molecular events such as nanoparticles
surface rearrangements and binding interactions. Moreover,
beyond applications in the nanoparticles field, our analysis
pipeline can be used to MINFLUX imaging of other very rele-
vant membrane-coated nanoscale samples of biological rele-
vance such as viruses, bacteria and extracellular vesicles.
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Fig. 4 Single tracked event around a SSLB (A–C) and 10 SSLB’s with the
most localization analysis (D–F) within the DOPC (blue) and the DPPC
(red) system. To display the relative confinement within the inherent
system, the localizations from a single event are plotted around the
center point of the respective localization clouds (A and B). For the first
10 instances of highest quality data yields the MSD (μm2) versus time (s)
is plotted (C). The collective data from the first 10 SSLB’s are combined
to give the confinement ratio (D), the average step size (E) and the
average distance from the start point (F).
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