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Introduction

Biological degradation of graphitic carbon nitride
sheets and autophagy induction in macrophages¥t

K. Swetha,? Anushree Bhatnagar, () ® Manikrishna Lakavathu,? Penta Poornima,®
Pratiksha Ganesh,? Adithi Kamath,? Srinivasa Reddy Bonam,**
Srinivasa M. Srinivasula® and Rajendra Kurapati () *@¢

Although metal-free graphitic-CsN,4 was studied for potential applications in bioimaging, cancer therapy,
etc., its biodegradability and impact on immune modulation and autophagy induction have not yet been
reported, which are essential for designing clinical applications. Herein, we studied the biodegradability of
two types of g-CsN4 nanosheets (exfoliated and porous) using human myeloperoxidase (hnMPO) derived
from primary immune cells (neutrophils), the plant enzyme horseradish peroxidase (HRP) and the photo-
Fenton reaction (PF, generating hydroxy radicals). Biodegradation was followed by analysis using electron
microscopy and spectroscopic techniques, including Raman, X-ray photoelectron, UV-vis and fluor-
escence spectroscopy. The results confirmed that the g-C3sN4 sheets could be degraded more effectively
by hMPO than by HRP, with porous g-C3N4 showing higher degradability than exfoliated g-CsN,4 due to
the presence of oxygen groups. Next, the PF reaction was applied to analyse the degradation by-products
using mass spectrometry, and the cytotoxicity of degradation products was assessed in comparison with
pristine g-C3Ny4. Additionally, the impact of g-CsN4 on the autophagy induction in RAW264.7 macro-
phages were confirmed by the overexpression of the autophagy marker, LC3 protein, particularly in
response to porous sheets. Finally, the immunomodulatory function of the nanosheets and cytokine pro-
duction were evaluated in RAW macrophages following exposure to both porous and exfoliated g-C3Ny.
These findings demonstrated that porous nanosheets induced a dose-dependent pro-inflammatory
response.

nitrides (MXenes)." Though 2DMs are being used in many
industrial applications, including biomedical applications, the

The discovery of graphene has led to the development of a
wide range of two-dimensional materials (2DMs), including
graphene derivatives such as graphene oxide (GO) and reduced
graphene oxide (rGO), transition metal dichalcogenides (e.g.,
MoS,), hexagonal boron nitride (h-BN), monoelemental
materials (phosphorene), and transition metal carbides or
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impact (nano-safety) of such materials and their in vivo (bio-
logical) and environmental degradation to understand the
implications of such emerging materials studied.”> However,
the cytotoxicity of these materials has been mainly studied,
with limited understanding of their biological or environ-
mental degradation. To date, the biodegradation of graphene
family materials (GFMs), including GO,** tGO,? nanoribbons®
and graphene,” were studied. Biodegradation of GFMs has
mainly been demonstrated through enzymatic catalysis by per-
oxidases isolated from immune cells, such as myeloperoxidase
(MPO)**° and eosinophil peroxidase (EPO),">'! along with
inducible nitric oxide synthase (iNOS).>*'*>'? Furthermore,
biodegradation of GFMs has been demonstrated using the
plant enzyme, horseradish peroxidase (HRP), and microbial
secreting enzymes such as lignin peroxidase (LiP), laccase,
etc."* Biological and environmental degradation of inorganic
2DMs, including MoS,, h-BN, and antimonene sheets, were
also reported.®*>”

Recently, graphitic carbon nitride (g-C3N,) has received
wide attention due to its unique characteristics,'® including
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optical properties, a tunable band gap, high chemical stability
and facile synthesis.'® Furthermore, g-C3N, exhibits fluo-
rescence as an n-type semiconductor consisting of alternating
sp>hybridized C and N atoms forming the triazine.?’
2-C3N, has many promising biomedical applications owing to
its low toxicity and high fluorescence compared to other
2DMs, especially graphene, making g-C;N, a unique candidate
for in vivo bioimaging and photothermal therapies.>* However,
the biodegradability of such g-C;N, has not yet been reported,
which is crucial for understanding it is in vivo fate and for
designing potential biomedical applications.

On the other hand, investigating nano-immune interactions
has attracted attention due to the impact of 2D materials in
inducing autophagy (i.e., the self-defensive mechanism of cells
where organelles or unwanted proteins are recycled) and their
immune modulation properties, which have potential appli-
cations in nano-immunotherapies (cancer therapies).>® 2D
materials, such as GO and h-BN sheets, were found to induce
autophagy in cancer cells.**® Investigating such nano-
immune interactions with g-C3N4 sheets could be interesting
in understanding potential applications in autophagy induc-
tion and cancer therapies.

Herein, we study the biodegradation of exfoliated (Exf) and
porous (Por) g-C3N, sheets by human peroxidase (hMPO), a
plant peroxidase (HRP) and photo-Fenton’s reaction (PF, gen-
erating hydroxy radicals). The degradation of g-C;N, was fol-
lowed by characterization using electron microscopy and
various spectroscopic methods; in addition, degradation by-
products after the PF reaction were identified. Next, the induc-
tion of autophagy in RAW264.7 macrophages were analysed by
incubating with g-C;N,. Finally, the cytokine production was
evaluated in RAW264.7 macrophages to understand any immu-
nomodulatory functions of g-C;N, nanosheets.

Results and discussion
Synthesis of exfoliated and porous g-C;N, nanosheets

First, the Exf g-C;N, nanosheets were prepared using aqueous
exfoliation via ultrasonication of bulk g-C;N, for 16 h.'® Next,
the Por g-C3;N, sheets were obtained by the acid treatment (oxi-
dation) of bulk g-C3N, using K,Cr,0O; in H,SO,, followed by
sonication for 2 h to increase the oxygenated groups (carboxyl
and hydroxyl).>” As prepared, Exf and Por g-C;N, sheets were
characterized using different spectroscopic and microscopic
techniques. HR-TEM images confirm the formation of exfo-
liated g-C3;N, (Fig. 1A), as seen from the flat and thin sheets.
In contrast, Por g-C;N, sheets show many pores with rough
morphology (Fig. 1B); additional images are shown in (Fig. S1,
ESIT)."®?” The average size distribution of the Exf and Por
sheets was 252.2 + 195.5 nm (~25 sheets) and 402.7 + 287.8
(~pore size of 109.8 + 59.8), respectively. Further, AFM analysis
(Fig. S2t) revealed that the thickness of the Exf sheets was
5 nm while that of Por sheets varied from 2 to 3 nm,
suggesting the porous morphology of the sheets. Additionally,
increased colloidal stability was observed for Por g-C;N, (zeta
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potential = —30.9 + 4 mV) over Exf sheets ({ = —23.0 + 3.8 mV),
attributed to the presence of a more significant number of car-
boxyl and hydroxyl groups introduced after chemical exfolia-
tion for porous sheets (Fig. S31). Next, the Raman analysis
(Fig. S4t1) confirmed the exfoliation of bulk g-C;N, into the
thin sheets due to the presence of two new peaks at 708 and
(breathing mode of triazine), and the peak at 1234 em™" (C=N
sp> bending vibration) corresponds to the quantum confine-
ment effect from thin g-C;N, sheets.® Also, Por sheets showed
a defect peak of C-OH (1257 cm ™", in-plane bending mode in
C-OH) and the N-C-N stretching is more prominent in Por
g-C;N, due to more sp’® C-N bonds.*® Further, UV-visible
(Fig. S5A%), X-ray diffraction (Fig. S5Bt) and fluorescence spec-
troscopy (Fig. S5Ct) also confirmed the formation of g-C;N,
sheets. All these results confirmed the successful synthesis of
Exf and Por g-C;N, sheets.

Biodegradability of porous and exfoliated g-C;N, sheets

Biodegradation of g-C3;N, is crucial for understanding it is
in vivo fate, which will enable the design of better potential
applications, such as bioimaging, photothermal cancer thera-
pies, etc. In this regard, both Exf and Por g-C;N, nanosheets
were incubated with human MPO, plant HRP and the UV-
assisted PF reaction to assess their biodegradability, as shown
in Fig. 1C. Neutrophils secrete MPO upon activation to fight
against microbes and foreign bodies by generating a highly
efficient oxidant NaOC1.>° Hence, probing the biodegradability
of g-C;N, by MPO will be interesting in understanding its
degradability and possible degradation by-products. First,
hMPO (from neutrophils) was incubated with Exf and Por-g-
C3;N,; nanosheets in the presence of lower concentrations of
H,0, for 60 h, where hMPO and H,0, were renewed every 5 h
and 1 h, respectively. The biodegradation of both g-C;N,
sheets was monitored using TEM and Raman spectroscopy for
aliquots at different time points. First, the HR-TEM analysis
showed distinct changes in the morphology of Exf g-C3;N, after
a 60 h incubation compared to 0 h (Fig. 2A and B), where com-
pletely distorted sheets with nanoscale pores were observed
(Fig. 2C and D). Por g-C3N, sheets displayed a more destructed
morphology (Fig. 2G and H) consisting of larger pores and the
absence of sheet-like morphology after the 60 h hMPO treat-
ment compared to the 0 h sample (Fig. 2E and F). Next, to
support the TEM results, Raman analysis of g-C3N, was per-
formed after hMPO treatment (Fig. 2I and J). The intensity of
the characteristic peaks of Exf g-C3;N, decreased after 60 h,
which could be due to the oxidation of g-C;N, nanosheets.*°
In the case of porous sheets, the distinct peaks at 708, 756,
978 and 1240 cm™" were found with much lower intensity and
broadened after the 60 h treatment, which demonstrated that
higher oxidation was possible in Por g-C;N, compared to exfo-
liated sheets. This higher degradation of Por g-C3;N, could be
due to pre-existing oxygen-containing groups and pores on its
surface that could act as potential sites to initiate the oxi-
dation/degradation process similar to those in graphene
oxide.*"*” The Raman analysis correlates with the morphologi-
cal changes observed in the TEM analysis. Overall, Raman

This journal is © The Royal Society of Chemistry 2025
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(A) and (B) TEM images of Exf and Por g-C3N4 sheets. (C) Structural representation of the Exf and Por g-CzN4 sheets and their degradation

after treatment with hMPO (human), HRP (plant) and PF reaction (radical environment). The vials (under UV light, 365 nm) containing Exf and Por
g-C3N, sheets before (0 h) and after the PF reaction (150 h) are shown on the right-hand side, along with the possible degradation by-products.
Confocal images are shown (left-hand side) after treatment with the Exf and Por g-CzN4 sheets, depicting the uptake and autophagy (schematic

representation).

spectroscopy and HRTEM analyses confirmed the oxidation of
Exf and Por g-C;N, nanosheets after treatment with hMPO for
60 h.

Further, to understand the environmental degradability of
2-C3N, sheets, a plant peroxidase (HRP) was treated with the
nanosheets for 60 d in the presence of H,0,, where HRP was
renewed every 20 d and H,0, was added every 24 h. Next, TEM
and Raman analyses was performed on aliquots collected at 0,
20, 40 and 60 d to track the degradation of both Exf and Por
2-C3N, sheets. Almost complete damage was observed for the
morphology of the g-C;N, sheets for the Exf g-C;N, sheets
after 60 d compared to the 0 d sheets (Fig. S61). The sheet
morphology of Exf g-C;N, was drastically changed, consisting
of several nanoscale pores and rough edges (Fig. S6C and Df),
after the 60d treatment, unlike the flat sheets found at 0 d. Por
2-C;3N, sheets displayed large pores after 60 days (Fig. S6G and
Ht), indicating complete damage to the g-C3;N, sheets com-
pared to 0 day sheets (Fig. S6E and Ff). Next, the Raman ana-
lysis confirmed significant changes in the Raman spectra of
both the Exf and Por g-C;N, sheets after 40 and 60 days of
treatment (Fig. S6I and Jf). In the case of Exf g-C3N,
nanosheets, the characteristic peaks were quite intense, corres-

This journal is © The Royal Society of Chemistry 2025

ponding to the distinct triazine structure of g-C;N, sheets.*®
After the 40 d treatment, two types of Raman spectra were
obtained for both Exf and Por g-C3;N, (Fig. S6I and J{) owing to
the non-uniform degradation of the samples. The type I plot at
40 d could be attributed to the less degraded regions of g-C3N,
sheets, as the characteristic peaks are comparatively more
intense and discrete. However, the type II plots (40 d) display
very feeble and broad characteristic peaks that could corres-
pond to the highly oxidized or degraded regions, similar to the
60 day degradation plots. This kind of non-uniform degra-
dation was reported previously for graphene samples treated
with HRP due to the low dispersibility in the buffer for 60 days
of incubation.” However, no visible distinct characteristic
peaks were observed for both the g-C;N, samples after 60 days,
indicating complete degradation or oxidation of the
nanosheets by the enzymatic action of HRP. Notably, Exf
g-C3N, sheets showed less degradability than porous sheets
due to the pre-existing oxygen groups and pores on their
surface that could initiate and propagate the oxidation reac-
tion. Both hMPO and HRP-mediated enzymatic catalysis were
found to have the potential to degrade the chemically stable
g-C3N, sheets, more significantly, the porous sheets. These

Nanoscale, 2025,17,15267-15278 | 15269
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Fig. 2 TEM analyses of Exf 0 h (A and B) and 60 h (C and D), along with Por 0 h (E and F) and 60 h (G and H) g-C3sN4 nanosheets treated with MPO.
Raman spectroscopic analyses of exfoliated (l) and porous (J) g-CzN,4 nanosheets (60 h sample).

results correlate with the degradation of other graphitic
materials, including GO and graphene.”

PF reaction: degradation products and their cytotoxicity

Along with the peroxidase-catalyzed reactions, the UV-assisted
PF reaction (generating hydroxyl radicals from H,0, in the
presence of FeCl;/UV-light at pH 4) is readily applied to under-
stand the extent (mechanism) of degradation of graphitic
materials and the possible degradation by-products.®** In
addition, the PF reaction also mimics the oxidative stress that
occurs in mitochondria, thereby generating HO™ radicals. PF
was employed to assess the complete degradation of both Exf
and Por g-C3N, under UV light for 150 h (see ESIT for more
details). The aliquots of PF-treated g-C;N, at different time
points were analyzed using Raman, UV-vis, fluorescence spec-
troscopy and HR-TEM (Fig. 3). First, HR-TEM analysis of the
PF-treated Exf g-C3N, after 150 h (Fig. 3D and E) showed
drastic changes in the morphology than at 0 h (Fig. 3A and B).
There was no visible sheet-like morphology, and numerous
pores were observed after a 150 h treatment. Similar results
were also obtained in the case of Por g-C3N, sheets (Fig. 3] and
K). Further, after the 150 h treatment, the Por g-C;N,
sheets completely lost their sheet morphology, and large-sized

15270 | Nanoscale, 2025, 17,15267-15278

cavities were observed, along with considerable debris, unlike
at 0 h (Fig. 3G and H). TEM analysis of control samples of
both Exf and Por g-C3N, (adding H,0, without FeCl;) showed
no significant changes in their morphology after the 150 h
treatment (Fig. S7A%). Similarly, Por g-C3N, sheets were
aggregated without any damage to the morphology of the
sheets in the control samples after 150 h (Fig. S7Bt). These
results confirmed the need for the generation of hydroxy rad-
icals to initiate the oxidation of the chemically resistant g-C3N,
sheets.

Further analysis of Exf and Por g-C;N, nanosheets after the
PF reaction was performed using UV-vis absorbance (Fig. 3C &
I), where the spectra showed a significantly lower intensity,
along with a disappearance of characteristic peaks of Exf
2-C3N, (329 nm) and Por g-C3N, (318 nm) after 150 h. These
results implied that the nanosheets had undergone chemical
oxidation, leading to degradation. Similarly, the fluorescence
intensity of Exf g-C;N, and Por g-C;N, was decreased by ~5
times and ~4 times, respectively, after the PF reaction of 150 h
(Fig. 3F & L). A significant reduction in fluorescence of both
Exf and Por g-C;N, dispersions after 150 h was observed after
illuminating the samples with long wave UV at 365 nm (insets
of Fig. 3F & L), thereby indicating the structural destruction of

This journal is © The Royal Society of Chemistry 2025
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Fig. 3 TEM analysis of Exf g-C3N,4 sheets at 0 h (A and B) and 150 h (D and E), along with Por 0 h (G and H) and 150 h (J and K) g-CzN,4 sheets after
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graphs of Exf and Por g-CzN, dispersions before and after PF degradation (in water as solvent at pH 4) illuminated with a long wave UV of 365 nm

(insets).

g-C3N, sheets. Further, Raman analysis (Fig. S8t) of the g-C3;N,
sheets after the PF reaction shows no characteristic peaks
corresponding to the CN heterocycle vibration modes,
suggesting that the triazine structure of g-C;N, may be signifi-
cantly affected due to oxidation by HO" radicals. Further, the
X-ray photoelectron spectroscopy (XPS) analysis confirmed the
drastic oxidation of g-C3;N, sheets, as a higher oxygen content
was detected for both Exf and Por g-C;N, sheets compared to
untreated samples (Fig. 4A-D). Notably, the % of C and N in
PF-treated Exf g-C;N, sheets was reduced to 38.8% from 50.4
and 6.2 from 46.8, respectively, while the O% increased drasti-
cally to 54.9 from 2.7. Surprisingly, for the PF-treated Por
g-C3N,, C% increased to 60 from 35.2, and N% was reduced to
1.5 from 51.9. However, there was a significant increase in 0%
(12.9 to 38.5), indicating the drastic doping of oxygen into the

This journal is © The Royal Society of Chemistry 2025

g-C3N, structure or chemical oxidation. The unexpected
increase in the C% for Por g-C3N, sheets (after 150 h) might be
attributed to the formation of amorphous carbon and small
fragments of highly oxidised/damaged g-C;N, sheets after the
PF treatment for 150 h. Further, deconvoluted spectra of C 1s
of both Exf and Por g-C;N, sheets displayed two distinct peaks
with maxima at ~288 and ~284 eV before the PF treatment
corresponding to the sp> C-N units in the triazine moiety
(Fig. 4E & G).**?* However, after 150 h, those two distinct
peaks had disappeared and a single peak corresponding to
oxygenated carbon was observed. The peaks for phenolic (C-
OH), carbonyl (C=O0), and carboxyl -COOH groups emerged
after the 150 h treatment (Fig. 4F & H) compared to the 0 h
samples. Moreover, the deconvoluted N 1s spectra (Fig. S91) of
the 150 h treated Exf g-C;N, showed a peak at 398 eV with

Nanoscale, 2025, 17, 15267-15278 | 15271
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Fig. 4 XPS survey spectra of 0 h (A) and 150 h (C) degraded Exf, along with 0 h (B) and 150 h (D) degraded Por g-CsN4 nanosheets, respectively,
mediated by the UV-catalysed photo-Fenton reaction. Deconvoluted C1s spectra for Exf and Por g-CzN4 nanosheets before (E and G, respectively)
and after degradation using the PF reaction for 150 h (F and H, respectively).

g-C3N, shows negligible N 1s spectra after the 150 h treatment
(Fig. S9D7), possibly due to the more drastic oxidation of the
porous sheets compared to Exf g-C3;Nj.

lower intensity, suggesting a low amount of aromatic imine
and a high-intensity peak at 403 eV, which corresponds to
(N—(C=0)-0). Por

oxygen-containing moieties However,
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http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5nr00795j

Open Access Article. Published on 23 May 2025. Downloaded on 10/16/2025 1:03:44 AM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Nanoscale

All these results confirmed that the PF treatment caused
the highest degradation/oxidation of both g-C;N, compared to
peroxidase catalysis (hMPO or HRP). This could be due to the
generation of strong oxidants like HO® radicals during the PF
reaction, with the highest oxidation potential of 2.31 V.*?
However, hMPO generates oxidants like HOCl with an oxi-
dation potential of 1.48 V, along with enzyme radical inter-
mediates, compound I (1.16 V) and compound II (1.34 V).?
HRP generates enzymatic radical intermediates with much
lower oxidation potential (~0.9 V), which takes more extended
time and is less efficient to degrade or oxidize the g-C;N,
sheets than hMPO and the PF reaction.

Next, mass spectrometry was employed to identify the poss-
ible degradation by-products after PF treatment (Fig. 5) for
both g-C;N, sheets. Some plausible by-products were identi-
fied (Fig. 5C & D), where the peak at m/z 127 is identified as
protonated melamine (C;NgH,"), which further fragmented at
m/z 111 (C3N,OH;"), 97 (C3N,Hs'), 85 (C,N,H;5'), and 74
(C,N,OH;5").*® The peaks at m/z 127 (C3NgH,) and 236
(CeNy1H;o") are separated by 109 mass units, indicating the
dimerization of melamine. The dimer is commonly referred to
as melam (235 Da) and is known to be a product of the
thermal condensation of melamine.*® The peaks at m/z 295,
279, and 262 are products of melam with different functional
groups formed during oxidation. The peak at m/z 222 corres-
ponds to cyameluric acid, a trihydroxy derivative of melem.?”
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Further fragmentation of melem derivatives occurs due to the
loss of the cyanamide group, which gives the double-ringed
structure. The peaks at m/z 149 and 206 are products with
different functional groups formed during oxidation. However,
Por g-C;3N, itself is an oxidized form of exfoliated sheets. There
are certain peaks in Por g-C3;N, 0 h that were present in the
degraded Exf g-C;N, samples, which could be attributed to the
fact that Por g-C;N, sheets were synthesized by chemical oxi-
dation, followed by exfoliation of bulk g-C3;Nj.

Cytotoxicity and autophagy study of porous and exfoliated
8-C3N, sheets on macrophage cells

Investigating degradation by-products and their potential cyto-
toxicity is crucial in understanding the long-term impact of
g-C3N, sheets when exposed to humans. In this regard, the
cytotoxicity of both Exf and Por g-C;N, sheets and their degra-
dation by-products (after 150 h PF treatment) was determined
using a well-known MTT cell viability assay.>® Herein, different
concentrations of g-C;N, sheets were incubated with murine
macrophages (RAW264.7), and MTT results (Fig. 6A) confirmed
that Por g-C3;N, showed more than 75% cell viability even
before and after degradation at almost all concentrations.
However, after degradation, a slight decrease in cell viability
was observed for 30 pg mL™" Por g-C3N, nanosheets. Further,
the MTT assay results confirmed that Exf g-C3;N, sheets
(Fig. 7A) exhibited higher cytotoxicity (~60% cell viability) than

Exf g-C;N,
H
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Fig. 5 Mass (LRMS) analyses of Exf (A) and Por (B) g-C3sN4 nanosheets before and after degradation using the PF reaction for 150 h. The plausible
degradation by-products of Exf g-C3N,4 nanosheets (C) and Por g-C3N,4 nanosheets (D) were analysed using mass spectrometry.
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Fig. 6 (A) Cytotoxicity MTT study of Por g-CsN,4 before and after degradation at four different concentrations 5, 10, 20, and 30 pug mL™* performed
on RAW264.7 macrophages. Data are shown as mean + SEM. Statistical significance was tested with a two-tailed, paired Student’s test, which is rep-
resented for each concentration vs. positive control (left side) and each concentration vs. negative control (right side). *P < 0.05, **P < 0.01, ***P <
0.001, and ns = nonsignificant. (B) Representative images showing autophagy in macrophage cells in response to g-C3N4: RAW264.7 cells overex-
pressing mRFP-LC3 were incubated with Por g-CsN, at concentrations of 5 pg mL™ or 30 ug mL™. Confocal microscopy images of cells were
acquired after 12 and 24 h of incubation. Scale bar: 10 um. (C) Graph representing changes in autophagy in macrophage cells in response to 30 ug
mL™? g-C3N4: RAW264.7 cells overexpressing mRFP-LC3 were incubated with Exf and Por g-CsN, at the concentration of 30 pg mL™%. Confocal
microscopy images of cells were acquired after 12 and 24 h of incubation and quantified using ImageJ for the number of mRFP-LC3 dots in cells
with internalized g-CzN4. For calculating the number of puncta per cell, experiments were performed in duplicates. A minimum of 25 cells were
counted for each replicate. Statistical significance was calculated on the data from experimental replicates using a two-tailed unpaired t-test. *P <
0.05, **P < 0.01, ***P < 0.001, (P) **** < 0.0001, and ns = nonsignificant. Data are represented as mean + SEM. (D) Immunoblots of extracts from
RAW264.7 cells stably expressing GFP-LC3 treated with Por g-C3N,4. Membranes were probed for GFP-LC3 to identify the signals for LC3 | and LC3
Il. Effect of Por and Exf g-C3N4 nanosheets on nitric oxide and cytokine secretion: RAW 264.7 macrophages were treated with nanomaterials at
0.5 pg ml™, 5 pg ml™%, and 50 pg ml™* concentrations for 24 h. (E) Nitric oxide assay was performed using Griess reagent. (F) IL-6 and (G) TNF-a
cytokines were estimated by the sandwich ELISA method.

Por g-C3N,. This could be due to the lower aqueous dispersibil- tion of autophagy by nanomaterials (but not cytotoxic) could
ity of Exf g-C3N, compared to porous sheets. be redirected for therapeutic applications such as eliminating

Recently, immune cells such as neutrophils and macro- toxic cellular components like aggregates, target tumour cells,
phages have been reported to cause the degradation of nano- etc.*’™*® Thus, to analyze the effect of immune cells on nano-
materials upon their activation, and some materials (h-BN, particles, RAW 264.7 macrophages were incubated with Exf or
GO, etc.) induce autophagy activation.®”?%*° Notably, induc- Por g-C;N, sheets. The RAW 264.7 macrophage cells interna-
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Fig. 7 (A) Cytotoxicity MTT study of Exf g-CsN,4 before and after degradation at four different concentrations 5, 10, 20 and 30 pg mL™* performed
on RAW264.7 macrophage cell lines. Data are shown as mean + standard deviation. Statistical significance was tested with a two-tailed, paired
Student’s test and is represented for each concentration vs. positive control (left side) and each concentration vs. negative control (right side). *P <
0.05, **P < 0.01, and ***P < 0.001. (B) Representative images showing autophagy in macrophage cells in response to g-CsN4: RAW264.7 cells overex-
pressing mRFP-LC3 were incubated with Exf g-C3N,4 at the concentration of 5 ug mL™ or 30 pg mL™ . Confocal microscopy images of cells were
acquired after 12 and 24 h of incubation. Scale bar: 10 um. (C) Representative images showing autophagy in macrophage cells: RAW264.7 cells over-
expressing mRFP-LC3 were kept untreated or were incubated with Exf or Por g-C3N, at the concentrations of 5 ug mL™ and 30 pg mL™2. Z stack
images of cells up-taking the compound were acquired using confocal microscopy. Scale bar: 10 pm.

lized both sheets, as demonstrated by their uptake after 6 h of
incubation (Fig. 7C). One of the ways that cells eliminate intra-
cellular components targeted for degradation is by employing
autophagy.** Microtubule-associated protein 1A/1B-light chain
3 (LC3) protein is a soluble protein and one of the critical bio-
markers of autophagy.*>*°® Thus, to analyze the onset of auto-
phagy in RAW264.7 cells in response to g-C;N,, mRFP-LC3 was
transiently overexpressed in RAW264.7 cells. It was found that
macrophage cells sequestered mMRFP-LC3-positive dots in
response to Por and Exf g-C;N, (Fig. 6B & 7B). These obser-
vations were further quantified by measuring the number of
LC3 puncta per cell (Fig. 6C). The LC3 protein undergoes lipi-
dation and converts from LC3 I to LC3 II (conjugated to phos-
phatidylethanolamine) upon autophagy initiation and autop-
hagosome membrane formation.*® Since the cell viability was
higher in cells incubated with Por g-C;N,, RAW264.7 cells,
stably expressing GFP-LC3, were incubated with Por g-C3;N,

This journal is © The Royal Society of Chemistry 2025

and then immunoblotted for the expression of GFP-LC3. As
compared to the control, where only one band corresponding
to GFP-LC3 I was detected, cells incubated with Por g-C;N,
showed higher levels of GFP-LC3 II (Fig. 6D and Fig. S10
(ESIY)). This indicated that g-C3N, in the porous form led to
the onset of autophagy in RAW264.7 macrophages.

Cytokine analysis of porous and exfoliated g-C;N, sheets on
macrophages

Macrophages are key elements of the innate immune system
that perform various functions, including phagocytosis, regu-
lation of inflaimmatory responses and modulation of the
tumour microenvironment. Based on the stimuli, macro-
phages differentiate into diverse functional phenotypes, such
as M1 and M2, resulting in the secretion of pro-inflammatory
and anti-inflammatory cytokines. Given that g-C;N, induces
cellular autophagy, we intended to identify the vital signalling

Nanoscale, 2025,17,15267-15278 | 15275
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pathways affected in macrophages.”’*° We used RAW
264.7 macrophages to assess the effect of nanomaterials on
NO and cytokine production. Lipopolysaccharide (LPS, 100 ng
mL ") was used as a positive control to induce inflammation
in macrophages, resulting in the production of pro-inflamma-
tory cytokines and NO. Fig. 6E, F and G demonstrate that the
Por g-C3N, sheet-treated cells produced increased NO, IL-6 and
TNF-a in a dose-dependent manner. However, the effect of Exf
2-C3N, sheets on the expression of NO decreased with increas-
ing concentration, and the expression of all other cytokines
was not detectable (Fig. S117).

Conclusions

In summary, we successfully demonstrated that chemically
resistant g-C3N, nanosheets (both types such as ultra-thin or
exfoliated and partially oxidized or porous sheets) could be
degraded by the enzymatic action of human myeloperoxidase
(hMPO) secreted by activated immune cells (neutrophils and
macrophages). Next, environmental degradation of g-C3N,
sheets is reported using the plant peroxidase (HRP). Finally,
the degradation of g-C3;N, sheets was also demonstrated by the
UV-catalysed PF reaction, which generated hydroxy radicals,
mimicking the intracellular environment under stress. The
degradation of the nanosheets was confirmed by HR-TEM,
Raman analysis, UV-visible absorption, fluorescence spec-
troscopy and XPS. Mass spectrometric analyses suggested the
plausible degradation by-products produced during the PF-
mediated oxidation. Furthermore, the cell cytotoxicity of pris-
tine g-C;N, sheets and the degraded samples revealed that the
exfoliated sheets were slightly more toxic than the porous
sheets due to the lower aqueous dispersibility of the exfoliated
sheets. Interestingly, the Por g-C;N, sheets induced the onset
of autophagy in RAW264.7 macrophages, as confirmed by the
quantification of LC3 I and LC3 II proteins that are markers
for autophagy initiation and autophagosome membrane for-
mation. The porous nanosheets exhibited a pro-inflammatory
response through autophagy-induced nitric oxide, IL-6 and
TNF-o production.
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