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Gene and RNA-based therapeutics represent a promising frontier in oncology, enabling targeted modu-

lation of tumor-associated genes and proteins. This review explores the latest advances in payload vector-

ization and delivery systems developed for in vivo cancer treatments. We discuss viral and non-viral

organic particles, including lipid based nanoparticles and polymeric structures, for the effective transport

of plasmids, siRNA, and self-amplifying RNA therapeutics. Their physicochemical properties, strategies to

overcome intracellular barriers, and innovations in cell-based carriers and engineered extracellular vesicles

are highlighted. Moreover, we consider oncolytic viruses, novel viral capsid modifications, and approaches

that refine tumor targeting and immunomodulation. Ongoing clinical trials and regulatory frameworks

guide future directions and emphasize the need for safe, scalable production. The potential convergence

of these systems with combination therapies paves the way toward personalized cancer medicine.

1. Introduction

Nucleic acids (NAs) have emerged as transformative thera-
peutic molecules, with their conceptual origins dating back to
the 1960s. The 1990s marked significant progress, including
the first successful demonstration of in vivo gene expression
via mRNA injection and the advent of RNA interference
(RNAi). These breakthroughs, coupled with recent innovations
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like mRNA vaccines, have positioned NAs as versatile tools in
addressing complex diseases such as cancer. Unlike traditional
therapies, which are often limited by toxicity and resistance,
NAs offer sequence-specific approaches to target oncogenic
drivers, restore cellular functions, and enhance immunother-
apy. With cancer representing the focus of over 68% of gene
therapy clinical trials,1 NAs hold immense promise in over-
coming tumour heterogeneity and microenvironmental
challenges.2,3 However, hurdles such as optimizing delivery,
sustaining gene expression, and mitigating vector toxicity
remain critical.4 Advancements in sequencing and delivery
technologies are rapidly transforming NAs into pivotal com-
ponents of next-generation cancer therapies. In this review, we
examine the diverse payloads utilized in gene and RNA-based
therapies, recent advancements in vectorization strategies,
including viral and organic vectors, as well as ongoing clinical
trials and future prospects for cancer treatment.

2. Gene therapy and RNA-based
therapeutics in oncology

The development of biotechnological therapies has necessi-
tated robust regulatory frameworks to ensure innovation and
address evolving healthcare needs.5 In the EU, regulation No.
1394/2007, along with Directive 2009/120/CE, defines Gene
Therapy Medicinal Products (GTMPs) as biological medicines,
excluding vaccines such as mRNA COVID-19 vaccines.
Historically, vaccines have been confined to immunological
drugs for infectious diseases, excluding anti-cancer therapies.
For example, Moderna’s mRNA-4157/V940, combined with
Keytruda to enhance tumour immunity, cannot yet be classi-
fied as a vaccine under current EU definitions. In contrast, the
FDA does not require a biological origin for gene therapies
and categorizes oligonucleotides like siRNA as drugs targeting

RNA within cells. The key gene and RNA-based therapies cur-
rently under clinical evaluation, as well as those already
approved, are presented in ESI 1.† This review distinguishes
between gene and RNA-based therapies, considering their
unique strategies and regulatory nuances.

2.1. Principles of gene therapy in oncology

Gene therapy in oncology involves introducing DNA to modify
cells—cancerous or immune—or modulate immune
responses. It targets cancer-related genes or pathways by repla-
cing faulty genes, silencing oncogenes, or enhancing immune
responses (immune-gene therapy). Approaches include gene
editing, addition, or silencing, delivered in vivo or ex vivo, with
varying tools and vectors depending on tumour characteristics
(see Fig. 1). Ex vivo therapy involves harvesting a patient’s
cells, modifying them genetically, and reinfusing them. CAR-T
(Chimeric Antigen Receptor T-cell) therapy,6,7 widely used in
leukaemia and lymphoma, relies on viral vectors for transduc-
tion, which raises production costs and risks such as B-cell
depletion, Cytokine Release Syndrome (CRS), and secondary
leukaemia due to random integration.8 Efforts are expanding
to include Natural Killer (NK) cells and CAR-based therapies
for solid cancers.9 In vivo therapy administers therapeutic
nucleic acids directly to the patient, eliminating the need for
external cell manipulation. This approach is being explored for
broader applications, including targeting solid tumours and
delivering genetic material efficiently within the patient’s
body.

2.1.1. Molecular tools for gene therapy. Molecular tools in
gene therapy encompass techniques and nucleic elements
(“payloads”) designed to modify the genetic material of cancer-
ous or healthy cells for therapeutic purposes (Fig. 2).

These nucleic acids possess distinct physicochemical pro-
perties, such as a polar sugar-phosphate backbone and hydro-
phobic nitrogenous bases, which influence solubility and can
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be enhanced through chemical modifications to resist enzy-
matic degradation.

2.1.1.1. DNA plasmids carrying a therapeutic gene. Plasmids
are small, circular DNA molecules used in gene therapy as deliv-
ery vehicles to introduce therapeutic genes into cells, encoding
functional RNA. Plasmids can encode various genes, such as
cytokines, suppressors, and endonucleases, offering a flexible
platform for gene therapy. Episomal plasmids remain extra-
chromosomal and enable transient gene expression, while inte-
grative plasmids incorporate into the host genome, allowing
stable expression regulated by host mechanisms. The choice
between these types depends on treatment goals, such as
genetic stability and persistence.10 Integrative plasmids, such as
those utilizing transposon systems like Sleeping Beauty (SB)11

or piggyBac (PB), provide an alternative to viral vectors for stable
genome integration. Transposons function via a “cut-and-paste”
mechanism where transposases facilitate insertion of the gene
of interest (GOI) into safe genomic sites. These systems are par-
ticularly valuable for cells like NK cells, which are poorly trans-
duced by viral vectors, and have shown promising results in
generating CAR immune cells for cancer immunotherapy.12–14

Clinical applications include a Phase II trial using SB to
engineer T cells reactive against cancer neoantigens
(NCT04102436).15 Future advancements, such as combining
transposons with CRISPR/Cas9 or functionalized nanoparticles,
aim to enhance efficiency and safety in gene delivery.16–18

Tumour-specific promoters in plasmids enable targeted gene
expression by leveraging transcription factors abundant in
cancer cells, while tissue-specific or inducible promoters, like
the widely used CMV promoter, allow versatile regulation.19,20

2.1.1.2. Gene/genome editing with molecular scissors. Gene
and genome editing, using programmable nucleases like
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Fig. 1 Ex vivo versus in vivo gene therapies.

Fig. 2 Molecular tools for gene and RNA-based therapy.
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CRISPR/Cas9 or transcription activator-like effectors (TALEs)
and zinc fingers,21 has revolutionized therapeutic strategies by
enabling precise modifications to DNA through double-strand
breaks (DSBs) or more advanced methods like single-strand
breaks (SSBs). CRISPR/Cas9 utilizes RNA-guided Cas9 enzymes
to target DNA, allowing for gene disruption, insertion, or cor-
rection, with applications in both ex vivo and in vivo thera-
pies.22 While CRISPR-based therapies, such as CASGEVY, have
reached clinical application,23 challenges like off-target effects,
genotoxicity, and risks associated with DSBs in TP53-deficient
cancers persist.24,25 Alternative approaches, including base
editing (BE) and prime editing (PE), enable precise modifi-
cations without introducing DSBs, significantly reducing
risks.26 BE alters single nucleotide pairs via enzymatic deami-
nation, while PE utilizes a Cas9-reverse transcriptase complex
for targeted insertions or corrections guided by pegRNA.27–29

These advanced tools, particularly in combination with
CRISPR systems, hold promise for safer and more effective
therapies targeting genes like KRAS in cancer.27

2.2. Principles of RNA-based therapy in oncology

RNA-based therapeutics offer innovative strategies for modu-
lating gene expression, with potential to treat various diseases,
including cancer. Several RNA therapies, such as RNA inter-
ference drugs (e.g., inclisiran, patisiran, givosiran, lumasiran,
teprasiran) and antisense oligonucleotides (e.g., nusinersen,
eplontersen, tofersen), have received FDA and EMA approval,
distinguishing themselves from gene therapies in manufactur-
ing and mechanisms of action. While anti-cancer siRNAs,
miRNAs, and antisense nucleotides (ASOs) are not yet com-
mercially available, numerous candidates are in clinical devel-
opment, highlighting their therapeutic promise (Fig. 2).30

2.2.1. Molecular tools for RNA-based therapy
2.2.1.1. Coding RNA. Coding RNAs, such as mRNA, are

single-stranded molecules characterized by a 5′ cap, a 3′ polya-
denylated tail, and tailored untranslated regions (UTRs) that
enhance stability and translation efficiency.31 Unlike plasmid
DNA, mRNA functions without requiring nuclear entry or
genome integration, making it a streamlined therapeutic
option. Bicistronic mRNAs, capable of encoding two proteins
from a single molecule, highlight advanced applications. For
instance, OTX-2002, currently under clinical investigation
(NCT05497453), targets the MYC oncogene in cancer through
epigenetic regulation, encoding two distinct proteins that
modulate gene expression pre-transcriptionally. To address the
limitations of ex vivo CAR-T therapies—such as high costs and
prolonged persistence—mRNA-transcribed CARs delivered via
ionizable lipid nanoparticles (LNPs) present a significant
advancement, bypassing the need for viral vectors and
enabling transient, safer gene expression with fewer
complications.32–34 Additionally, gene-editing tools like Cas9
can be delivered as mRNA, reducing immunogenicity com-
pared to protein-based systems and facilitating precise genome
editing. However, off-target and on-target effects, especially in
TP53-mutated cancer cells, require careful monitoring during
therapy.21,31,35,36 Another promising approach is self-amplify-

ing mRNA (samRNA), which combines encoding a target
protein with replication genes to amplify RNA messages post-
transfection. Platforms such as naked RNA, DNA-launched
replicons, and viral replicon particles have demonstrated
efficacy in inducing anti-tumour immunity, which can be
further enhanced through combination therapies like chemo-
therapy or immune checkpoint inhibitors. This approach sim-
plifies production and offers a powerful tool for cancer
immunotherapy.37,38

2.2.1.2. Non-Coding RNA (ncRNAs). ncRNAs play crucial
roles in gene regulation and cancer therapy by modulating
gene expression without encoding proteins. RNAi therapeutics,
including small interfering RNAs (siRNAs)39 and microRNAs
(miRNAs),40 selectively target mRNA to downregulate protein
production. Synthetic miRNA mimics, such as MRX34 41 and
miR-193a-3p mimic,42 and anti-miRNAs, like anti-miR-21 43

and anti-miR-155,44 have shown preclinical and clinical
promise in restoring tumour suppressor functions and inhibit-
ing cancer progression. siRNAs guide the RNA-induced silen-
cing complex (RISC) to complementary mRNA, enabling tar-
geted cleavage but requiring repeated dosing due to their tran-
sient effects. Small hairpin RNAs (shRNAs) provide gene silen-
cing by integrating into cellular DNA, producing siRNA con-
tinuously.45 Despite stability challenges, siRNA modifications
and delivery innovations, such as lipid encapsulation, have
improved therapeutic potential, exemplified by patisiran, the
first FDA-approved siRNA drug.46 Long non-coding RNAs
(lncRNAs), including circular RNAs (circRNAs), influence tran-
scription, epigenetic modifications, and mRNA stability
through diverse interactions with nucleic acids and proteins.
Therapeutics based on lncRNAs and circRNAs are emerging,
with applications such as miRNA sponges or oncolytic RNA
therapies targeting specific cancer pathways.47–49

2.2.1.3. Antisense oligonucleotides (ASOs). ASOs are syn-
thetic single-stranded DNA or RNA analogues, typically 18–30
nucleotides long, designed to bind specific mRNA or non-
coding RNA targets.45 Chemical modifications, such as phos-
phorothioate backbones and 2′-O-methoxyethyl groups, have
enhanced their nuclease resistance, potency, and patient toler-
ance.50 ASOs have evolved through three generations, with
improvements in binding affinity, cell penetration, and
reduced off-target effects.51,52 They function either by recruit-
ing RNase H to degrade mRNA or by steric blocking to alter
splicing. In oncology, ASOs like anti-HSP27 (BOREALIS-2
trial)53 and anti-STAT354 show promise in treating metastatic
urothelial carcinoma and myelodysplastic syndrome. However,
few ASOs have reached clinical use, and none currently utilize
nanoparticle-based delivery.

2.3. Strategic objectives of gene and RNA-based therapies

Gene and RNA-based therapies aim to modulate gene
expression, restore normal gene functions, enhance immune
responses, and induce targeted cancer cell death, offering
innovative avenues for effective cancer treatment.

2.3.1. Gene negative regulation. Gene negative regulation
involves silencing or reducing the expression of oncogenes or
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upregulated genes to counteract cancer progression. Knockout
strategies completely eliminate gene activity using tools like
CRISPR/Cas9, which introduces double-strand breaks repaired
by the NHEJ or HDR pathway. For instance, knockout of
hTERT, a component of telomerase, disrupts cancer cell
immortality,55 while targeting KRAS mutations, such as c.35G
> A, holds promise in resensitising tumours to tyrosine kinase
inhibitors (TKIs).56,57 However, challenges include the multi-
faceted roles of target genes in cellular homeostasis.58 Knock-
in approaches introduce precise genetic modifications, such as
stop codons to truncate dysfunctional proteins. In pancreatic
cancer, researchers used CRISPR/Cas9 to introduce mutations
in BRCA1/2, sensitizing cells to PARP inhibitors like olaparib
and enhancing apoptosis.59 Knockdown approaches reduce,
rather than eliminate, gene expression using RNAi tools like
siRNAs and ASOs. These methods enable multi-gene silencing,
an advantage for network-based approaches in cancers such as
breast cancer.60

2.3.2. Add/restore gene expression. Adding or restoring
gene expression can counteract the loss of tumour suppressors
or enhance immune responses. Cytokines such as IL-2 stimu-
late anti-tumour immunity by activating effector lymphocytes
like memory T cells and NK cells. High-dose IL-2 (proleukin)
therapies have shown efficacy but are limited by significant
toxicities. Alternative delivery methods, such as plasmid
DNA encoding IL-2 or IL-2-targeted mRNA, aim to minimize
side effects.61–63 The SB transposon system, tested in a pre-
clinical glioma model, enhanced IFN-γ immunotherapy by
prolonging transgene expression, leading to improved survival
and tumour regression compared to episomal plasmid
expression.64 Emerging neoantigen-based therapies, such as
GRT-C901 and GRT-R902, use viral and mRNA vectors to
stimulate T-cell responses against tumour-specific mutations.
These strategies, combined with immune checkpoint inhibi-
tors under the GRANITE phase II/III program (NCT05141721),
show promise in advanced cancers, improving immune
responses and patient survival. RNA-based antibodies, like
BNT141, offer advantages in production speed and pharmaco-
kinetics. For instance, BNT141 targets claudin-18.2, a protein
overexpressed in gastric and pancreatic cancers, showing
potential as a targeted therapy.65 Similarly, plasmid DNA-
encoded antibodies have demonstrated efficacy in HER2-posi-
tive breast cancer models, providing long-term expression and
tumour inhibition.66 Checkpoint inhibitors, such as anti-
PD-L1 and anti-CTLA-4 antibodies, enhance T-cell activity
against tumours. RNA-based approaches, including siRNA tar-
geting PD-L1, offer alternative methods for delivering
immune-modulating therapies, particularly in immune-privi-
leged regions like the brain. Preclinical studies using vectors
like HVJ-E demonstrated strong antitumor immunity and pro-
longed survival in glioblastoma models.67

Restoring tumour suppressor genes, such as TP53 and
PTEN, offers another avenue.68 mRNA encoding functional ver-
sions of these genes has shown potential in preclinical
models,69,70 particularly when combined with checkpoint
inhibitors.71 CRISPR-based activation of PTEN using dCas9-

VPR has also demonstrated success in upregulating tumour
suppressor activity in cancer cells.72 TALEN-mediated targeting
of HPV E6 and E7 oncogenes effectively induced apoptosis and
inhibited tumorigenicity in HPV-positive cervical cancer
models, ultimately restoring tumour suppressors like p53 and
RB1.73

2.3.3. Gene-directed enzyme prodrug therapy (GDEPT).
GDEPT delivers a gene encoding an enzyme that activates a
non-toxic prodrug into its cytotoxic form within tumour
cells.74 HSV-thymidine kinase (HSV-TK), delivered via viral
vectors or transposon systems, converts ganciclovir into a toxic
compound, inducing localized tumour cell death with bystan-
der effects enhancing efficacy.75 Similarly, cytosine deaminase
converts 5-fluorocytosine into the cytotoxic 5-fluorouracil,
though clinical trials like Toca 5 have faced setbacks in
demonstrating significant survival benefits.76

3. Strategies in vectorization for gene
and RNA-based therapies

The effective delivery of nucleic acids, referred to as “pay-
loads”, is a cornerstone of gene and RNA-based therapies,
addressing critical challenges in therapeutic development.
These payloads, including plasmid DNAs, siRNAs, and
mRNAs, face substantial barriers due to their physicochemical
properties, such as hydrophilicity, negative charge, and large
molecular size. For example, the size of mRNA (∼400 kDa)
starkly contrasts with small molecules like aspirin (0.18 kDa),
creating significant hurdles in crossing cellular membranes.
Furthermore, the negative charge of the sugar-phosphate back-
bone is repelled by the similarly charged cellular membrane,
complicating cellular entry. These issues are exacerbated by
serum nucleases that rapidly degrade nucleic acids, reducing
their stability and therapeutic efficacy. Delivery systems, or
vectors, are indispensable for overcoming these barriers, pro-
tecting nucleic acids from enzymatic degradation, extending
their circulation time, and facilitating cellular uptake.
Additionally, vectors can help navigate specific challenges,
such as crossing the nuclear membrane or targeting solid
tumours via abnormal vasculature, which are critical for
achieving therapeutic success in gene and RNA therapies
(Fig. 3).

The term “vector” refers to the carriers used to deliver
nucleic acids to their target sites. No single vector is univer-
sally effective for all cancers; their selection must be tailored
to the specific phenotypic profile of the cancer type, tumour
microenvironment (TME), and the patient’s pathophysiologi-
cal state. This complexity underscores the need for careful
vector design to ensure precise targeting and therapeutic
efficacy. Strategies for vectorization are broadly categorized
into viral and non-viral systems, such as nanoparticles, each
with distinct advantages and challenges. The choice between
these approaches requires careful consideration of safety,
efficiency, and specificity, as well as the unique demands of
the therapy and the underlying disease.
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3.1. Viral transduction of nucleic acids

Viruses are natural vectors evolved to efficiently deliver their
genetic material into host cells, making them ideal tools for
gene therapy. Leveraging their ability to enter cells and initiate
gene expression, viral vectors have become the most advanced
platforms for transferring therapeutic nucleic acids.1,10 Early
efforts in viral gene therapy, beginning in the 1980s with
recombinant adeno-associated viruses (AAVs), demonstrated
the potential for correcting monogenic diseases. Despite
initial success, challenges such as random insertional muta-
genesis and adverse immune responses highlighted the need
for safer, more precise designs.77 Modern recombinant viral
vectors are stripped of pathogenic elements and engineered to
enhance specificity and safety. For cancer therapies, viruses
can be tailored to target cancer cells through genetic modifi-
cations. This specificity capitalizes on unique characteristics
of tumour cells, including defective interferon signalling, fre-
quent division, and immune evasion. Oncolytic viruses, such
as poxviruses encoding hNIS, exemplify these modifications,
combining tumour cell targeting with imaging and antitumor
efficacy.78,79 Viral vectors can be used for two main purposes:
delivering therapeutic genes or as oncolytic agents, with some
designs achieving both. Their versatility allows for integration

into diverse therapeutic strategies, such as adoptive immune
cell therapy using retroviral vectors like lentiviruses, and non-
integrative vectors such as adenoviruses and AAVs (Fig. 4).80

Complex engineering of capsids or envelopes redirects viral
tropism to specific cell types, while chimeric viruses harness
features of multiple viral types to optimize delivery.

Despite their advantages, viral vectors pose challenges,
including high production costs and potential immunogeni-
city. Manufacturing under good practice standards involves co-
transfection of producer cells and advanced purification
methods, which are resource-intensive. Moreover, immune
responses triggered by viral vectors require careful manage-
ment to minimize toxicity.80,81 This chapter focuses on the
role of viral vectors in delivering therapeutic genes, with or
without additional oncolytic functions, highlighting their
application in cancer gene therapy trials (see Table 1).

3.1.1. Mechanisms and strategies in viral gene delivery.
Viral vectors deliver genetic material to target cells either by
integrating it into the host genome, enabling stable long-term
expression, or maintaining it as episomal DNA for transient
expression. This choice depends on the therapeutic objective
and the nature of the vector. Oncolytic viruses, for instance,
target cancer cells for lysis and stimulate immune responses
through tumour antigen release and inflammatory factor

Fig. 3 Patho-physiological barriers to overcome for delivery systems.
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secretion, while also enabling transgene delivery. Emerging
designs combine oncolytic activity with transgene vectorization
to enhance therapeutic outcomes.82

The specificity of transgene expression in viral vectors relies
on promoters. Strong, ubiquitous promoters like CMV and
CAG ensure robust gene expression but risk non-specific
activity, whereas tumour-specific promoters, such as engin-
eered AFP variants for liver cancer, enhance expression in tar-
geted cells while minimizing off-target effects.83–85 Inducible
systems, like the Ad-RTS-hIL-12 platform, further refine
control by activating transgenes only in the presence of exogen-
ous ligands, exemplifying precise regulation.86

To improve targeting, viral pseudotyping replaces envelope
proteins with those from different viruses, tailoring the
vector’s tropism. For instance, pseudotyped Sindbis virus lenti-
viral vectors selectively target T cells, enabling precise CAR-T
engineering in vivo.87 Similarly, adenoviral surface protein
swapping can improve targeting, though this poses additional
manufacturing challenges.

Pharmacokinetics and safety vary among vectors. AAVs are
favoured for their low immunogenicity and stable expression
but have limited payload capacity, whereas adenoviruses
allow larger payloads at the cost of transient expression and
stronger immune responses.88 Retroviral vectors enable long-
term expression via genome integration but carry oncogenic
risks due to random insertional mutagenesis. Advanced man-
ufacturing and dosing strategies, such as particle threshold
optimization in clinical trials, continue to improve the
scalability, purity, and therapeutic efficacy of viral vector
applications.89,90

3.1.2. Integrative viruses. Integrative viruses incorporate
their genetic material into the host cell genome, enabling
stable, long-term transgene expression (Table 1). Retroviruses,
particularly lentiviruses, are commonly used in ex vivo appli-
cations such as CAR-T cell therapy due to their ability to
efficiently integrate and express large transgenes.91,92 However,
their use in vivo is limited by risks like insertional mutagenesis
and uncontrolled gene expression, prompting efforts to rede-
sign lentiviral vectors for safer applications.92 Foamy viruses
(FVs), another retrovirus family, offer safer profiles due to pre-
ferential integration into non-coding genomic regions, redu-
cing genotoxic risks.93–95 Unlike lentiviruses, FVs exhibit stabi-
lity in quiescent cells, resuming activity upon cell division,
and induce less clonal dominance, making them attractive for
hematopoietic stem cell therapies and cancer applications.96

Challenges include the stability of larger transgenes during
viral propagation, influencing therapeutic design.95

The Moloney murine leukaemia virus (MMLV), a type C ret-
rovirus, has shown potential in clinical applications. Rexin-G,
approved for all solid tumours in the Philippines, integrates a
dominant-negative mutant of cyclin G1 (dnG1), inducing apop-
tosis and disrupting tumour vasculature.97,98 Similarly, Toca
511, encoding a yeast cytosine deaminase, converts the
prodrug 5-fluorocytosine into the active chemotherapy agent
5-fluorouracil (5-FU). Although promising in preclinical
models, Toca 511 faced challenges in clinical trials for glio-
blastoma due to inefficient transduction of tumour cells and
limited stability in vivo.99,100 Integrative viruses hold signifi-
cant therapeutic potential but require precise engineering to
balance stable expression with safety concerns.

Fig. 4 Viral transduction with integrative or non-integrative viruses.
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3.1.3. Non-integrative viruses. Non-integrative viral vectors
are pivotal in gene therapy for delivering genetic material
without incorporating it into the host genome, thus minimiz-
ing the risk of insertional mutagenesis. These vectors persist
as episomes in the nucleus, offering a safer profile for thera-
peutic interventions (Table 1).

3.1.3.1. Adenoviruses. Adenoviruses (AdVs) are among the
most widely utilized viral vectors in gene therapy, particularly
in oncology.1 Engineered through successive generations to
enhance safety and efficacy, they offer diverse therapeutic strat-
egies. Wild-type adenoviruses (WTAd) are noted for high
cloning capacity and robust immune responses.101 First-gene-
ration AdVs (FGAd) have deletions in essential genes (E1 and
E3) to prevent replication, facilitating efficient gene delivery.102

Second-generation vectors (SGAd) involve further deletions (E2
and E4), reducing viral protein synthesis and immune reac-
tions. Helper-dependent AdVs (HDAd), or “gutless” vectors,
have extensive deletions, increasing safety and DNA carrying
capacity while enabling long-term gene expression with
minimal toxicity.103

In cancer therapy, adenoviral vectors are versatile and are
therefore currently tested for numerous malignancies
(Table S1†). Gendicine, approved in China, delivers wild-type
TP53 to induce cell cycle arrest and modulate the tumour
TME.104 Oncorine, another approved therapy, is an oncolytic
AdV targeting TP53-deficient cells, selectively replicating in
tumour cells while sparing healthy ones.104 AdVs can also be
engineered to secrete immunomodulatory factors, utilizing
receptors like the coxsackievirus and adenovirus receptor
on epithelial cells to enhance immune responses against
tumors.105

AdVs have been instrumental in vaccine development,
notably in the context of the SARS-CoV-2 pandemic, showcas-
ing their capacity to stimulate immune responses.106 In oncol-
ogy, nadofaragene firadenovec (rAd-IFN α2b/Syn3) was
approved for non-muscle invasive bladder cancer unresponsive
to Bacillus Calmette–Guérin therapy.107 This therapy employs
a recombinant Ad5 vector to deliver the IFN-α2b gene, enhan-
cing immune responses and inducing apoptosis in cancer
cells via TNF-related apoptosis-inducing ligand (TRAIL)-related
pathways.108 Another adenoviral therapy, aglatimagene besade-
novec (CAN-2409), uses a replication-defective AdV encoding
herpes simplex virus thymidine kinase (HSV-TK). The clinical
developments of aglatimagene besadenovec are presented in
Table S2,† this treatment induces local activation of cytotoxic
lymphocytes and proinflammatory cytokines, stimulating a
robust antitumor immune response.109 DNX-2440 is an oncoly-
tic AdV engineered to express OX40 ligand (OX40L), selectively
replicating in tumour cells deficient in the retinoblastoma
gene (Rb) or p16, enhancing T-cell proliferation and cytokine
production.110,111

A challenge with AdVs is pre-existing immunity in humans,
reducing efficacy and posing risks.112 To address this, non-
human AdVs, like simian adenoviruses (e.g., ChAdOx1), are
explored for their lower prevalence of pre-existing immunity.113

GRANITE and SLATE clinical studies utilize chimpanzee AdVT
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vectors in a prime/boost immunotherapy to deliver personal-
ized or shared neoantigen vaccines, enhancing CD8 T-cell
responses in cancer patients.114

3.1.3.2. Adeno-associated viruses. Recombinant adeno-
associated viruses (rAAVs) are small, non-enveloped single-
stranded DNA viruses from the parvovirus family, with a packa-
ging capacity of ∼4.7 kb. While this limits their use for
complex transgenes in oncology, rAAVs have been approved for
other diseases, such as Luxturna for retinal disorders and
Zolgensma for spinal muscular atrophy. In cancer, rAAV-
mediated interferon β (IFNβ) expression has shown promise in
suppressing glioblastoma in mouse models.115 Capsid engin-
eering enhances tumour specificity and transduction
efficiency, exemplified by Her2-modified rAAVs and prostate-
targeting rAAV7 and rAAV9.116,117

Clinical trials using AAV in oncology are limited. A Phase I
trial (NCT02496273) involves ex vivo gene therapy for gastric
cancer, where patients’ T lymphocytes are primed to target car-
cinoembryonic antigen (CEA)-expressing tumour cells. Another
trial (NCT02602249) uses AAV2 to transduce dendritic cells
with the MUC1 gene for gastric cancer treatment. AAVs can
also deliver RNA interference molecules, such as shRNA,
within target cells.118 However, toxicity from viral vectors and
RNAi necessitates careful evaluation, including dose optimiz-
ation and conditional promoters to minimize immune
responses.

A novel approach involves in vivo AAV-mediated CAR-T cell
therapy. An AAV vector encoding CD4CAR was used to trans-
duce T cells within the patient’s body, effectively reducing
tumour size in a T-cell leukaemia model.119 This simplifies
CAR-T production, potentially lowering costs and increasing
accessibility.

3.1.3.3. Herpes simplex virus. Herpes simplex viruses
(HSV-1 and HSV-2) are utilized in oncology as non-replicating
vectors and oncolytic agents. The non-replicating HSV-1 vector
NP2 was designed to express preproenkephalin (PENK) for
pain modulation in cancer patients, showing safety and poten-
tial efficacy.120,121 Oncolytic HSV-1 vectors have also gained
attention; talimogene laherparepvec (T-VEC, Imlygic), an
HSV-1 vector encoding GM-CSF, was approved for recurrent
melanoma.122 Despite innovative design, challenges like host
antiviral responses and limited intratumoral spread affected
efficacy. Ongoing trials investigate combinations of T-VEC with
immune checkpoint inhibitors to enhance outcomes.123

3.1.3.4. Vaccinia virus. Vaccinia virus (VV), an enveloped
double-stranded DNA orthopoxvirus, offers advantages like
large genome capacity (∼190 kb), cytoplasmic replication
(avoiding genome integration), and tumour tropism.124,125

Strains like Western Reserve (WR) and Modified Vaccinia
Ankara (MVA) serve different purposes. TG6002, derived from
the WR strain, selectively replicates in tumour cells and con-
verts 5-fluorocytosine into 5-fluorouracil, showing efficacy in
preclinical studies and ongoing trials for glioblastoma and
gastrointestinal tumors.126 Pexa-Vec (JX-594), another WR-
derived oncolytic virus expressing GM-CSF, has been explored
in various cancers but did not improve outcomes in a Phase III

trial for hepatocellular carcinoma.127 Research aims to
enhance targeting and immune stimulation. MVA is extensively
attenuated and used in cancer immunization strategies. A
‘prime-boost’ approach combining ChAdOx1-MAGE-A3-
NY-ESO-1 and MVA vectors is under investigation to enhance
immune responses in patients with specific tumour
antigens.128,129

3.1.3.5. Chimeric orthopox virus. CF33 is a novel chimeric
orthopoxvirus created by recombining multiple orthopoxvirus
species, showing specificity for breast and pancreatic
cancers.130 CF33-hNIS includes the human sodium iodide
symporter for imaging,78 and CF33-hNIS-antiPDL1 expresses
anti-PD-L1 antibodies, enhancing tumour localization and
immune activation.131 Clinical trials, like the OASIS trial,
evaluate CF33 variants with anti-CD19 agents for their oncoly-
tic and immunostimulatory properties (Table S3†).132

Despite advances with non-integrative viral vectors, con-
cerns over safety, immunogenicity, and production complexity
have prompted a shift toward non-viral vectors. Non-viral
systems—such as lipid nanoparticles and polymers—offer
advantages in safety, ease of production, and lower immuno-
genicity, making them suitable for repeat administrations and
broader therapeutic applications.

3.2. Organic nanoparticles for nucleic acids transfection

3.2.1. Mechanisms and strategies for NP vectorisation.
Organic nanoparticles (NPs) have transformed oncology by
enabling stabilization and thus precise delivery of NAs for
therapeutic purposes. Their unique properties, including
small size, high surface area, and functionalisation potential,
allow for encapsulating and protecting NAs such as DNA, RNA,
siRNA, and mRNA.3,133 The size and shape, the charge, hydro-
phobicity, and encapsulation rate of the NP are key
(Table S4†). These attributes improve pharmacokinetics,
enhance biodistribution, and minimise off-target effects,
addressing the inherent challenges of NA therapies, such as
enzymatic degradation, low cellular uptake, and rapid systemic
clearance.134 Effective delivery systems must meet specific cri-
teria: shielding NAs from degradation, maintaining stability in
circulation, and ensuring efficient release within targeted cells.
This is particularly crucial in solid tumours, especially the
ones where high interstitial fluid pressure and a dense extra-
cellular matrix pose significant barriers.135 Two primary
mechanisms, the Enhanced Permeability and Retention (EPR)
effect and Active Transport Retention (ATR), govern NP distri-
bution. The EPR effect exploits the disorganised vasculature of
tumours, which features large pores and poor lymphatic drai-
nage (Fig. 3), enabling NPs of 100–200 nm to accumulate pre-
ferentially within tumour tissues.134,136 However, variability in
the EPR effect due to patient-specific tumour biology limits its
universal applicability. To enhance this mechanism, strategies
such as carbon monoxide-releasing agents (e.g., SMA/
CORM2 micelle) improve tumour blood flow and vascular per-
meability.137 In contrast, ATR involves active mechanisms like
receptor-mediated interactions and the absence of intratu-
moral lymphatics to enhance NP retention. While ATR comp-
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lements EPR, its success depends on understanding tumour-
specific biology, requiring tailored approaches.138

Functionalising NP surfaces with ligands, such as antibodies,
aptamers, or peptides, further enhances specificity.139,140

Tumour-specific antigens (TSAs), derived from genetic
mutations or viral infections, and tumour-associated antigens
(TAAs), overexpressed on cancer cells, serve as critical targets
for ligand conjugation.141,142 A representative selection of
diverse targeting agents is presented in Tables 2 and S5.†
These strategies reduce off-target effects and maximise thera-
peutic efficacy. Additionally, modifying the tumour microenvi-
ronment (TME) to deplete the extracellular matrix, inhibit
cancer-associated fibroblasts, and reverse immunosuppression
facilitates NP penetration and drug delivery.143,144

3.2.2. Advanced NP systems for NA delivery. Advancements
in NP design have led to the development of systems that
address stability, specificity, and controlled release (Fig. 5).
Stealth NPs, coated with hydrophilic polymers like polyethyl-
ene glycol (PEG), evade immune detection by preventing opso-
nisation, thereby prolonging circulation time and improving

tumour delivery.135 However, repeated PEGylated NP adminis-
tration can elicit anti-PEG antibodies, reducing efficacy.
Innovative alternatives, such as using different polymers or
modifying dosing regimens, aim to mitigate this challenge.145

Stimuli-responsive NPs release their payload in response to
specific triggers, such as pH, temperature, or redox potential.
For example, pH-sensitive liposomes destabilise in the acidic
TME, ensuring localised and precise drug activation.143 These
systems enhance therapeutic outcomes while minimising sys-
temic toxicity.

A critical aspect of these applications is overcoming intra-
cellular barriers, particularly endosomal escape. Incorporating
polyethylenimine (PEI) into NP formulations induces the
proton sponge effect, causing endosomal swelling and
rupture, which facilitates NA release into the cytoplasm.146

This mechanism is essential for achieving high transfection
efficiency, particularly in hard-to-target cancers.

Recent advances in NP engineering have focused on
improving specificity and therapeutic efficacy. NPs targeting
the TME can reshape it by modulating immune responses or

Table 2 Size and molecular characteristics of antibody-derived fragments and peptides for targeted vectors

Protein
IgG(1) 150 kDa
(10–15 nm)

Fab’ 55 kDa
(4–6 nm)

Fab 50 kDa
(4–6 nm)

scFv 28 kDa
(2–4 nm)

VHH 12 kDa
(camelids ab)
(2–5 nm)

Peptide 1–4 kDa
(0.5 to 2 nm)

Schematic view

Fig. 5 Evolution of lipid NPs’ design.
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altering its physical and biochemical properties. For instance,
targeting acidic, hypoxic, or fibrotic regions within the TME
enhances NP delivery and therapeutic outcomes.144,147

Aptamers, specific oligonucleotides, can precisely target cell-
specific receptors. Fluorescent aptamers now allow real-time
monitoring of nucleic acid nanoparticle (NANP) formation and
interactions. Advances in customizable NANPs have enabled
the design of nanoassemblies that use aptamers to modulate
cell signalling or activate therapeutic functions through
aptamer–receptor interactions. These innovations pave the way
for applications like reshaping the TME with nanoparticle dec-
orations.148 Such strategies are crucial in overcoming the
TME’s role as a barrier to treatment and leveraging its unique
characteristics for therapy.

3.2.3. Pharmacokinetics, biodistribution, and dose optimi-
sation. Understanding the pharmacokinetics (PK) and biodis-
tribution of NPs is pivotal for optimising their therapeutic
potential. Upon administration, NPs interact with plasma pro-
teins to form a “protein corona”, which significantly influ-
ences their stability, cellular uptake, and clearance. While the
corona can enhance targeting by exposing functional ligands,
it also marks NPs for immune clearance by macrophages, par-
ticularly Kupffer cells in the liver.89,146 Strategies to address
this include engineering NPs with low immunogenicity.

The route of administration, structural properties, and
interactions with biological matrices also impact NP perform-
ance. Intravenous delivery is most common for systemic
cancer therapies, but variability in enzymatic degradation
across organs necessitates tailored designs of NPs. For
example, PEGylation extends circulation time but can trigger
immune responses over time, underscoring the need for balan-
cing stability and adverse immune reactions.145,149,150

Recent studies have identified a minimum effective dose
threshold for tumour delivery. Administering 1 trillion NPs in
mice saturates Kupffer cells, prolonging NP circulation and
enhancing tumour accumulation. This approach has improved
delivery efficiency in formulations like Caelyx/Doxil and pro-
vides a framework for dose optimisation in clinical settings.89

Tumour heterogeneity remains a significant challenge.
Differences in genetic profiles, TME composition, and thera-
peutic responses necessitate personalised NP strategies. A
complementary approach to reducing tumour progression and
dissemination is to deliver NAs with NPs to cancer stem cells,
or to target the epithelial–mesenchymal transition, or to block
metastatic pathways.151–153 Similarly, NPs targeting circulating
tumour cells (CTCs) offer a novel approach to prevent meta-
stasis. For example, TRAIL-conjugated liposomes induce apop-
tosis in CTCs while sparing healthy tissues.154

Advancing NP-based therapies requires integrating pharma-
cological, physiological, and pathological considerations into
design and application. This includes understanding tumour-
specific biodistribution patterns, overcoming immune clear-
ance, and optimising dosing regimens to achieve maximal
therapeutic benefit. Standardising manufacturing and purifi-
cation protocols is also critical for ensuring batch-to-batch
consistency, which is essential for regulatory approval and

clinical application.155,156 The DELIVER framework encapsu-
lates the core principles for optimising nanomedicine pre-
clinical development, emphasising design, manufacturing,
clinical, and regulatory strategies to accelerate translation and
maximise impact.157

3.2.4. Lipidic vectors. Lipidic vectors have been transfor-
mative in drug delivery, especially in oncology, where they have
been applied for over two decades.

These vectors, including liposomes, lipoplexes, and lipid
nanoparticles (LNPs) (Fig. 6), offer numerous advantages, such
as extended circulation times, avoidance of the reticuloen-
dothelial system (RES), and high biocompatibility. They are
known for their ability to encapsulate and protect therapeutic
agents, NAs, while facilitating targeted delivery. Among their
applications, Doxil, a liposomal formulation of doxorubicin
approved in 1995, exemplifies the efficacy of lipidic vectors in
utilising the EPR effect for tumour targeting. These systems
improve bioavailability, reduce systemic toxicity, and enhance
therapeutic outcomes.158,159

The roles and characteristics of lipids used in lipidic
vectors formulations, such as ionizable, phospholipid, chole-
sterol, and PEGylated components, are critical for determining
stability, delivery efficiency and compatibility with various NAs
(Table S6†). While liposomes have been traditionally used for
delivering plasmid DNA, the emergence of lipoplexes and
LNPs has enabled the delivery of various NAs, including
mRNA, siRNA, and ASOs, through electrostatic interactions.
Tables S7, S8, and S9† provide an overview of ongoing clinical
trials exploring lipid-based vectors, with a focus on liposomes
(Table S7†), lipoplexes (Table S8†), and LNPs-based systems
(Table S9†), showcasing their distinct roles in advancing
nucleic acid delivery technologies. Importantly, only three NA
therapies using LNPs—patisiran (siRNA), the Pfizer-BioNTech
COVID-19 vaccine, and the Moderna COVID-19 vaccine—have
received market approval, highlighting the clinical relevance of
lipid-based delivery systems.160–162

3.2.4.1. Liposomes. Liposomes are spherical vesicles con-
sisting of one or more phospholipid bilayers encapsulating an
aqueous core. Due to their versatile structure, they have been

Fig. 6 Representation of selected lipidic vectors.
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widely used in drug delivery, including for NAs such as
miRNA, siRNA, and ASOs. Their neutral lipid composition,
often incorporating phospholipids (Table S6†), enhances their
biocompatibility but limits their ability to encapsulate highly
charged molecules like DNA and RNA. To overcome this, modi-
fied liposomal systems have been developed, targeting smaller
or chemically modified NAs with reduced charges.52

One significant advancement in liposomal technology is
the development of EphA2-targeted siRNA delivery systems.
EphA2, a receptor tyrosine kinase overexpressed in multiple
cancers, plays a crucial role in tumour progression and meta-
stasis. A liposome composed of DOPC encapsulating EphA2-
specific siRNA, termed EPHARNA, demonstrated significant
efficacy in preclinical models. For example, in ovarian cancer
models, EPHARNA reduced tumour growth and metastasis
while exhibiting minimal toxicity. Additionally, its combi-
nation with chemotherapy showed synergistic effects, and
ongoing clinical trials (NCT01591356) are evaluating its safety
and efficacy in human subjects.163,164

Another innovative liposomal formulation is BP1001, an
antisense oligonucleotide (ASO) targeting Grb2 mRNA.
Composed of a P-ethoxy backbone for nuclease resistance,
BP1001 is encapsulated in DOPC liposomes, ensuring stability
and extended circulation times. This formulation has demon-
strated promising results in preclinical models of leukaemia
and solid tumours, with clinical trials indicating safety and
efficacy in refractory leukaemia (NCT02781883).165,166

3.2.4.2. Lipoplexes. Lipoplexes are complexes formed
through electrostatic interactions between positively charged
lipids and negatively charged NAs. Their simplicity, ease of
customisation, and ability to deliver large NAs make them an
attractive option for therapeutic applications. However, their
reliance on electrostatic interactions necessitates optimisation
to ensure stability and minimise aggregation in vivo.136,167

DOTMA, a cationic lipid widely used in lipoplex formu-
lations, has demonstrated efficacy in gene transfer, particularly
when combined with helper lipids like DOPE. The inclusion of
DOPE facilitates membrane fusion and endosomal escape,
critical steps for effective gene transfection. Additionally, lipo-
plexes have been modified with tumour-targeting peptides,
such as iRGD (a 9-amino acid cyclic peptide, Table 2), to
enhance their active targeting capabilities. For example, R-LP,
a DOTAP-based lipoplex modified with iRGD, successfully deli-
vered eIF3i-specific shRNA in melanoma models, significantly
inhibiting tumour growth and metastasis.168 A notable clinical
example is SGT53, a lipoplex encapsulating wild-type human
p53 cDNA. Modified with an anti-transferrin receptor (TfR)
scFv for selective targeting, SGT53 has shown efficacy in restor-
ing apoptotic pathways in various cancers. It is currently being
evaluated in clinical trials for glioblastoma (NCT02340156)
and pancreatic cancer (NCT02340117), where it demonstrated
improved progression-free survival in second-line
treatments.169,170

Despite their potential, lipoplexes face challenges such as
detachment of NAs in the bloodstream, leading to rapid
aggregation. Innovations in lipid composition and manufac-

turing processes are addressing these limitations, enhancing
the stability and efficacy of lipoplexes for clinical
applications.171

3.2.4.3. Lipid Nanoparticles. LNPs are among the most
advanced lipidic vectors, consisting of a lipid core surrounded
by a phospholipid monolayer. Their composition typically
includes ionizable or cationic lipids, cholesterol, phospholi-
pids, and PEGylated lipids, allowing for precise tuning of their
properties for specific therapeutic applications. Unlike lipo-
plexes, LNPs leverage pH-sensitive ionizable lipids to stabilise
NAs and potentially enhance endosomal escape, making them
highly efficient for intracellular delivery.161,167

A landmark in LNP technology is patisiran/Onpattro, an
siRNA-based therapy encapsulated in LNPs, approved for her-
editary transthyretin-mediated amyloidosis. This system exem-
plifies the clinical success of LNPs in overcoming biological
barriers to NA delivery. Similarly, the Pfizer-BioNTech and
Moderna COVID-19 vaccines utilised LNPs to deliver mRNA
encoding the SARS-CoV-2 spike protein, demonstrating the
scalability and efficacy of this platform.162 Cholesterol plays a
pivotal role in stabilising LNP structures, reducing per-
meability, and enhancing circulation time. However, chole-
sterol can be rapidly extracted by cell membranes, compro-
mising stability. Modified lipids, such as sphingomyelin
derivatives, have been developed to address this issue. For
instance, SM-CSS-Chol, a disulfide-bonded cholesterol ana-
logue, improved the stability and delivery efficiency of siRNA-
loaded LNPs in preclinical cancer models, highlighting its
potential for clinical applications.172

Targeted LNPs have also been developed for immune cell
transfection. For example, a CD3-targeted LNP encapsulating
plasmid DNA for CAR-T therapy demonstrated selective
delivery to T cells, enhancing gene expression while minimis-
ing off-target effects. This system incorporates PEGylation to
improve circulation time and specific lipid combinations to
optimise endosomal escape, showcasing the versatility of LNPs
in advanced gene therapies.173

The toxicity and immunogenicity of LNPs are critical con-
siderations, particularly for repeated dosing. Ionizable lipids,
the cornerstone of LNP formulations, exhibit pH-sensitive pro-
perties that reduce cytotoxicity compared to permanently
charged cationic lipids. Biodegradable linkages, such as ester
and amide bonds, further minimise toxicity by facilitating
in vivo cleavage. Nevertheless, careful evaluation of lipid com-
position and dosing regimens is necessary to balance efficacy
and safety.174–176

3.2.5. Polymeric vectors. Polymeric vectors have emerged
as a versatile platform in NAs delivery, offering a tunable
framework to overcome challenges such as enzymatic degra-
dation, limited stability, and poor cellular uptake of naked
NAs. These vectors harness the diversity of polymers
(Table S10†), which can be tailored chemically and structurally
to meet therapeutic demands, such as protecting NAs during
systemic circulation, promoting cellular internalisation, and
enabling controlled release at target sites.177 Among the
various systems under development, polymersomes, poly-
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plexes, polymeric nanocapsules, and dendrimers stand out for
their unique attributes and therapeutic potential (Fig. 7).

Polymers suitable for NA delivery include both natural and
synthetic types, such as poly(ethyleneimine) (PEI), poly-L-lysine
(PLL), poly(lactic-co-glycolic acid) (PLGA), poly(beta-amino
ester) (PBAE), and poly(2-dimethylaminoethyl methacrylate)
(PDMAEMA) (Table S10†). Each offers specific advantages,
including charge density for NA condensation, biodegradabil-
ity, and biocompatibility. Modifications, such as PEGylation,
are often incorporated to enhance systemic stability and mini-
mise immune responses, ensuring the safe and efficient deliv-
ery of therapeutic agents.178–180

The design of polymeric vectors often involves balancing
transfection efficiency and toxicity. Cationic polymers like PEI
and PLL effectively bind and condense NAs through electro-
static interactions, forming compact polyplexes that protect
NAs from enzymatic degradation. However, their high charge
density and lack of biodegradability can lead to cytotoxicity
and off-target effects, necessitating structural modifications to
enhance safety profiles.181 PLGA, an FDA-approved polymer,
offers an alternative with its excellent biocompatibility and bio-
degradability, making it a preferred choice for clinical appli-
cations, particularly for sustained-release systems.182

3.2.5.1. Polymersomes. Polymersomes are vesicular systems
formed by the self-assembly of amphiphilic block copolymers
into bilayer structures. These vesicles mimic liposomes but
possess superior stability due to their thicker membranes,
which resist mechanical stress and provide prolonged circula-
tion times in vivo. Polymersomes can encapsulate both hydro-
philic and hydrophobic NAs, offering a flexible platform for
gene delivery.183 The chemical diversity of block copolymers
enables the design of polymersomes with tailored properties
for specific applications. For instance, polymersomes made
from poly(ethylene glycol)–poly(caprolactone) (PEG–PCL) or
poly(ethylene glycol)–poly(lactic acid) (PEG–PLA) demonstrate
excellent biocompatibility and efficient encapsulation of plas-
mids and siRNA. Functionalisation with targeting ligands
further enhances cellular uptake, enabling site-specific deliv-
ery in tumours.183,184

A notable clinical example involves the Local Drug EluteR
device, which uses a PLGA-based polymer matrix to deliver

siRNA targeting the KRAS G12D mutation in pancreatic
cancer. This system has shown promising results in phase I
and II trials (NCT01188785, NCT01676259), providing a mini-
mally invasive approach to address one of the most challen-
ging oncogenic mutations.

3.2.5.2. Polyplexes. Polyplexes are complexes formed by the
electrostatic interaction between cationic polymers and nega-
tively charged NAs. These compact, stable structures shield
NAs from enzymatic degradation, enhance cellular uptake, and
promote intracellular delivery. Unlike lipoplexes, polyplexes
are composed of hydrophilic polymers, which improve their
solubility and adaptability in aqueous environments.185,186

PEI, a widely studied polymer, forms polyplexes with high
transfection efficiency due to its ability to condense NAs and
facilitate endosomal escape via the proton sponge effect.
However, its high molecular weight variants often exhibit cyto-
toxicity, prompting the development of biodegradable alterna-
tives, such as poly(beta-amino ester) (PBAE) and PEGylated
PEI, which combine high transfection efficiency with reduced
toxicity.187

Cyclodextrin-based polyplexes, exemplified by CALAA-01,
represent a pioneering approach in systemic siRNA delivery.
Functionalised with transferrin for tumour targeting,
CALAA-01 demonstrated dose-dependent gene silencing in
phase I trials but faced challenges related to DLTs, attributed
to the polymer components rather than the siRNA.188

3.2.5.3. Polymeric nanocapsules. Polymeric nanocapsules
feature a core–shell architecture, where therapeutic agents are
encapsulated within a polymeric shell, offering protection and
controlled release. These structures are versatile platforms for
NA delivery, capable of incorporating diverse polymer types,
including PLGA, PEG-PBAE, and chitosan. Their rigid structure
enhances stability, while their surface can be functionalised to
improve targeting and cellular uptake.182,187

A key example of polymeric nanocapsule application is
STP705, a system that utilises histidine-lysine copolymers to
deliver siRNA targeting TGF-β1 and COX-2. This dual-targeted
approach addresses both tumour cells and the tumour
microenvironment, demonstrating high efficacy in preclinical
and early clinical studies for cancers like hepatocellular
carcinoma.189

Fig. 7 Representation of selected polymeric vectors.
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Another innovative system employs PEG-PBAE nanocap-
sules co-encapsulating plasmids for glioblastoma treatment.
These vectors achieve superior transfection efficiency and
tumour penetration compared to non-PEGylated systems, high-
lighting the role of polymeric nanocapsules in addressing chal-
lenges such as endosomal escape and tumour
heterogeneity.187

3.2.5.4. Dendrimers. Dendrimers are hyperbranched, tree-
like macromolecules characterised by a central core and
radially symmetric layers of branching units. Their unique
architecture allows for precise control over size, shape, and
surface functionality, making them highly adaptable for NA
delivery. Dendrimers form stable complexes with NAs through
electrostatic interactions, protecting the cargo and facilitating
intracellular transport.190

Poly(amidoamine) (PAMAM) dendrimers are the most
extensively studied for gene therapy. Their surface amine
groups enable efficient condensation of NAs, while their
branched structure allows for multifunctionalisation. Recent
advancements include the modification of PAMAM G5 dendri-
mers with cholesteryl chloroformate and alkyl-PEG for dual
delivery of TRAIL and doxorubicin, achieving synergistic anti-
tumour effects in preclinical colon cancer models.191

Phosphorus dendrimers, incorporating protonated
ammonium terminals, have shown efficacy in delivering
plasmid DNA encoding tumour suppressor genes like TP53.
These systems effectively induce cell cycle arrest and apoptosis
in tumour cells, demonstrating their potential in targeted
therapies.192 Carbosilane dendrimers, on the other hand, have
been employed to deliver pro-apoptotic siRNA, highlighting
their versatility in addressing oncogenic pathways.193

A novel application of dendrimers involves the formation of
RNA triplex nanoparticles, combining dendritic architecture
with RNA molecules for dual-function cancer therapy. These
systems enable the simultaneous inhibition of oncogenic
microRNAs and replacement of tumour suppressor
microRNAs, offering a comprehensive approach to tumour
management.194

3.2.6. Lipid-polymer hybrid nanoparticles. LPHNs, also
named lipopolyplexes, combine lipid structures with cationic
or neutral polymers, offering controlled release, stability, and
protection for NAs.195 A PLGA polymer shell enhances sus-
tained delivery of siRNA, enabling long-term gene silencing,
reducing administration frequency, and minimising systemic
side effects.195 Cationic polymers like PEI condense NAs into
stable complexes, encapsulated by lipid bilayers of DPPC and
cholesterol, with PEG and ligands like PR_b for targeted deliv-
ery. For glioblastomas, PEI-complexed miR-603 in PR_b-func-
tionalised liposomes sensitises tumour cells to radiation by
downregulating IGF1 signalling.151,196 LPNPs encapsulating
CRISPR/Cas9 plasmids targeting MGMT, combined with
focused ultrasound and microbubbles, effectively crossed the
blood–brain barrier, enhancing glioblastoma sensitivity to
temozolomide. Modifications like DSPE-PEG2000 improve
tumour targeting and circulation time, enabling advanced
therapies for drug-resistant glioblastomas.197

3.2.7. Extracellular vesicles (EVs). Extracellular vesicles
(EVs), cellular membrane-based nanovesicles ranging from 50
to over 2000 nm, mediate intercellular communication via
autocrine, paracrine, and endocrine signalling. Subtypes like
exosomes, microvesicles, and apoptotic bodies carry diverse
cargo, including proteins, NAs, and metabolites, reflecting
their cellular origin. EVs’ ability to evade immunity and cross
barriers like the blood–brain barrier makes them promising
vectors for drug and gene therapy delivery.198 Mesenchymal
stem/stromal cell (MSC)-derived EVs offer therapeutic potential
for targeting tumours, facilitated by engineering their surfaces
with specific ligands for precise delivery of NAs and CRISPR/
Cas9 tools.199 Phase 1 trials, such as KRASG12D-siRNA-loaded
exosomes for pancreatic cancer, highlight their clinical poten-
tial.200 Additionally, EVs encapsulating adeno-associated
viruses (AAVs) bypass pre-existing immunity, improving vector
safety and stability.201 Novel vexosomes, combining exosomes
and viral vectors, enhance gene therapy applications.202 In
hepatocellular carcinoma models, AAV6 vexosomes showed a
2.3-fold increase in tumour regression.203

3.3. Cells as vectors

The use of neural stem cells (NSCs) as carriers for oncolytic
viruses is a promising strategy for treating malignant gliomas,
leveraging NSCs’ natural tumour-tropism as biological “Trojan
horses”. Genetic engineering enhances their specificity, as
demonstrated by the FDA-approved NSC line HB1.F3.CD21,
which delivers CRAd-S-pk7, a conditionally replicative adeno-
virus. CRAd-S-pk7 uses a survivin promoter for selective repli-
cation in glioma cells and features a polylysine sequence (pK7)
to improve viral attachment, enhancing targeting of resistant
glioma stem cells. Preclinical and phase I trials
(NCT03072134) show improved antitumor activity and survival
in glioblastoma models.204 Similarly, bone marrow-derived
mesenchymal stem cells (BM-hMSCs) loaded with DNX-2401,
another oncolytic adenovirus, utilize the same principle to pre-
cisely target gliomas. This approach demonstrates efficacy in
recurrent high-grade gliomas in phase I trials (NCT03896568).
These innovations highlight the potential of stem cell-based
oncolytic virotherapy to overcome vectorization challenges,
offering precise and effective treatment for resistant gliomas.

4. Conclusions

In summary, gene and RNA-based therapies represent an evol-
ving frontier in oncological treatment, offering highly specific
mechanisms to modulate gene expression, restore tumour sup-
pressors, or enhance anti-tumour immunity. Advances in
molecular tools—from CRISPR-based gene editing to antisense
oligonucleotides and self-amplifying mRNAs—have provided
unprecedented precision and flexibility. At the same time, the
development of robust delivery systems remains central to the
successful translation of these approaches. Viral vectors con-
tinue to be refined for safety, specificity, and stable inte-
gration, while non-viral carriers, such as lipidic or polymeric
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nanoparticles and extracellular vesicles, show great promise in
overcoming barriers like enzymatic degradation, immunogeni-
city, and complex intratumoral environments. The integration
of cell-based carriers, exemplified by stem cell “Trojan horses”
further expands the therapeutic landscape.

Looking ahead, the field is poised to capitalize on emerging
technologies for target identification, advanced gene editing
methods, improved vector engineering, and more nuanced
control over gene expression patterns. Combining these thera-
pies with established treatments—chemotherapy, immu-
notherapy, radiation—and implementing personalized strat-
egies based on tumour profiling will likely enhance both
efficacy and safety. Continued interdisciplinary collaboration,
rigorous clinical testing, and regulatory refinement will be
pivotal in pushing these next-generation therapies into main-
stream cancer care.
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