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Single atom alloys aggregation in the presence
of ligands†

Maya Salem and Giannis Mpourmpakis *

Single atom alloys (SAAs) have gained tremendous attention as promising materials with unique

physicochemical properties, particularly in catalysis. The stability of SAAs relies on the formation of a

single active dopant on the surface of a metal host, quantified by the surface segregation and aggrega-

tion energy. Previous studies have investigated the surface segregation of non-ligated and ligated

SAAs to reveal the driving forces underlying such phenomena. In this work we address another key

factor dictating the stability in non-ligated and ligated SAAs: the aggregation energy (Eagg) of dopants.

Specifically, we examine how thiols and amines, commonly found ligands in colloidal bimetallic nano-

particle synthesis, affect the aggregation of dopants (forming dimers and trimers) on the surface of a

metal host. Utilizing Density Functional Theory (DFT) and machine learning (ML), we explore the stabi-

lity patterns of SAAs through the energetics of low-index surfaces, such as (111) and (100), consisting

of d8-(Pt, Pd, Ni) and d9-(Ag, Au, Cu) metals, both in the presence and absence of ligands. Collecting

rich and accurate DFT data, we developed a four-feature support vector regression using the radial

basis function (SVR RBF) to predict the Eagg. The model revealed important and easily accessible (tabu-

lated) thermodynamic stability features that drive metal aggregation in SAAs, such as the bulk cohesive

energy of the metal considering the exposed coordination environment on the surface, the charge

transfer represented by the difference in electron affinities of metals and the radii of the metals

describing strain effects. Additional incorporated features include adsorbate properties, such as the

binding energy of the ligand on a single atom considering the coordination environment of the adsor-

bate. Through our study, we have revealed that stable SAAs are formed in Ni-, Pd-, Pt-based SAAs in

the presence of ligands, while Ag-, Au-, Cu- doped with Ni-, Pd-, Pt- lead to aggregation. Finally, we

tested our model against several experimental studies and demonstrated its robustness in predicting

the formation of SAAs, enabling rapid screening across the vast materials space of SAAs. Additionally,

we suggest criteria for stabilization of SAAs, guiding experimental efforts. Overall, our study advances

the understanding of thermodynamic stability of colloidal SAAs, paving the way for rational SAA

design.

Introduction

Over the years, metal alloys have gained prominence in many
applications,1,2 particularly in catalysis, owing to their unique
stability and catalytic activity and selectivity performance.3

Furthermore, due to the synergistic effect arising from the
different metals, metal alloys have shown enhanced catalytic
efficiency in a wide range of chemical reactions.4 As an
example, a bimetallic AuPd catalyst was utilized in the syn-
thesis of vinyl acetate. Pd served as the active component,
while the inclusion of Au improved the stability of the catalyst

by preventing sintering.5 However, traditional metal alloys
suffer from inefficient atomic utilization as well as increased
complexity due to the presence of multiple active sites.6 To
tackle this challenge, there has been a transition to single-site
catalysts due to their well-defined active sites.

Single atom alloys (SAAs), a class of single-site catalysts,
merge the favorable characteristics of traditional alloys and
single atom catalysts due to the presence of a more active atom
doped on a more selective metal host, making them highly
active in many catalytic reactions.7,8 For instance, Kyriakou
et al. observed that the presence of an isolated Pd dopant atom
allowed for enhanced activity, while the presence of Cu led to
higher selectivity towards the hydrogenation of styrene and
acetylene.7 Another study demonstrated that the inclusion of
Ru in Ni host improved both the activity and selectivity of
4-nitrostyrene hydrogenation to 4-aminostyrene.9 As a result,
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SAAs have emerged as promising catalytic architectures for a
wide range of reactions.

The mixing behavior in SAAs is a crucial factor determined
by the interaction between the host and dopant metals, which
in turn affects their stability.8 Moreover, the stability of SAAs is
described by the formation of a single dopant atom on the
surface of the host metal. This is quantified by two energetic
descriptors, the segregation and aggregation energy. Dopant
segregation, which is the thermodynamic tendency of the
dopant to reside on the surface of the catalyst, is influenced by
several factors including, but not limited to, the radius, temp-
erature, surface energy/cohesive energy, and the presence of
adsorbates.8,10 Furthermore, the binding strength between an
adsorbate and the dopant can induce dopant segregation,
reversing segregation behavior under vacuum conditions. For
instance, reverse segregation has been observed in the cases of
Pt-, Pd-, and Ni- doped on Ag, Au, and Cu metals when CO is
introduced.11,12 Conversely, segregation of Pt on Ag and Au
(100) and (111) is not observed in the presence of hydrogen.13

Hence, understanding adsorbate-dopant interactions critical
for efficient catalyst design.

Another factor affecting the stability of SAAs is the aggrega-
tion of dopants. It is the thermodynamic tendency to form a
single dopant on the surface, as opposed to ensembles (such
as dimers, trimers, or islands), which is described by the
aggregation energy (Eagg).

11,12 Dopants that avoid aggregation
in SAAs and form well-defined active sites can prevent the for-
mation of coking. For instance, in the case of PtCu SAA, the Pt
active site is responsible for activating C–H bond, while the Cu
host metal facilitates the C–C coupling.14 Li et al. found that
dispersed atoms enhanced the charge redistribution on the
surface, thereby improving the catalytic performance in CO2 to
methanol conversion.15 Conversely, SAAs can show poor cata-
lytic performance compared to nanostructures where the
dopants form ensembles on the catalyst surface. For example,
the activation barrier for O2 dissociation on Pd ensembles is
significantly lower, whereas achieving O2 dissociation is chal-
lenging in the presence of isolated active sites.16 Therefore,
understanding the aggregation behavior in SAAs is critical in
determining their catalytic application.

Methods such as Density Functional Theory (DFT)10–12,17

and tight-binding18,19 are implemented to gain insight into
the segregation behavior of non-ligated (absence of adsorbates)
and ligated (presence of adsorbates) SAAs. Given the compu-
tational cost of DFT and the need for accelerated materials dis-
covery, alternative approaches should be considered for accu-
rately (and rapidly) screening through the vast materials space
of SAAs. There is a growing interest in applying machine learn-
ing (ML) to understand the physicochemical properties that
drive segregation and aggregation in SAAs. Recently, Salem
et al. developed a 2nd order polynomial kernel ridge regression
(KRR) model to predict segregation energy (Eseg) of the non-
ligated (111), (100), (110), and (210) surfaces on platinum-
group metal-based SAAs.20 The model includes tabulated fea-
tures, including terms inspired by the Bond-Centric Model,21

such as the ratio of the difference in bulk cohesive energy to

the coordination number of the dopant (ΔCEbulk/CN). Other
incorporated tabulated features encompass the atomic radius
of the dopant, the electronegativity of the host, and disparities
in electron affinity and first ionization potential of the dopant.
Although the model was trained using DFT on periodic sur-
faces, it successfully captured trends in Eseg for nanoparticles,
demonstrating robust generalization across various material
scales. To extend this study and understand the effect of com-
monly used ligands in colloidal nanoparticle synthesis on the
segregation behavior, DFT and ML was implemented to
develop an accurate neural network model to predict Eseg on
(111) and (100) surfaces of d8 (Ni, Pd, Pt) and d9 (Ag, Au, Cu)
metals.22 These ML-based models revealed the physics under-
lying the segregation behavior in SAAs in non-ligated and
ligated systems, allowing for rapid and efficient screening of
different SAA systems.

Similar methods can also be applied to investigate the
aggregation behavior of non-ligated SAAs, in addition to
Monte Carlo simulations.11,12,23,24 ML techniques have been
implemented to build an understanding on the effect of adsor-
bates (and their absence) on the aggregation behavior. Rao
et al. leveraged ML to predict the formation energy (i.e., stabi-
lity) of different SAAs with surface, subsurface, dimer, and
adatom dopants on multiple surfaces such as FCC (111), BCC
(110), and HCP (0001).25 Another study carried by Lu and co-
workers developed Gaussian process regression model to
predict the Eagg in Cu(111)-based SAAs in the absence and
presence of oxygen.26 Although these models were able to
capture Eagg trends, current studies are limited to commonly
used catalytic adsorbates such as CO, O, and H.

In this work, we first unravel what drives aggregation in
non-ligated SAA systems using DFT. Next, we aim to under-
stand how the presence of commonly used thiol and amine
ligands in colloidal nanoparticle synthesis, R-S and R-NH,
affects the aggregation behavior in SAAs. Additionally, the
latter, radical amines (R-NH), are found as reaction inter-
mediates on SAA surfaces in reactions such as ammonia
dehydrogenation27 and ammonia formation from dinitro-
gen.28 In both the non-ligated and ligated metal surfaces, we
investigate the formation of dopant dimers and trimers.
Specifically, we focused on the effect of H3C-NH (binding in
a bridge adsorption configuration) on dopant dimer for-
mation and H3C-S (binding in a hollow adsorption configur-
ation) on dopant trimer formation. This analysis includes
metal combinations of Ag, Au, Cu, Ni, Pd, and Pt (36
different metal combinations) on low-index surfaces such as
(100) and (111). Although Eagg provides useful thermo-
dynamic trends, the final structural characteristics of the
dopants, including the ensembles they form and dopant seg-
regation, will ultimately be determined by minimizing the
Gibbs free energy of the system in the presence of
adsorbates.23,29 Lastly, we applied ML to develop a model
that captures Eagg in non-ligated and ligated systems across
different metal combinations and facets. This work, in
addition to demonstrating a method for accelerated predic-
tion of thermodynamically stable colloidal SAAs, it reveals
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the physicochemical parameters that control metal
aggregation.

Methodology
Density functional theory

DFT calculations on non-ligated and ligated slabs were per-
formed using CP2K.30 The PBE functional31 was used in con-
junction with Grimme’s D3 dispersion correction.31 Goedecker,
Teter, and Hutter (GTH) pseudopotentials32 were used with
DZVP (double-zeta valence polarized) basis set at 600-Rydberg
cutoff.33 Spin polarization was implemented in all calculations,
as considering magnetic effects is crucial for accurately captur-
ing the thermodynamic stability of SAAs, as shown in previous
work.10,34 Self-consistent field cycles were performed with a
convergence criterion of 10−7 Ha. Geometry relaxations were
performed using the Broyden–Fletcher–Goldfarb–Shanno mini-
mization algorithm until the forces converged to 4.0 × 10−4 Ha
Bohr−1. We use a 6 × 6 × 6 cell to model the (111) and (100)
surface. We allow the first three layers to relax, while fixing the
bottom three layers. Metal combinations of d8 (Ni, Pd, Pt) and
d9 (Ag, Au, Cu) are considered in this study. Additionally, the
adsorbates H3C-NH and H3C-S are used. For the non-ligated
surface, we investigated ensembles of dimers and trimers,
while for the ligated systems, we investigated the dimers for
H3C-NH and trimers for H3C-S, due to the bridge and hollow
adsorption configuration of the amine and thiol, respectively.
Our study included a total of 240 different systems. To compute
the Eagg of non-ligated systems11 with a cluster of n dopant
atoms (Etot(n)) with respect to the pure host material
(Etot(host)), and the SAA (Etot(SAA)), we use eqn (1):

Eagg ¼ EtotðnÞ þ ðn� 1ÞEtotðhostÞ – nEtotðSAAÞ: ð1Þ
The equivalent structures for different facets and adsor-

bates are shown in Fig. 1 and S1(a–c).† Based on this formu-
lation, Eagg < 0 indicates that the dopant atoms prefer to form

aggregates (dimers or trimers) on the surface, while Eagg > 0,
SAAs.11,12

The adsorbate-induced aggregation energy (Em�ads
agg ) is calcu-

lated using eqn (2).11,12 The most stable configuration was con-
sidered in this study, i.e. hollow-site for the thiolate ligand and
bridge site for the amine, as illustrated in Fig. 1 and S1(d–f ).†

Em�ads
agg ¼EaggðnÞ � ðmESAA

ads ðadsorbateÞ
� En�mer

ads ðm adsorbateÞÞ
ð2Þ

where Eagg is the aggregation energy under vacuum conditions,
m is the number of adsorbates (in our work, m = 1), and ESAAads

and En�mer
ads are the adsorption energies of the adsorbates on

the isolated dopant in the SAA and n-mer dopant island,
respectively.

Machine learning implementation

We used ML to develop an accurate Eagg model. Similar to our
previous work, we use tabulated elemental features35 such as
the radius, coordination number, first ionization potential,
and electron affinity, along with the binding energy of the
adsorbate on a single atom and bulk cohesive energy
(Table S1†). A full list of the features (Table S2†) used can be
found in section 2 of the ESI.† We specifically picked these
descriptors as they have appeared in our Eseg models.20,22

These features capture structural effects, electronic effects, as
well as thermodynamic stability. In each of these features, we
consider the host property, dopant property, and the difference
between the host and dopant property. As a result of taking
the difference, negative values are possible. For instance, if the
dopant has a larger radius than the host metal, then the
change in the radii would be a negative value. The features
were standardized by transforming the inputs in a manner
that the distribution has a mean of 0 and a standard deviation
of 1, ensuring equal contribution of the different features. We
use 85/15% train/test split and apply 5-fold Cross Validation to
obtain the train and validation errors for the entire dataset
(240 datapoints). For the non-ligated systems, we use Leave-

Fig. 1 Top view of the (111) surface of the metal host with (a) a single dopant (SAA), (b) a dopant dimer, (c) a dopant trimer, (d) a H3C-NH bridge
adsorption on SAA, (e) a H3C-NH bridge adsorption on the dopant dimer, and (f) a H3C-S hollow adsorption on the dopant trimer.
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One-Out Cross Validation. Additionally, we evaluate the accu-
racy of the test (unseen) data using mean absolute error (MAE)
and root mean squared error (RMSE) (eqn (3) and (4), respect-
ively). To select the features for the ML models, we employ
variable importance36 plot based on the random forest
regression. This aids in determining which features contribute
more to predicting Eagg in both the ligated and non-ligated sur-
faces. Next, we tune the hyperparameters present in KRR (2nd

order polynomial, radial basis function (RBF), laplacian),37

support vector regressor (SVR: 2nd and 3rd order polynomial
and RBF),38 LASSO,39 and linear regression (OLS) using
GridSearchCV40 by minimizing the MAE of the validation data
set in Scikit-Learn Python package.41 To ensure that the model
is not over-fitting, we applied bootstrapping.

MAE ¼ 1
x

Xx
i¼1

jyi � byij ð3Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
x

Xx
i¼1

ðbyi � yiÞ2
s

ð4Þ

In eqn (3) and (4), y is the actual output value, ŷ is the pre-
dicted output value, and x is the total number of data points.

Results and discussion
DFT calculated aggregation trends of non-ligated systems

In this analysis, we investigate the effect of the coordination
environment on the Eagg as a function of the number of
dopants (dimers vs. trimers). In the dimer cases, we find that
regardless of the host and dopant combination (i.e., d8hostd

8
dopant,

d9
hostd

9
dopant, d

9
hostd

8
dopant, d

8
hostd

9
dopant), the SAA phase is

majorly favored as denoted by the positive sign in most of

the data presented in Fig. 2a. However, we do find cases where
dimer formation is favored, these include, Pt(100)-based
systems, Cu doped on Ni(111)/(100), Ni and Pt doped on Ag
(111), Ni doped on Cu(111) and Pt doped on Au(111) (Fig. 2a).
Focusing on how the coordination environment influences
Eagg ((100) facet corresponds to coordination number 8, while
the (111) facet represents coordination number 9), we observe
that both facets follow similar Eagg trends (almost parallel
lines) in each metal host.

Additionally, we find that the (100) results in more positive
Eagg values compared to the (111) facet in the d9

hostd
8
dopant

combination, as denoted by the red line in Fig. 2a. Notably, in
the Pt host, the (100) facet displays opposite Eagg trends com-
pared to the (111) facet. This is because Pt has a relatively
higher surface energy compared to other metals,42,43 particu-
larly on the less stable (100) facet, making it more prone to
aggregation when dopants are introduced. Overall, the impact
of the coordination environment on dimer formation is not
significant (all within ∼0.1 eV change). This could be because
the difference in coordination environment, going from 8 to 9,
is not large enough to cause changes in Eagg behavior.

Moving on to the trimer cases, there is a wide Eagg range,
and the effect of the coordination number becomes more pro-
minent compared to the dimer cases (as illustrated in Fig. 2b).
The (111) facet generally results in more negative Eagg values
compared to the (100), indicating that the formation of trimers
is thermodynamically more favored on the (111) facet. This
could be due to the more compact alignment of the trimers on
the (111) facet, where they form an isosceles triangle, com-
pared to the (100) facet, where they form an orthogonal tri-
angle, resulting in a more negative Eagg for the (111) case. For
example, Ni(111)Cutrimer produced an Eagg of ∼−0.1 eV, while
Ni(100)Cutrimer resulted in an Eagg of −0.002 eV. The exception
is the Pt host, where, similar to the dimer cases, trimers are

Fig. 2 Eagg for the formation of (a) dimers and (b) trimers relative to SAAs in d8 and d9 metal combinations. Blue and red colors represent the (111)
and (100) facets, respectively. Circle and star markers represent the dimers and trimers, respectively. A positive Eagg indicates a preference for
forming SAAs, while a negative Eagg suggests that aggregates (dimers/trimers) are favored.
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also more favored on the (100) facet compared to the (111)
facet. The cases of favorable trimer aggregation involve Ni and
Pt doped on Ag(111), Pt doped on Au(111), Cu doped on
Ni(111) and Ni(100), Ni doped on Cu(111), Ag and Au doped
on Pt(111), Pt doped on Pd(100), and Pt(100)-based systems.
We find that in most of the Pt and Ni dopant cases, they tend
to be more stable as ensembles compared to SAA, as Pt–Pt and
Ni–Ni bonds are particularly strong, with bond dissociation
energies of 3.93 eV and 4.33 eV, respectively. These metals are
also the ones with the highest cohesion among the ones
studied. As a result, these bonds are harder to break compared
to other metals, making cluster formation more favorable.

Both trimer and dimer cases showed relatively similar
aggregation behavior between the (100) and (111). However,
when comparing the values obtained from the dimer and
trimer cases, trimer formation proves to be more stable, as
indicated by the more negative Eagg values. For instance, Ag
(111)Nitrimer resulted in an Eagg of −0.192 eV, whereas Ag(111)
Nidimer gave −0.045 eV. Similarly, for the (100) facet, although
the Eagg of trimers is more negative, the difference is not as
pronounced. For example, Pt(100)Agtrimer yielded an Eagg of
−0.154 eV, while dimer formation led to −0.106 eV. Overall,
dopant trimer formation is more stable than dimers.

Eagg model in non-ligated systems

We applied ML techniques to develop an understanding of
what drives aggregation in non-ligated systems. To achieve
this, we conducted a variable importance analysis using the
data from Fig. 2. Our findings revealed that there are two top
features playing a crucial role in capturing Eagg trends. These
key features are the change in the radii of the metals and a
combined term, which is the difference in the bulk cohesive
energy of the host and dopant multiplied by the change in the
number of the dopants, divided by the coordination number
of the dopant (ΔnCEbulk/CN). The change in the radius is
instrumental in capturing strain effects, while the second term
represents the stability of SAAs and considers the different
facets as well as the number of dopants on the surface. These
findings align with our previous analysis on metal segregation
on SAAs,20,22 emphasizing the significance of these features in
understanding the stability in SAAs, captured in both Eseg and
Eagg. We have previously developed two Eseg models: (1) non-
ligated SAA systems20 and (2) ligated SAA systems.22 The
ΔCEbulk/CN, radius of the metals, and electron affinity are
common features in both Eseg models. The ΔnCEbulk/CN was
inspired from the ΔCEbulk/CN used in the previous Eseg
models. Furthermore, the main difference between the two
features is the Δn term. Based on the Farsi and Deskins Eseg
equation,10 the systems involved in the DFT Eseg are the host
and SAA based systems; thus, applying the Δn term would just
be 1, since the dopants present in the pure host systems are 0
and the dopant in the SAA is 1 (1–0 = 1); hence, the ΔnCEbulk/
CN is essentially the same as the ΔCEbulk/CN. Additionally, in
our DFT Eagg calculations, the SAA system was used as a refer-
ence. For consistency, we take our reference to be the SAA
(single dopant) in the ΔnCEbulk/CN term; hence, the Δn was

incorporated. We then utilized these two features (Δr and
ΔnCEbulk/CN) in various ML models (SVR (2nd and 3rd order
polynomial and RBF), KRR (2nd order polynomial, RBF, and
laplacian), LASSO, and OLS) and tuned their respective hyper-
parameters accordingly (Table S3†). We found that a second
order polynomial KRR Eagg model (Fig. S2 and Table S4†) out-
performed all other models, resulting in a test MAE of 0.084
eV and a RMSE of 0.112 eV.

We then aim to determine the regions where dopant aggre-
gation is expected. Before doing so, we need to investigate how
the same two features impact dopant segregation in non-
ligated systems since the dopant must reside on the surface of
a SAA for any catalytic (and beyond) application. A stable SAA
is quantified by having a negative Eseg and positive Eagg. Our
findings indicate that dopant segregation occurs (indicated by
negative Eseg) under the conditions where Δr* < 0.9 and
ΔnCEbulk/CN* < 0, displayed as green points in Fig. S3a,† while
data outside these conditions represent the anti-segregation
behavior (red points). However, we note that there is a discre-
pancy in the Au(100)Ag case where the criteria predicts that
the dopant will segregate, contrary to our DFT Eseg calculations
(all DFT Eseg data used in this analysis are obtained from a pre-
vious work of our lab at the same level of theory22). Based on
the criteria, the dopants in Ni(111)Ptdopant and Pt(100)Cudopant
will not segregate, while DFT Eseg findings point at a mildly
exothermic SAA phase-preference, as shown in Fig. S3† (Eseg
DFT values for these cases are −0.060 and −0.037 eV, respect-
ively). This discrepancy could be attributed to the charge trans-
fer (captured through the ΔEA term) occurring between the
host and dopant metals that is missing in the criteria (incor-
porated later on), which is another feature that is critical in
describing surface segregation in SAAs.20,22

Next, we filtered our results based on the Eseg criteria,
focusing only on cases where segregation occurred, as indi-

Fig. 3 Variable importance based on random forest regression on the
non-ligated systems. Asterisks indicate that the features are
standardized.
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cated by the green points in Fig. S3.† The main aim is to ident-
ify the conditions (Δr* and ΔnCEbulk/CN*) under which aggre-
gation happens (and should be avoided to form SAAs) among
points that ensure segregation (i.e. presence of dopant on the
surface). In the Eagg data shown in Fig. 4a, we marked the
metal combinations in black to denote systems where segre-
gation did not occur and thus not considered. We established
that dopant aggregation (blue points) is likely to happen when
Δr* > 0 and ΔnCEbulk/CN* < −0.55, illustrated in Fig. 4b. We
also utilized the Eagg model to predict the Eagg in non-ligated
systems and applied the criteria (Δr* > 0 and ΔnCEbulk/CN* <
−0.55) to identify cases where aggregation will occur, illus-
trated in Fig. S4† and showed similar trends as Fig. 4b. When
Δr* > 0, it indicates that the atomic radius of the dopant is
smaller than that of the host metal. A smaller dopant size
allows the dopant to fit more comfortably within the host bulk
structure, which affects atomic interactions. Additionally,
when ΔnCEbulk/CN < −0.55, it suggests stronger interactions
between the dopant and the host atoms. This is due to a more
negative change in bulk cohesive energy, amplified by the
number of dopants on the surface relative to the coordination
number, implying that stronger bonding interactions facilitate
the formation of aggregates.

Comparing these findings to DFT Eseg and Eagg data
directly, we observed that the specified criteria accurately
capture the DFT data trends, shown in Fig. 4. However,
there were exceptions with Pd(100)Agdopant/dimer, Pt(111)
Audopant/dimer, and Pt(111)Pddopant/trimer where the criteria
suggested dopant segregation and aggregation, while the DFT
Eseg and Eagg revealed that the dopant will segregate but has a
mild tendency to form a SAA phase instead. Through this ana-
lysis, we introduce a more robust approach to identify the

different behaviors (anti-segregation vs. segregation and aggre-
gates vs. SAA). Furthermore, we found that these conditions
effectively capture the overall stability of non-ligated systems in
SAAs.

DFT calculated aggregation trends in ligated systems: H3C-NH

In this analysis, we examined the influence of H3C-NH on Eagg.
Fig. 5a and b reveal that both (100) and (111) facets exhibit
similar Eagg trends across different host metals. Interestingly,
Ag- and Au-based host metals exhibit similar aggregation
trends with varying dopant. On the other hand, Ag- and Au-
metal dopants prefer to form SAAs compared to other
dopants, regardless of the metal host and facet. Notably, the
formation of the SAA phase is more thermodynamically favor-
able relative to the dimer phase when d8-host metals are
doped with d9 metals in the presence of H3C-NH, irrespective
of the facet. In these cases, the introduction of H3C-NH pro-
duced more positive Eagg compared to the non-ligated systems.
This effect is more pronounced when transitioning from (100)
to (111) facets. Prior to the introduction of the adsorbate,
almost all the cases favored the SAA phase. However, upon the
addition of H3C-NH, there is a shift from the SAA phase to
aggregation (11 cases for the (111) and 12 cases for the (100)
facet). This is because H3C-NH interacts strongly with the
dopants (Table S5†) and forms a bridge site on the dopant
atoms, making them more susceptible to aggregation. It is
important to note that the large Eagg(111) values stem from the
configuration changes that occurred in the adsorbate-XNi
(where X is the dopant and Ni is the host) during geometry
optimization calculations. In these instances, the adsorbate-
host bond is stronger than the adsorbate-dopant bond,
leading to a new configuration. As a result, during geometry

Fig. 4 3D plot of the DFT Eagg versus the top two features (Δr* and ΔnCEbulk
CN *). In (a), data points are colored based on the actual DFT energetics

(negative Eseg and positive Eagg refers to formation of SAA), while in (b) datapoints are colored based on the criteria of Δr* > 0 and ΔnCEbulk/CN* <
−0.55 (excluding the black points from (a)). The blue points refer to the formation of aggregates (dimer and trimer clusters), green points represent
the SAA phase, and black points correspond to anti-segregation behavior based on Fig. S3.†
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optimization, the bond between the adsorbate and the dopant
breaks, and the adsorbate forms a bond with the host metal
instead. In this analysis, we find that this has occurred in Ni
(111)Ag, Pt(111)Ag, and Pt(111)Au cases, illustrated in
Fig. S5a.† Moreover, the new configuration occurred in the
SAA case. In the optimized dopant dimer surface calculation
in the presence of H3C-NH, the ligand does not move away,
but rather forms two bonds with the two metal dopants. This
explains why we still observe changes in aggregation behavior
between the non-ligated and ligated systems.

DFT calculated aggregation trends in ligated systems: H3C-S

Moving on to the second adsorbate, methylthiolate, we
compare the trends across the different facets and metal com-
binations. Similar to the H3C-NH case, both facets exhibit
similar Eagg trends across the different host metals. Across
both facets, we observe that when d9 metals are doped onto d8

metals, they tend to prefer the SAA phase rather than forming
trimers, as shown in Fig. 6. As a dopant, Ni has greater ten-
dency to form trimers. This could trace back to the strong
binding strength between Ni (dopant) and the methylthiolate

Fig. 5 Eagg for the formation of dimers in non-ligated and ligated systems on (a) (100) and (b) (111) surfaces relative to SAAs in d8 and d9 metal com-
bination. Blue and red colors represent the (111) and (100) facets in non-ligated systems, respectively, while green represents the systems in the pres-
ence of H3C-NH. A positive Eagg indicates a preference for forming SAAs, while a negative Eagg suggests that dimers are favored. Asterisks represent
the systems that formed a new configuration during geometry optimization.

Fig. 6 Eagg for the formation of trimers in non-ligated and ligated systems in (a) (100) and (b) (111) relative to SAAs in d8 and d9 metal combination.
Blue and red colors represent the (111) and (100) facets in non-ligated systems, respectively, while green represents the systems in the presence of
H3C-S. A positive Eagg indicates a preference for forming SAAs, while a negative Eagg suggests that trimers are favored. Asterisks represent the
systems that formed a new configuration during geometry optimization.
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relative to the other metals (except Pt, they have similar
binding energies), as demonstrated in Table S6.† When com-
paring the two facets, (111) displays a broader range of Eagg
values compared to the (100) and generally has a larger Eagg in
the presence of H3C-NH compared to the non-ligated case.
Similar to the H3C-NH case, due to the formation of a new con-
figuration during geometry optimization (shown in Fig. S5b†),
we find a wide Eagg range arising in a few thiolate cases.
These cases include Ni(111)Ag, Ni(111)Au, Ni(111)Pd, Pd(111)
Ag, Pd(111)Au, and Cu(111)Ag. Within these metal combi-
nations, the largest deviation in the Eagg in the presence of
methylthiolate appears for Ni-host systems (Ni(111)Ag, Ni(111)
Au, Ni(111)Pd) and less for the others (Pd(111)Ag, Pd(111)Au,
and Cu(111)Ag), making a pronounced impact on the Eagg.
This is because the methylthiolate binds strongly to Ni
(Table S6†) driving this configurational change. Furthermore,
analyzing the difference in binding energies of single atoms to
methylthiolate between the host and dopant metals reveals
that Ni shows in the largest difference (Ni(111)Ag = ∼−1.63 eV,
while Cu(111)Ag = ∼−0.617 eV), highlighting the strong inter-
action between the Ni and methylthiolate compared to other
metals. Additionally, we found that only 7 cases led to aggrega-
tion in pristine (100), whereas 12 cases exhibited aggregation
in the presence of H3C-S. As for the (111) facet, 7 cases led to
aggregation in the absence of the adsorbate, while the pres-
ence of H3C-S resulted in 13 aggregation cases. We further
emphasize that the adsorption energies between the dopant
and host dictates the aggregation behavior in ligated SAAs, as
illustrated in Fig. S9.† Therefore, our analysis suggests that the
presence of H3C-S promotes aggregation due to the strong
interaction of thiolate with metals, which traps the dopants as
aggregates.

Generalized Eagg model development

We have combined all 240 DFT-calculated Eagg data points,
covering non-ligated (dimers and trimers) and ligated systems
(H3C-NH forming dimers and H3C-S forming trimers). We aim
to develop an accurate and unbiased model (including cases
where the ligand moved away from the dopant) that captures
Eagg trends across various metal combinations, facets, and
adsorbates. ML models like the one developed here, have the
potential to significantly accelerate materials discovery while
revealing the physics governing aggregation on bimetallic
structures. To identify the top features for predicting Eagg, we
employed variable importance analysis. Based on Fig. 7, the
top four features include the difference in the bulk cohesive
energy of the host and dopant times the change in the number
of dopants divided by the coordination number of the dopant
(ΔnCEbulk/CN), the difference in the binding energy of the
adsorbate on a single atom of the host and dopant, divided by
the coordination number of the adsorbate on the surface
(ΔBE/CNads), the difference in the electron affinity of the
host and dopant (ΔEA), and the difference in the radius of the
host and dopant (Δr). We stopped at the fourth feature, as the
fifth and third feature correlate highly with each other
(Pearson correlation coefficient of 0.78, as shown in Fig. S6†).

It is noteworthy that two of these features were used in our pre-
vious analysis of the non-ligated systems (Fig. 3), proving
their significance in capturing the stability of SAAs. The com-
plete dataset used in this study, along with the features, is
available on our GitHub (https://github.com/mpourmpakis/
EaggModel).

We then tuned the hyperparameters in the models and
assessed their performance, shown in Tables S7 and S8.†
Furthermore, we compared different models to identify the
one with the lowest validation MAE and the smallest difference
between validation and training MAE (Table S8†). We found
that LASSO, OLS, SVR (2nd and 3rd order polynomial), and
KRR (2nd order polynomial) produced higher validation MAE
compared to SVR (RBF) and KRR (Laplacian and RBF).
Additionally, SVR (RBF) showed the smallest difference
between validation and training MAE, indicating that it is the
top-performing model. Our results show that SVR (RBF)
achieved a test MAE of 0.161 eV and an RMSE of 0.239 eV
(illustrated in Fig. 8 and Fig. S7†). Additionally, the model con-
sistently produced similar MAEs across the training, vali-
dation, and test datasets (Table S8†). We conducted bootstrap-
ping over 100 iterations, obtaining comparable MAEs across
the different datasets (displayed in Fig. S8†), indicating that
the model is not over-fitting. Even in cases involving H3C-S
(denoted by blue edge color), where larger deviations were
observed, our model effectively captured aggregation behavior,
reaffirming its significance. We do note that ML models
struggle with extrapolation,44 so while it is possible to test
them on different ligands or metals, additional training with
new data will likely be necessary.

To further affirm the reliability of the model’s predictions,
we assess its performance by comparing it to 7 experimental
observations, as demonstrated in Table S9.† We specifically
compare the thermodynamic tendency of aggregation (Eagg) to
what final structures (e.g. SAAs or aggregates) have been

Fig. 7 Variable importance based on random forest regression on the
non-ligated and ligated systems. Asterisks indicate that the features are
standardized.
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observed in experiments. The experimental studies include
PtAu-thiol,45 AuPt-thiol,45 CuNi-thiol,46 PdAu,47 CuPd,48

AuCu,49 and AuPd.47 Our findings reveal that the model accu-
rately reproduces the experimental observations of the 7 SAA
cases. This experimental validation underscores the consider-
able potential of our model, enabling accelerated screening
across diverse SAAs in the presence and absence of ligands. It
is worth highlighting that our model stands out by utilizing
features that capture Eagg behavior in the presence of various
adsorbates (with different binding groups and adsorption con-
figurations) and different metal combinations, demonstrating
its versatility.

The importance of this model is mainly attributed to the
features used. Each of these features represent a critical factor
in capturing the underlying physics dictating the stability (in
terms of aggregation) in SAAs. The first term, ΔBE/CNads,
describes the adsorbate binding affinity to the metals and the
corresponding adsorption configuration (i.e. how many
bonds the ligands form with the surface). The second term,
ΔnCEbulk/CN, represents the cohesion of SAAs, while
taking into consideration the coordination number of the facet
and the number of dopants. This term is derived from the
BCM, which was previously found to accurately capture
the stability of bimetallic nanoparticles.21 Through this, the
model can distinguish between SAA or dopant ensembles and
the facet type. The third term, ΔEA, quantifies the
charge transfer between the metal host and dopant. Lastly, the
final term, Δr, captures strain effects. We would like to note
that these four features were also instrumental in our previous
work on Eseg in the presence of adsorbates.22 Additionally,
three of these features (r, ΔCEbulk/CN, ΔEA) were also
top contributors to segregation behavior of SAAs in the
absence of adsorbates.20 This proves how critical these features
are in describing SAA in the absence and presence of
adsorbates.

Conclusions

In this work, we investigated the aggregation energy behavior
(Eagg) of d

8 (Ni, Pd, Pt) and d9 (Ag, Au, Cu)-based SAAs in the
absence and presence of adsorbates (H3C-NH and H3C-S), con-
sidering different low-index facets, different ligand adsorption
configurations, and dopant dimer and trimer aggregates.
Furthermore, we compared the non-ligated SAAs to the dopant
dimers and trimers formed in the presence of H3C-NH (bridge
binding configuration) and H3C-S (hollow binding configur-
ation) ligands. We found that, regardless of the facet, similar
Eagg trends were observed across different metal combinations,
with the Pt-host showing a stronger preference for aggregation
on the (100) facet compared to the (111) facet. In the absence
of adsorbates, the formation of SAA is more thermo-
dynamically stable compared to dimers. Furthermore, there
were more cases where the formation of trimers was more
favorable compared to the dimers in the absence of ligands.
We then employed ML techniques to develop a robust
approach for accurately predicting the aggregation behavior of
non-ligated systems, based on the change in radius (Δr* > 0)
and change in the bulk cohesive energy divided by the coordi-
nation number (ΔnCEbulk/CN < −0.55) as our criteria. We pro-
vided specific feature values as design criteria that promote
surface segregation of the dopant and the creation of SAAs
instead of aggregates. We also investigated the effect of adsor-
bate on Eagg behavior. A wider Eagg range is observed when
adsorbates are introduced due to their adsorption configur-
ations. Due to the adsorption configuration of H3C-NH
(bridge) and H3C-S (hollow), the ligands trap the dopants in
place, promoting the formation of aggregates. As a result, an
increase in the ensemble (dimers and trimers) formation cases
was observed as opposed to the SAA cases. Finally, we collected
DFT Eagg values of the non-ligated and ligated systems and
conducted variable importance analysis. The top features
identified were ΔBE/CNads, ΔnCEbulk/CN, ΔEA, and Δr. Each of
these features represent critical driving forces that capture
Eagg: adsorbate effects, thermodynamic stability of formed
sites, charge transfer between host and dopants, as well as
strain effects. Similar features were observed from our previous
work that focused on SAA stability in terms of segregation
energy analysis.20,22 A stable SAA forms when well-dispersed
dopants (i.e., single dopants) are present on the surface,
characterized quantitively by negative Eseg and positive Eagg
values, factors that are reflected on the selected features
(which can be found tabulated) as design parameters. Our SVR
RBF model accurately captures the aggregation behavior across
the different adsorbates, metal combinations, facets and
aggregates (dimers/trimers) and our predictions were com-
pared against experimental literature demonstrating the
model’s accurate prediction performance. First-principles-
based ML models like the ones presented in this work, enable
rapid prediction of SAA stabilization in colloidal bimetallic
systems, accelerating nanomaterials discovery while guiding
experimental synthesis work.20,22

Fig. 8 Parity plot between the SVR RBF kernel predictions and DFT Eagg
of the test set (36 datapoints). Color indicates the different metal hosts,
the marker type indicates the different metal dopants, and edge color
represents the adsorbates.
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