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Conduction band photonic trapping via band gap
reversal of brookite quantum dots using
controlled graphitization for tuning a multi-
exciton photoswitchable high-performance
semiconductoryt

Sanjiv Sonkaria, (2 *@ Tae Woo Lee,” Aniket Kumar, Soo-Kyung Hwang,®
Piotr G. Jablonski®’ and Varsha Khare*?

Brookite exists as the metastable phase of titania and often mediates the transformation of anatase to
rutile. The photocatalytic competence of brookite relative to polymorphs anatase and rutile has generally
been considered structurally and energetically unfavourable for reasons that remain largely unknown and
unchallenged. However, the process of phase transformation and performance related cooperativity
among all three polymorphs has recently unlocked alternative directions for exploring brookite photovol-
taics. Here, we demonstrate the programmable re-configuration of anatase to quantum confined reduced
graphene (rGO)-brookite and show it is entirely modulated by surface-driven effects. Key components to
this mechanism suggest that the self-assembly of rGO-brookite quantum dots is defect driven through
pathways that favour a direct-to-indirect band gap reversal resulting from the graphitization of brookite.
The accompaniment of new bandgap characteristics under quantum confinement introduce new hybri-
dized energy states at the graphitic carbon—brookite juncture by modulation of the intrinsic sp? character
to extrinsic sp® clusters intermediate to graphene quantum dots (GQDs) and graphene oxide quantum
dots (GOQDs). Evidenced by the intercalation of photochromic/fluorescent carbazole and anthracene
moieties within the rGO framework by self-assembly, we show that the acquired fluorescence and
luminescence properties of rGO-brookite are multi-emissive and reversibly quenchable under light exci-
tation and from solvent polarity differences. Further, tuning the excitonic response of rGO-brookite by
modulation of the photoluminescence (PL) signal intensity signifies coordinated interaction between
localised carbazole and benz(a)anthracene moities which can undergo further structural refinement to
adapt more optimally to both internal and external energy waves. Distinguishable by a large red-shift in
the photoluminescent emission peak at 1479 nm in the NIR region, we infer that a photoelectron sink
driven by the quantum confinement of a narrow band gap of 0.78 eV formed from the orbital overlap of
unoccupied interfacial sites promotes strong e”h* coupling in the hybridized defect structure imposing a
high charge separation by hindering e"h* recombination. Modulation of interlayer spacing between rGO
sheets and the synergy of complexation between intercalated carbazole/benz(a)nthracene can be
adapted to achieve rapid photodegradation characteristics for DSSC applications.
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optimal charge transfer and recycling events. Rising interest in
the field of DSSCs since its inception in 1991° has been domi-

1 Electronic supplementary information (ESI) available. See DOI: https://doi.org/ nated by aspects of material tunability driven by cost reduction
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performance. The ability of photovoltaic devices to generate
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high photocurrents has largely been weighted against the
applicability of different semiconductor types in improving
photon adsorption which is consequential to enhancing elec-
tronic excitation. Dye adsorption at the electrode surface
however, could be a limiting factor to photocurrent enhance-
ment if charge diffusion characteristics at the semiconductor/
dye interface are hindered by physical and chemical consider-
ations. This argument can also be extended to the electrolyte
interface. Despite such concerns, material fabrication is a criti-
cal feature in determining the degree of tunability aided by
novel surface modifications arising from material hybridiz-
ations and processing routes. This opens possibilities to
explore semiconductor material phases that have been largely
ignored as potential alternatives to DSSCs.

Among the several polymorph types known to exist as var-
iants of titanium oxide,* TiO,-anatase and rutile are generally
accepted as the photocatalyst of choice over brookite for the
development of DSSC based applications. The relatively slug-
gish performance of the crystalline form of brookite is further
widened when compared to the binary performance of rutile
and anatase which is rate enhanced through a mechanistic
cooperative effect. For example, lattice matching of anatase-
TiO,/H-rutile-TiO, through optimal band alignment in the
heterophase yields high quantum efficiencies measurable by H,
evolution under UV light irradiation.” Identifiably, brookite
suffers relatively poor stability characteristics readily under-
going phase transformation to rutile and demonstrating
poorer charge transfer properties while negatively impacting
electron-hole recombination kinetics due to reduced charge
separation. Recently, these conclusions have been challenged
by reviewing the photocatalytic properties of mixed phase
investigations of anatase-brookite TiO, which were reported to
exceed the CO, photoreduction by single phase anatase or
brookite.° Enhanced photocatalytic activity has also been
observed for the mixture of anatase-brookite outperforming
anatase nanoparticles alone. In the same study, the phase
transformation of anatase-brookite to rutile showed a
dependency on brookite particles, different to the direct
transformation of anatase and brookite to rutile in the
absence of the mixture.” Such observations may be eviden-
tial of atomistic changes at the anatase-brookite interfacial
boundary enhancing key photovoltaic properties of the
hybrid TiO, nanocrystal. Surface exposure of helium to all
three polymorphs provides a model to investigate surface
induced modifications to compare the effect of defects with
defect free polymorph nanocrystals. The nature of such
defects in oxides strongly relate to oxygen vacancy and inter-
stitial® Ti** sites which are positioned between the valence
and conduction bands generating trapped electrons and
thus altering localised charge carrier characteristics.
Optoelectronic differences are associated with shifts across
high and low energy bands spanning ultraviolet, visible and
infrared regions with strong prospects for bandgap engineer-
ing.” Multiphase heterojunctions in conjunction with elec-
tron/electron hole pairs can considerably alter charge carrier
and stability characteristics of brookite.'® Brookite however,
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is not considered a viable photocatalytic material unaided
by other polymorphic forms.'*

Under conditions of low pH, the brookite phase dominates
the transformation of anatase to rutile’® favoured by acidic
conditions. A study by Lin et al."®> however proposes that broo-
kite crystals are not intrinsically inert and that the selective
exposure of faceted crystal faces can generate highly active
photoactive brookite nanocrystals under low basicity. For the
current work, we rationalised that multi-reactant mediums
comprising of specific cationic (basic) and anionic (acidic)
chemical entities may provide important opportunities to
stabilize intermediate crystalline phases of brookite under-
going phase transformation to more stable TiO, polymorphs.
The recruitment of building blocks from the surroundings
must align well to catalytically exposed surface energies of
TiO, to overcome energy barriers to drive polymer assembled
growth. One-pot synthetic processes may inherently differ
from multi-step processes in steering surface dynamics to
desired outcomes. A rarity in exploring the ‘non-classical’
route to the stabilisation of the brookite metastable phase is
allowing the thermal integration of multicomponent assem-
blies synthesised in isolation of each other using a common
reaction medium.

This approach took the investigation on a route to explore
the synergy between non-competing paths to surface polymer
assembly in a highly acidic cationic-anionic ionic liquid
(CA-IL) reaction medium induced catalytically by two indepen-
dent reactions at the interface of a (1) calcinated bulk anatase
TiO, precursor and the (2) graphene oxide phase. Under iden-
tical reaction conditions, polymer nucleation at the surface of
(1) and (2) from the interfacial interaction with CA-IL is facet
dependent and polymer selectivity is contingent on energy bar-
riers at surface exposed catalytic sites. We were interested in
examining if the process of introducing secondary polymer
nucleation sites seeded by the union of (1) and (2) was ther-
mally driven by altering the trajectory of polymer faceted
growth through pathway convergence. Secondly, whether the
cationic-anionic acidic reaction medium was effective in the
stabilisation of metastable phase of TiO, (intermediate to
anatase and rutile). Thirdly, whether controlled faceted growth
of multi-assembled structures via self assembly provide acces-
sibility to synergise oriented assembly between all components
thereby enhancing charge transfer properties.

From the perspective of bioeletrocatalytic hybrid interfaces
found in nature, dynamic changes in response to light are
often central to generating highly charge separated states to
drive charge across steep gradients. Such multi-interface bio-
transformations use light-to-chemical energy conversions
reversibly to operate photoisomerization-type switching
events'* or show capability to adapt surface exposed structures
through charge migration by using external energy sources.
This requires hybridization of diverse material interfaces to
enhance the electronic and optical properties to elicit new
functionalities. Charge migration and exchange between TiO,
photoactive centers could be enhanced through the energy
alignment of electron-proton donor-acceptor pairs close to
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the semiconductor interface. In nature, light sensitive chromo-
morphic groups and fluorescent sensitive structures act as
photosensors with the ability to undergo chemical transform-
ation through the acceptance or release of charge. The realis-
ation to acquiring more favourable photonic structures con-
trolled through self-assembly could be better guided by chemi-
cal fuels originating from precursor building blocks selected
from complex heat-driven reaction environments and more
notably, using charge separated ionic liquids driving the
assembly of charge sensitive structures. Conceptually, the non-
equilibrium nature of such supramolecular geometries'® offers
a degree of controllable programmability and energy depen-
dence directed from external sources with the possibility of
introducing new functionalities such as light sensitive
photoswitchability.

We show that the acid-base character of the CA-IL reaction
medium was strongly influential in arresting the brookite
phase of TiO, strongly hindering its transformation to rutile. A
strong synergy is observed in polymer assembly at the surface
of brookite and rGO suggesting that the forces driving polymer
self-assembly are highly influenced both by the chemical
environment and faceted growth. Our inference is supported
by the growth of anthracene during the phase transition from
anatase to brookite and secondly, the assembly of both anthra-
cene and carbazole by reduced graphene oxide (rGO) as inde-
pendent processes in CA-IL. The remarkable overlap in cata-
lytic synergy towards controlled polymerizations showed
further selectivity by complexation of brookite and rGO in sup-
pressing the faceted growth of carbazole as the dominant
structure in favour of benzanthracene. This process enabled
precision polymer synthesis for improving the charge transfer
properties of brookite. We infer that the intercalation of a low
bandgap rGO-brookite organic semiconductor complex (>1 eV)
quantum confined within a layered architecture of rGO sheets
by chemically fuelled polyaniline bridges is morphologically
important, for an efficiently designed charge transfer complex.
Further, the work provides some meaningful clue towards
the existence of non-equilibrium assemblies that are dynamic
in nature. We propose that the size of the energy barrier
for charge transfer at the rGO-carbazole and rGO-benzanthra-
cene interface is made feasible by carriers that diminish the
barrier height. The photoluminescent assisted conjugation of
monomers carbazolyl and anthracene to form carbazolyl-
phenyl-anthracene demonstrates surface adaptable behaviour
but the complexation occurs by a mechanism that remains
elusive.

Materials and methods (incomplete)
Materials

All materials and reagents were purchased from Daejung
Chemicals, Sigma-Aldrich Alfa Aesar and Merck unless otherwise
stated. 1-ethyl 1-methylpyrrolidinium Chloride (BMIMCI)
(C;H16NCl) was purchased from lolitec (Iolitec, Ionic Liquids
Technologies GmbH).
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Synthesis of calcinated TiO, anatase and brookite TiO, QDs,
reduced graphene oxide (rGO)-CA-IL and rGO-(brookite) TiO,

In step A, an anatase polymorph of titanium(iv) was used as a
precursor for the preparation of brookite quantum sized par-
ticles. In a sol gel process, 20 mL of isopropanol was added to
the titanium isopropoxide precursor (1.0 g) in the presence of
glycerol (1.0 g). The isopropanol-precursor blend was added
dropwise to a 1:1 (v/v) water-isopropanol mixture and the
mixture was added to 1-1-butyl 1-methylpyrrolidinium after
melting at 120 °C (m.p ~117 °C) for 24 h. The pH of the result-
ing mixture was adjusted by hydrochloric acid. The preparation
was continuously stirred for 1 h until a yellow transparent gel
was obtained and subsequently dried at 105 °C over a period
of several hours. After heating, a black crystal was formed.
Finally, the crystals were calcinated in air at 500 °C. In step B,
0.004 g of graphene oxide (GO) was added to 2.0 g of 1-butyl
1-methylpyrrolidinium and glycerol (1.9 g) and heated to
120 °C for 24 h. In the final step, the controlled graphitization
of TiO, was achieved by combining the formulations from step
A and step B under stirring for 24 h at R.T.

Characterisation

Wide-angle X-ray scattering (WAXS) and X-ray diffraction (XRD)
were performed using a D8 advanced XRD system from Bruker
at the National Instrumentation Center for Environmental
Management (NICEM) of Seoul National University (SNU)
(CuKa radiation for 26 ranging from —100° to +168° (WAXS)
and 10° to 85° (XRD). High resolution transmission electron
microscopy (HRTEM) images were recorded by an analytical
TEM JEM-2100F from JEOL Ltd. with a resolution of 0.10 nm
for lattice imaging and 0.23 nm for point imaging. Elemental
composition of nanostructures were measured by Energy
Dispersive X-ray Spectroscopy (EDS) attached to Field-Emission
Scanning Electron Microscope (FESEM) Supera 55VP from
CarlZeiss. X-ray photoelectron spectroscopy (XPS) (Kratos
AXIS-Hsi) and UvV-Visible (Agilent Cary 60 UV-Vis
Spectrophotometer) measurements were conducted at the
Research Institute of Advanced Materials (RIAM) of Seoul
National University. Fluorescent images were captured using a
institutionally housed Olympus FV1200 confocal microscope.

PL measurements and transient decay kinetics (FlouTime
300, PicoQuant) were performed using excitation wavelength
of 260 nm and Raman spectroscopy (LabRAM HR Evolution,
Horiba) scattering measurements were performed at RIAM.
Elemental composition was measured by Fourier Transform
Infrared Spectroscopy (FT-IR) was performed using Vertex-80V/
Hyperion2000 from Bruker instruments. Photocatalytic activity
measurements were performed under UV-vis conditions.
Samples were dissolved in 0.5 mM N719 dye solution and incu-
bated for 2 h in the dark to facilitate dye absorption.

Results and discussion

In a multicomponent synthetic process separated by a 3-stage pro-
cedure, the method initially involved the pre-treatment of TiO,

This journal is © The Royal Society of Chemistry 2025


https://doi.org/10.1039/d4nr03616f

Published on 09 November 2024. Downloaded on 1/20/2026 3:11:38 AM.

Nanoscale

A. IL— PRECURSOR

CHy”™  “(CHo)3CHy

View Article Online

Paper

‘_

' O - il ouf?
‘ Major] OR I

E; [Minr] y

[Major]

C. SURFACE FUNCTIONALIZATION OF BROOKITE

CARBAZOLE-BROOKITE

" ‘ +O0H"
= = 3
BN I W, > F
H | -0H~
by e ’j‘

Bi-directional

+ Cooperative Disassembly-Reassembly

BENZANTHRACENE-BROOKITE

CARBAZOYL-PHENYL-ANTHRACENE

S0 om0 et

Fig. 1 A schematic summary of the synthetic steps for the assembly of GO functionalised brookite quantum sized particles. The calcinated anatase
phase of the resulting structure almost entirely retained the tetragonal monocrystalline configuration of anatase (99%) with an intensely low biphasic
crystalline signal characteristic of a suppressed brookite phase (1%). (A) Exposure of calcinated TiO, to 1-ethyl 1-methylpyrrolidinium (C;H;6NCl)
comprising a highly acidic charge separated cationic—anionic reaction medium (CA-IL) at X °C initiated the transformation of the anatase phase to
brookite crystals. (B) The charge induced modification of GO at the CA-IL-GO interface drives the catalytic cyclisation of ring aromaticity at the car-
bocatalytic surface of GO leading to ‘far-equilibrium’ surface co-polymer structures (C) hierarchical thermally induced merger of brookite and
surface functionalised rGO. Solvent and photo-assisted modulation of surface polymer structure-functionality enabling mobility and transfer of

charge as an efficient photocatalyst.

anatase and graphene oxide (GO) at 120 °C in separate reactions
using the same ionic liquid composition comprising charge sep-
arated cationic and anionic ions (1-ethyl 1-methylpyrrolidinium
chloride). The approach ensured that both the anatase TiO, poly-
morph and rGO were sufficiently monophasic prior to mixing at
the same temperature under reducing conditions. Fig. 1 summar-
izes the synthetic steps designated as A, B and C.

Self-assembled stabilisation of a metastable phase of brookite
disguised within the anatase polymorph configuration

Titanium isopropoxide Ti(O-i-Pr), was used as a starting pre-
cursor at a calcination temperature of 250 °C. Following calci-
nation of the reactive isopropoxide moieties under mild
reduction, X-ray diffraction analysis showed TiO, nanoparticles

This journal is © The Royal Society of Chemistry 2025

were almost entirely monophasic consistent with a tetragonal
anatase configuration (99%) but was accompanied by a predo-
minately suppressed brookite orthorhombic as minority phase
(1%) with lattice parameters a = 5.4558 A, b = 9.1819 A, ¢ =
5.1429 A (JCPDS- 00-016-0617, space group Pcab) (Fig. 2a—d).
The disintegration of the peak intensities in the deconvoluted
form shown in the XRD profile substantiates the complete
absence of the rutile phase but strongly supports the growth of
a nanocrystalline anatase phase along the [101]. Although the
growth parameters entirely favours anatase, the thermo-
dynamic phase stability between both polymorphs is sufficient
to reveal the overlapping diffraction peaks corresponding to
interatomic d-spacing between polymorphs anatase and broo-
kite. The process of calcination underlines the notion that

Nanoscale, 2025,17, 474-494 | 477
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Fig. 2 (I) X-ray diffraction profile of (a) calcinated TiO, anatase and diffraction patterns of (b) CA-IL treated reduced graphene oxide in solvent, (c)
CA-IL treated calcinated TiO, (brookite) in the presence and absence of solvent and (d) synthetic merger of brookite and surface functionalised rGO
embedded in the solvent environment. [(Il) (a—j)] Binding energies from X-ray photoelectron spectroscopy (XPS) elemental profiles comparing TiO,
CA-IL (-rGO) and TiO, CA-IL rGO (+rGO) (brookite). Raman spectroscopy of TiO, CA-IL rGO in (k—n) in the absence and presence of ethanol in the
wavelength range of 150-3000 cm™! and fourier-transform infrared spectroscopy (FTIR) spectroscopy of (O) of TiO, CA-IL in in the absence and
presence of ethanol. (Ill) A Schematic showing precursor chemistry driving surface polymer aromatization of cyclic hydrocarbons modulated by rGO
and the chemically fuel driven assembly of benzanthracene from anthracene at the brookite surface.

phase transformation is intrinsically driven by temperature
favouring the domination of anatase or rutile in the mixed
phase.'® While rapid growth distinguishes the spontaneous
growth of lower to higher energy surfaces, it is noteworthy that
brookite shows preferential growth along the lattice plane
[111] accounting for 33% of the total surface area for predicted
morphologies.'” Phase transformation among the TiO, poly-
morphs has been reported to be size dependent in earlier
investigations and this phenomenon may be explained by
differences in thermodynamic stabilities. The particle size cal-
culated (using scherrer formula) from the major crystallo-
graphic peak corresponding to the anatase phase resides in
the range of 10-20 nm. This size range however unexpectedly
identifies well with stability range of brookite'® of the lower
energy facet [111] implying that external factors might readily
influence and favour polymorph growth of suppressed crystal-
line states over dominant phases. This may be particularly
applicable for driving the reverse transformation of anatase to
brookite which is energetically favoured by a factor of 14-fold
compared to the configuration change from brookite to rutile.
In this context, the synergy between high and low energy
facets” along the [111] direction of growth is now being
recognised as an important route to stabilise brookite'® but
continues to be a largely unexplored synthetic doorway to

478 | Nanoscale, 2025,17, 474-494

establish more easily accessible routes to acquire monophasic
brookite photocatalysts. Nevertheless, reforming the synergis-
tic relationship between active polymorphic phases by tuning
the surface energy landscape is proving to be effective in liber-
ating brookite mediated catalysis.

The exposure of calcinated TiO, from step A to a strongly
anionic—cationic ionic liquid reaction medium resulted unex-
pectedly in a near-complete monophasic phase transformation
from anatase to brookite with the stabilisation and subsequent
arrest of the orthorhombic configuration with particle size of
the order 3-12 nm (Fig. 2a). Abandonment of the anatase con-
figuration marked by the complete and unusual shift to the
brookite structure deviates from the commonly reported
anatase-brookite bi-crystalline structure.® The dramatic phase
change is likely controlled by reconfiguration of landscape
energies of exposed crystal facets at the anatase-brookite inter-
face which is strongly indicative of tuneable forces. The reverse
phase is possible by overcoming surface energy barriers at rela-
tively lower temperatures than would be expected for conver-
sion from anatase.

The crystal phase dependency evidenced here by a change
in the chemical environment under moderate heat (120 °C) eli-
citing single-crystal reversibility occurs with synergistic pre-
cision. The XRD pattern was visibly coherent with the brookite

This journal is © The Royal Society of Chemistry 2025
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phase with the loss of anatase crystallinity observed in the
absence of the CA-IL. The orthogonal to orthorhombic phase
switching however was accompanied by polymers identified as
high intensity anthracene and anthracene derivatives of lower
intensity diffraction peaks (Fig. 2 (I), 2a-d). The most intense
peak in the transformation of brookite crystals is visible at 20
of 16.5°, 25.5° with respect to planes [110] and [111]. Further,
the cross-over stability from anatase to brookite is marked
visibly by the multi-faceted alignment of particle growth along
planes [010], [100], [121], [200], [130], [025] and [102] and may
signify a closely balanced coordination of energies over a small
size distribution. The fact that brookite is abundantly stable
across broad areas of the crystalline surface likely indicates
that the structural evolution of the brookite phase is largely
occurring between the transforming particle and the CA-IL
environment.

The full width half maximum (FWHM) along [110] is signifi-
cantly diminished in comparison to [111] and the narrowing of
FWHM is indicative of sharper lattice planes and reduced stress
while peak broadening signifies reduction in the crystalline size
and increase in atomic stresses. This observation is consistent
with the decrease in particle size from 10 to 2.8 nm and growth
confinement is a direct consequence of surface functionalization
of brookite aligned along the [111] growth trajectory. We rational-
ized that the acid-base character of the charge separated cat-
ionic-anionic reaction medium was sufficiently well suited to
selectively trap the brookite polymorph phase under chemically
homogeneous conditions defying conventional routes favouring a
tetragonal configuration.

Here, peak broadening also relates to the introduction of
lattice imperfections due to interfacial stresses at defect sites
imposing growth restrictions around nucleation of brookite
particles predictably through the formation of electron-rich
structures as evidenced here. The chemical polymerization of
anthracene and its derivatives as aryl ringed structures has
strong implications as TiO,-conjugated conducting surface
polymers in semiconducting blends and will be discussed in
more detail with reference to Step C. It is noteworthy however,
that the multifaceted brookite nanostructure as a supporting
catalyst can effectively promote the hydrogenation of surface
adsorbed heteroaromatic rings comprising C=N bonds such as
pyrrolidinium (5 membered N-heterocycle) to generate fused or
bicyclic benzene rings in the form of anthracene and their poly-
cyclic variants under moderate reaction conditions. However,
XRD analysis does not provide any insight of how the assembly of
the ‘far from equilibrium’ carbocyclic rings and the role of the
Cl” ions present in the reaction medium affect the stabilisation
of brookite crystals and their growth via defect driven Ti-N or Ti-
Cl associations. The lack of profile depth among these elements
might be indicative of largely amorphous regions which are more
intimately related to unresolved and undetectable minor phases
indistinguishable from the bulk. The energy X-ray spectroscopic
(EDS) compositional map of rGO-brookite shown in Fig. S1(a)
(ESI¥) reveals the elemental pattern from distribution of carbon,
chlorine, titanium and oxygen at the brookite/rGO interface
(Fig. S1(b)—(f), ESIY).
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Graphene oxide as a multi-faceted tuneable carbocatalyst for
the co-polymerization of charge donor-acceptors

Interestingly in step B, the effect of graphitization of the pyrroli-
dinium-chloride rich IL (CA-IL) reaction medium as the second
precursor to step C is characterised by spontaneous polymer
self-assembly driven chemically by the reduction of GO to rGO
in a heat induced reaction. N-heteroaromatization at the GO-
CA-1IL interface is strongly apparent through the self-assembly of
both anthracene and carbazole at the surface of rGO. It is prob-
able that exposure of rGO to the highly acidic CI” content is
highly favourable to altering the surface potential of rGO allow-
ing the migration of charge between electron-deficient pyrrolidi-
nium-N as the acidified precursor binding to acceptor sites on
the rGO surface. The binding association between opposing
charges on the carbon support and their engagement in proton
transfer is a prerequisite to polymerisation. It is envisaged that
the surface functionalisation of the rGO surfaces via (1) aro-
matic cyclisation of the N-linked short alkyl chain moieties
extending the pyrrole ring to carbazole and (2) fusion of the
6-memebred rings to form anthracene both occur independently
as evidenced by the preferred orientation of polymer growth
from the XRD profile. The XRD profile (Fig. 2 (I) a-d) shows the
effective use of reduced graphene oxide in catalytically influen-
cing the restructuring of pyrrolidinium building blocks at the
rGO boundary and thus enabling the co-catalysis of energetically
related but divergent polycyclic polymers. The broad peaks
aligned with rGO shown in the deconvoluted XRD pattern are
indicative of high energy growth defects resulting from applied
stresses from the complex interfacial composition of the reac-
tion medium. The hybridization of extrinsic carbon and nitro-
gen bonds and their direct incorporation into the graphene
framework results in geometrical changes around the growth
polymers along the carbon network of sheets. Carbazole self
assembles as the dominant polymer along [013] and [014] with
clear evidence of anthracene as the secondary polymer with
peak intensity along [310] direction and minor growth along
[014], [025] and [231]. The FWHM of anthracene and carbazole
(Fig. 2 (I) a-d) is comparably larger compared to the FWHM of
brookite alone in the reaction medium which broadly signifies a
shift towards amorphicity or at best, a state of poor crystallinity
and narrowing of particle nucleation size. The broad nature of
rGO peak reflections at 26 of 27 °C, 40.5 °C and 44.5 °C indexed
to planes [002], [100] and [101] show an overlapping diffraction
pattern substantiating cooperative growth of the polymer at the
rGO surface. De-convolution of the WXAS profile (Fig. 2 (I) a-d)
indicates that carbazole is the dominant phase in the copolymer
system and a quantitative assessment of the relative peak areas
shows the large phase (58%) to be assigned to carbazole with
orthorhombic symmetry (S.G.-Pnam, a =7.779 A, b = 5.722 A, c =
19.15 A)** accompanied by a smaller phase (24%) specific to
monoclinic anthracene and its derivatives (@ = 8.561 A, b =
6.036 A, ¢ = 13.506 A, f = 125° a = 7.910 A, b = 6.430 A, ¢ =
23.960 A, f = 99°) while 18% is indefinable with rGO.

Step C involves the synthetic fusion of step A (brookite
stabilisation in CA-IL) and GO treated CA-IL from step
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B. Further, evidence from X-ray diffraction data (Fig. 2 (I) a-d)
revealed that the basic architecture of the pyrrolidinium cation
as the starting building block permits ring opening and under-
goes heat-induced aromatization via the short alkyl chains
coupled to reactive ring nitrogen. The geometrical change to
the pyrrolidinium structure occurs by ring addition strength-
ening the heterocyclic chemistry to carbazole. Cyclisation
around the 5-membered ring parent is strongly supported by a
core Ti-N bond character (Ti 2p; 457.93 eV) around the nitro-
gen atom of the pyrrole ring of carbazole in the absence of
rGO. Further, the magnitude of the Ti 2p BE correlates well
with the BE of N 1s (401.6 eV; 61.89%) with respective peak
intensities of Ti 2p and N 1s around 52 and 58.95% (Fig. 2 (II)
¢, h and e, j). Orbital overlap between Ti- and N- also correlates
to the formation of oxygen vacancies shown for Ti-graphene
interfaces”"?*> and driven by a substantial increase in Ti**/Ti**
ratio resulting from the bulk reduction of the isopropoxide pre-
cursor to nano and quantum states mediated by anatase. The
influence of the thermally driven nitrogen-rich cationic-
anionic reaction medium was noticeably surface directed with
the percentage atomic Ti** concentrations quantifiably around
59% (BE Ti 2p; 457.8 eV, 58.95%) (Fig. 2 (II) ¢, h). Binding
energies of the C 1s spectrum further support a pyrrole-like
framework (BE C 1s; 284.46 eV, 57.04%) (Fig. 2 (II) a and f).
The substantial C 1s peak area (~57%) is in strong agreement
with N 1s peak area (~59%) assigned to Ti-N bonding sites
confirming the expectation that the BEs of C 1s and N 1s BEs
originate from the pyrrolic ring. Pyrrole ring adsorption at
oxygen deficient Ti*" sites evidenced by Ti-N binding energies
predicts the loss of the propyl and methyl moieties from the
pyloric nitrogen that allows its chemical transformation to an
active pyrrole derivative via an unprotected nitrogen ring. The
exposure of the electron-rich heteroaromatic framework to a
high concentration of electro-deficient Ti*" vacancy sites is
consistent with the nucleophilic substitution of N-linked
hydrocarbon moieties. This configuration favours the central
pyrrole ring of carbazole directed through the interaction of
the nitrogen lone pair and TiO, heterochemistry (C,H,N-Ti).
Despite the high surface exposure of Ti*" defects embedded
within the brookite structure, the effect of combining brookite
from step A with rGO-carbazole-anthracene from step B, the
selective suppression of carbazole was observed in the XRD
profile in the mixing of A and B in the presence of rGO but not
in its absence The spectral change was accompanied by
polymer switching from anthracene to benzanthracene. The
higher order Bragg reflections in the XRD profiles highlight the
differences between TiO, CA-IL and TiO,-CA-IL-rGO indicating
the direct interaction between brookite and rGO as a key step in
the synergistic selection of an anthracene polymer derivative
while minimising carbazole to basal levels. Fluorinated ionic
liquids have been used to suppress the growth of crystalline
facets with the ability to direct the control of anatase-to-rutile
transitions with high selectivity”® by dominating the growth
suppression of [112] facet. The relationship between semi-con-
ductor electrocatalytic surfaces and their interaction with
primary and secondary modulators which (1) initially inhibit or
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divert the growth of crystallographic facets by interacting with
active sites (site 1) and further (2) a secondary modulator that is
also sensitive to catalyst surface structure (site 2) but operates as
a waste chemical fuel to drive the assembly of ‘out-of-equili-
brium’ structures. We propose that chloride-rich aqueous struc-
tures acting as chemical fuels use energy from their surround-
ings to self-assemble and influence facets via oxidation/
reduction events and thus influencing both surface polymer
growth and stoichiometric relationships among them.

Chemically fuelled synergy orchestrated at the rGO-brookite
interface for aligning surface-to-sub-surface charge transfer

A detailed examination of XPS data provides insight into the
complexity of substrate-selective catalytic processes and the
structural and functional relationships between spectroscopi-
cally detectable chemical structures that result from those
events from chemical building blocks. A major clue to the
origin of co-assembled heterocyclic and non-heterocyclic struc-
tures comes from the identity of a photo-excitable dichloro-
dicyano benzoquinone (DDQ) derivative (scheme, Fig. 2 (III))
which is coupled to N 1s BEs of 399.3 and 399.5 eV (Fig. 2 (II)
e and j) irrespective of the presence of GO. The quinone func-
tional group is also supported by Raman peak at 1660 cm™*
(Fig. 2 (I) k-n) and a slightly shifted peak at 2978 cm™" corres-
ponding to 2,3-dichloro-5,6-dicyano-1,4-benzoquinone reveal-
ing the cyano (1994-2164 cm™) and chloro (550-794 cm™)
pendant groups of benzoquinone in TiO, decorated rGO. The
importance of DDQ to its role in steering the facet-controlled
growth between copolymers carbazole and anthracene is
strongly evident in the brookite/GO copolymer mix. (Further
discussions are provided as supplementary text for this
section). The wide-angle X-ray scattering (WAXS) profile shown
in (Fig. 2 (I) a-d) depicts the nature of the interplay between
polymer suppression and growth modulation by addition of
polymer bound rGO from step B. Here, in the presence of
ethanol as the polar solvent, the diffracted intensity of carba-
zole is sharply reduced to 15% (4.8-fold decrease) while the
anthracene peak modified to benzanthracene increases to 29%
(1.2-fold decrease) in the presence of rGO and brookite (51%).
We assert that access to controllable polymer conversion at the
rGO-brookite interface is mediated by the high reduction
potential of quinone. This is afforded by interchangeable oxi-
dation states allowing the transfer of charge for dehydrogena-
tive and oxidative couplings and aromatization or cyclisation
of C-H, C-C, C-O and C-N bonds at electron-rich sites. The
suppression in the diffraction peak of carbazole occurs
through its modification to the donor-acceptor 9-vinyl(-9H-car-
bazole)-tetrachloro, 1,2 benzoquinone [(-CH(CH;,HgN)CH,)],
(OC6CL,0) (scheme, Fig. 2 (III)) is evidenced by the slightly
higher N 1s BE of 401.6 and 401.5 eV relative to unmodified
carbazole with BEs 400.6 eV (-rGO) and 400.5 eV (+rGO)
(Fig. 2 (II) e and j) accompanied by a variable degree of ring
chlorination (x = 2 or 4) by atleast 2-fold as observable from
weak Raman signal. Hence, a facet dependent selectivity
favouring benzanthracene over carbazole is strongly observed
at the rGO-brookite interface. DDQ assisted vinylation of car-
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bazole is also noticeable, introducing the potential for further
reactivity and possible aromatization of the monomer. In the
presence of strong oxidants, the transition from sp® to sp’
hybridization of GO occurs by the loss of oxygen at C-O sites>*
and this finding is corroborated by the spectral decrease of C-
O bond vibrations in TiO, decorated rGO shown by the Raman
bands in the range 889-1017 cm ™" peaking at 975 em™" (Fig. 2
(I) k-n) by atleast 2-fold as observable from weak Raman
signal. The formation of new electron-rich C-H bonds [=CH,
and CH=CH] more strongly identifiable from the Raman
peaks (550-794 cm™') (Fig. 2 (1) k-n) and subsequent release
of CO (BE; C 1s 282.69 €V) (Fig. 2 (II) a and f) and an increased
water peak around 1652 cm™ " in the presence of GO in the
FT-IR peak (Fig. 2 (II), O) which may to some extent be com-
plexed as acidified water nH,O-Cl (BE; Cl 2p 198.1 eV) (Fig. 2
(I) T and j). In view of the evidence demonstrating that
polymer assembly is surface directed, the localised conversion
of polymers occurring at polymer/rGO junctions in the pres-
ence of self-assembled DDQ oxidants is more inclined to be
driven by C-C bond rotation and H migration via hole
defects®® permitting surface rearrangement. The catalytic
transformation of anthracene to benz(a)ntharcene agrees well
the cyclohydrogenation of the GO surface with elimination of
two hydrogens [-2H] which may assist in the ring aromatiza-
tion of anthracene to benz(a)ntharcene (scheme, Fig. 2 (III))
via C-C ring coupling in a polar solvent environment. An inter-
mediary clue to the possible fate of 9-vinyl(-9H-carbazole)-tetra-
chloro, 1,2 benzoquinone (Fig. 2 (IIT)) is the complete loss of
the N 1s BE around 401.6 eV (Fig. 2 (II) e and j) at the rGO/
brookite interface favouring the formation of polyaniline
identified from the N 1s BE of 402.4 eV.

The conversion path involves the electrocyclic intermediary
1,4,4-trimethyl-2,3-diazabicyclo(3.2.2)non-2-ene  N,N'-dioxide
(scheme, Fig. 2 (III)) which shares the same BE with structure
DDQ (N 1s BE; 401.6 eV) and surface characteristics of a conju-
gated protonated forms of amine (-NH,") and imine (=NH>")
complexed with unprotonated amine (-NH) and imine
(=NH-) groups.”® The biopolaron character of the ringed
structure comprising of cationic nitrogen pairs [N'=N"] in
close proximity redistributed in the conjugated ring structure
of the polyaniline chain (scheme, Fig. 2(III)) and are located
across the centre of the polymer. The probable distortion
caused by the close proximity of the pair (-NH>") within loca-
lised regions of the lattice likely contributes to its destabilisa-
tion and susceptibility to the structural rearrangement in the
presence of GO. The relatively small peak area associated with
the intermediary structures is indicative of its transitory state
to polyaniline. Polyaniline is stabilised by n-conjugation within
the rGO layers forming the backbone of the lattice through the
stacking of layers. The Fourier transform infrared (FTIR) band
vibrations of the complexation of polyaniline at brookite/rGO
interface in solvent (Fig. 2 (II) O) is characterised by the
quinoid ring architecture (1644 cm™") with associated ring
vibrations across C-N/C-H bands (1314 and 1088 cm™').*”
Further, C-C, (1466 cm ')*® C=C, (1631 cm™') and C=N"
(1466 cm™) band stretches of the quinoid moiety of polyani-
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line is also evidential to the complex structure. In addition,
stretching vibration between the benzoid C-C=N (1298 cm ™)
quinoid C=N* (1237 ecm™') and N'=H rings signify the
inclusion of a polaronic and bi-polaronic structure to the
overall assembly.

The ratio (Ip/Ig) of the Raman active peaks of rGO at 1372 cm™
(D) and 1506 cm™" (G) is a good indicator and measure of
structural defects. A 2-fold decrease in [(Ip/IG)—ethanol)/[(In/
IG)+ethanol] ratio of brookite decorated rGO (162.7/260.9)
demonstrates that the solvent environment substantially
increases complex stability by improving the alignment
between polyaniline and rGO and the overall graphitic nature
of the polymer. As discussed earlier, the substantiated loss of
the rGO peaks 20 = 27, 40.5 and 44.5 °C visible in the XRD
profile of rGO (no longer observed at the brookite/rGO inter-
face) is a direct consequence of the shift to benz(a)ntharcene
which signifies the surface association of anthracene with
rGO. The uniformity and alignment of the peaks of neat broo-
kite with brookite/rGO functionalised benz(a)ntharcene con-
vincingly argues in support of a reconfigured rGO polymer
framework with the ability to strongly intercalate uncoordi-
nated brookite particles organised by linear or circular layers.
It further is anticipated that the effect of solvent could also
increase the hole scavenging rate of TiO, as observed in other
systems.>®

1

Defect driven confinement of brookite

An unexpected and unique observation in the precursor
chemistry leading to the fabrication and arrest of brookite
relates to size selectivity of particles. The low-dimensional
confinement of particles in the range of 2-2.8 nm shown by
the particle size distribution shown in Fig. 3n was achievable
for brookite which often represents a considerable synthetic
challenge in the fabrication of narrower band-gap semi-
conductors that are intrinsically broad—a problem well recog-
nised for TiO, polymorphs. To better understand the surface
dynamics of the growth leading to the brookite morphology,
3D surface analysis of the regional space surrounding the
trapped crystalline brookite phase of the HRTEM image
uncovers the transient nature of the pre-crystallization nuclea-
tion phase.

The initial reduction of GO in CA-IL results in hetero-
structures (Fig. 3h) defined by the overall surface energy at the
intersection of GO and carbazole/anthracene complex. The
reduction of GO to rGO under continuous heat is observed to
accelerate the ‘rolling’ of rGO sheets forming a tubular-like
structures of dimensions 100-300 nm (Fig. 3j, inset). We
propose that the nucleation and growth of carbazole/anthra-
cene particles is synchronous to the helical-tube-like folding of
rGO—a process which facilitates the strong polymer-driven
encapsulation of TiO, brookite particles within the enclosed
architecture. A restrictive growth regime imposes spherical to
1-dimensional expansion in concert with polymer growth inhi-
bition under quantum confinement. The growth constraint of
anthracene to scales <3.0 nm (Fig. 3g) below the quantum size
which may have an amorphous origin (Fig. 3f).
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Fig. 3 Evolution of brookite quantum particles at the GO—polymer interface. (a) HRTEM lattice pattern of the tubular like growth of rGO polymer
complexes. Polymer evolution and growth at the polymer—rGO interface corresponds to carbazole/Anthracene lattice directions as shown by the
atomic arrangement of the FTT patterns in insets (b—e) with a possible (f) amorphous liquid origin. (g) The growth restriction of brookite, rGO
and benzanthracene to quantum scales of (h—j) depicts one-dimensional complexed morphologies. (p) Low resolution and (o) high resolution
rGO decorated polymer complexes directed by (k—m) multifaceted crystallographic faces. (n) A histogram analysis of the particle size distribution of
brookite—rGO particles showing the highest frequency resides in the range of quantum confinement.

These events maybe better related to the surface pro- and the diffraction patterns immediate to the surface of rGO
gression of polymer growth at the rGO-brookite interface. provides a spatial frequency content of the surroundings using
Fig. 3a shows lattice image of the tubular-like growth of rGO Fast Fourier Transform (FFT) generated from different sections
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