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Artificial intelligence (Al) is accelerating how we conduct science, from folding proteins with AlphaFold and
summarizing literature findings with large language models, to annotating genomes and prioritizing newly
generated molecules for screening using specialized software. However, the application of Al to emulate
human cognition in natural product research and its subsequent impact has so far been limited. One
reason for this limited impact is that available natural product data is multimodal, unbalanced,
unstandardized, and scattered across many data repositories. This makes natural product data
challenging to use with existing deep learning architectures that consume fairly standardized, often non-
relational, data. It also prevents models from learning overarching patterns in natural product science. In
Received 16th February 2024 this Viewpoint, we address this challenge and support ongoing initiatives aimed at democratizing natural

product data by collating our collective knowledge into a knowledge graph. By doing so, we believe

DOI: 10.1038/d4np00008K there will be an opportunity to use such a knowledge graph to develop Al models that can truly mimic
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1. Setting the stage for Al-enabled
natural product science

Natural product research is a diverse subject matter generating
and leveraging an abundance of different types of data.
Genomic, proteomic, metabolomic, spectroscopic, or (bio)
chemical data may each illuminate the same biochemical
entities from different perspectives and have the power to
inform each other. For example, genomics can reveal the
genetic basis of natural product production in organisms, while
metabolomics can shed light on the metabolites produced.
Spectroscopic data can provide insights into the structural
characteristics of these molecules, and biochemical data can
elucidate the enzymatic pathways involved. These comple-
mentary perspectives enable a more comprehensive under-
standing of natural product structures and functions. However,
the natural product science data landscape can be characterized
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natural product scientists’ decision-making.

as highly fragmented. Numerous datasets exhibit biases that are
recognized but are not adequately described. For example, the
genetic, proteinogenic, or chemical space that the dataset
covers. Furthermore, datasets often contain samples with
varying levels of annotation, features, and metadata. The
diversity of data in the field of natural product science poses
challenges in gathering and standardizing information. There
is a need for improved strategies to harness existing data
resources into a unified data repository that connects and
supports cross-referencing among all natural-product-related
data modalities. Such a consolidated resource can then be
used for training AI models capable of emulating the decision-
making of natural product scientists.

We would like to make a clear distinction between AI and
machine learning (ML), as these terms are often used inter-
changeably. Artificial Intelligence (AI) encompasses a broad
spectrum of disciplines wherein algorithms are simulated to
exhibit certain aspects of human intelligence. It encompasses
various sub-domains, including ML, where the performance of
algorithms is enhanced through example-based learning, and
knowledge representation and reasoning, where outcomes stem
from knowledge modeling. The fundamental difference is that
Al is considered the overarching field that involves creating
systems capable of performing tasks that typically require
human intelligence, while ML is considered a subset of Al
focused specifically on algorithms that improve automatically
through experience. ML techniques have the merit of yielding

This journal is © The Royal Society of Chemistry 2025
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very good results when using large quantities of data. However,
it can be difficult to provide itemized explanations of their
results.

In recent years, we have witnessed a wide array of applica-
tions for machine learning models capable of forecasting
molecular properties, assigning functions, or generating novel
structures, aiming to distill the essence of the training data in
order to predict new instances within the same data domain."
Beyond these, Al technologies like unsupervised methods,
representation learning, natural language processing, and text
mining have been instrumental in encoding and displaying
natural product chemical space. For instance, natural language
processing (NLP) techniques have enabled the extraction of
chemical information from vast datasets, aiding in drug
discovery.” Additionally, Al-driven computational approaches
have significantly streamlined drug discovery by predicting
molecular properties and designing new molecules.* Moreover,
Al has facilitated the synthesis planning of complex natural
products, creating synthetic pathways for intricate molecules.*
The use of machine learning in natural product drug discovery
has also been pivotal in identifying bioactive compounds and
understanding their structural patterns for drug design.’
Notably computer-aided synthesis planning (CASP) has been
applied to complex natural products and their mimetics.®

However, the challenge lies in creating models capable of
recognizing and effectively harnessing fundamental patterns
within the wide array of data modalities found in the natural
product domain. We contend that grasping these fundamental
patterns constitutes causal inference, a concept distinct from
prediction.” Causal inference involves uncovering the under-
lying cause-and-effect relationships, while prediction centers on
forecasting future outcomes based on existing data. Such causal
inference regards combining many different relationships
between different data modalities as a way for researchers and
scientists to be able to anticipate new natural product chem-
istry. For example, in the simplest sense, we can look at plants
and anticipate that if they are green, they contain chlorophyll.
Such natural product anticipation would be possible at a far
more complex level as long as we can connect the dots between
the different types of data we already have. Natural product
anticipation extends beyond predicting chemical structures and
involves anticipating every aspect of natural product science.
For example, anticipating the occurrence of a natural product
from genomic or collection data without directly leveraging
metabolomics data, or anticipating the bioactivity of a natural
product from the microbial communities its producing
organism lives in.

To illustrate the potential of a natural product knowledge
graph, we could find associations between tandem mass spec-
trometry fragmentation patterns and metabolic building blocks
of known or predicted natural products retrieved by retro-
biosynthesis prediction. This information can be linked to
natural product biosynthetic pathways predicted from (meta)
genome-identified biosynthetic gene clusters. These relation-
ships could be visualized in a graph structure, which could be
used to estimate the natural product chemistry of a microbiome
sample by having only access to one of those data types (either
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metabolomics or metagenomics). A graph structure consists of
nodes (vertices) and edges. Nodes represent entities, while
edges represent the connections between them. In an undi-
rected graph, edges indicate bidirectional relationships,
whereas in a directed graph (digraph), edges indicate one-way
relationships. Graphs can be weighted, with edges having
associated costs, or unweighted. A graph models pairwise
relations between entities. Heterogeneous graphs (i.e., a graph
that has nodes and edges with different properties) naturally
accommodate multimodal and interconnected datasets. This
stands in sharp contrast to often used non-relational tabular
data, where each sample (i.e., row) expects a value for every
feature (i.e., column), which makes it difficult to combine non-
relational tabular data sets containing non overlapping sets of
features. Furthermore, dependencies and other types of rela-
tionships can easily be encoded in a graph by linking nodes
with (weighted) undirected and directed edges, and even
hyperedges. These are edges connecting multiple nodes at the
same time.

A comprehensive graph structure, incorporating all available
data in natural product science, is the ideal framework for
facilitating large-scale causal inference within the natural
product science field. These comprehensive graph structures
are also known as knowledge graphs. A knowledge graph is
a structured representation of knowledge that captures infor-
mation in a machine-readable format.® A knowledge graph
consists of a graph or network of interconnected data points,
where each data point represents a piece of information or
a concept, and the relationships between them are explicitly
defined. Knowledge graphs organize and store data in a format
that facilitates information retrieval, data analysis, and
reasoning. Unlike non-relational, tabular data, primarily used
for predicting new samples or features based on existing
examples, a knowledge graph has the potential to be used for
anticipating new nodes and edges. Essentially, a well-
constructed knowledge graph could serve as a foundation for
AI models to learn and emulate the reasoning abilities of
natural product chemists and researchers. Such AI models
could not only fill in gaps in metabolic pathways but also
explore uncharted territory by deducing complete metabolic
pathways from phenotypic data, much like a natural product
scientist could. The foundational concepts for knowledge
graphs have been laid out by Tim Berners-Lee in the 1990s but
are not widely adopted yet in the field of natural product
science.’

It should be noted that graph data is typically also organized
in a tabular format, where separate tables represent different
node entities and their relationships. Additional tables link
instances of these entities through their relationships. The
main distinction between tables representing a graph and
datasets comprising a single table is that the latter emphasizes
independent entities and a uniform data structure, without
relationships between the entities.

Knowledge graphs are already being successfully applied in
biomedical research. Text-mining solutions have enabled inte-
grative biology by extracting and integrating information from
large datasets,' and frameworks like BioBLP (BERT for Link

Nat. Prod. Rep., 2025, 42, 654-662 | 655


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4np00008k

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

Open Access Article. Published on 16 August 2024. Downloaded on 1/19/2026 4:34:44 PM.

(cc)

Natural Product Reports

a. Overview of the natural product science workflow

Targeting
Isolation

Extraction () _

Elucidation
»| Testing

(Bio)synthesis
> Optimization ﬂ

Production &

-

J

b. Input data
i. Multi-modal ii. Relational iii. Versioned iv. Comments
& >0 ' — {? <C-8
“low quality”
—>» A I
% T Y : “batch effect”
ocA 2:5:2_ v1: inhibits tubulindg
2;8 —>» 0 v2: inhibits protease

'

c. Knowledge graph construction

Deorphanization

e

Integration

l i

d. Knowledge graph applications

Entity resolution

Knowledge graph
evolution

edon

edon

&A com

3

e. Natural product anticipation
i. Interact ii. Reason iii. Map biases iv. Create ontologies
>where am | likely : Feptide§

to sample 8:> ? i means C8 [ \

> = 2 then* is 8:) Lipids \
’ Lipopeptides

View Article Online

Viewpoint

Fig.1 Overview of the construction, applications, and future perspectives of a natural product science knowledge graph. (a) The prototypical steps
in a natural product science workflow that generates different data modalities. (b) Every aspect of natural product science data is used to construct
a natural product science knowledge graph. This includes not only the data modalities we generate, but also the relationships between the data
types, changes to the data over time, and our objective and subjective descriptions of the data. (c) A natural product science knowledge graph should
integrate different datasets (e.g., a metabolomics dataset or a chemical structure database) through creating and annotating relationship edges
between the data entities. Deorphanization will play a big part in this effort, as many data types have little explicitly described relationships with other
data types. Over time, the knowledge graph will evolve as more and more entities are added and more and more connections between entities are
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Prediction) have demonstrated the potential of multimodal
biomedical knowledge graphs in predicting complex interac-
tions." Additionally, the FORUM framework exemplifies the
power of integrating public databases and scientific literature to
extract meaningful associations and to support hypothesis
generation in metabolomics.*

Recently, Gaudry et al. showed with the Experimental
Natural Products Knowledge Graph (ENPKG) how unpublished
and unstructured data can be converted to public and con-
nected data.” The ENPKG pioneers how semantic web tech-
nologies can enrich and organize large metabolomics datasets
to discover new bioactive compounds.

Inspired by these seminal works, and to achieve the vision of
an Al capable of reasoning through the discernment of over-
arching patterns, we believe that the wider natural product
science field should move towards establishing a single
fundamental dynamic data structure: a natural product science
knowledge graph (Fig. 1). This data structure would include
natural product chemical structures, metabolomics (e.g., mass
spectra), genomic data (e.g., biosynthetic gene clusters (BGCs)),
assay data (e.g., read-outs from bioactivity assays), expert
descriptions (e.g., experimental design and comments on data
quality), and more.

In our view, creating a knowledge graph as a federated
resource is ideal. We would like to urge natural product
researchers to expand on the example set by the LOTUS initia-
tive.'* The LOTUS initiative, which consolidates over 750 000
referenced structure-organism pairs into Wikidata, a free and
open knowledge base, serves as an exemplary model for
enhancing data accessibility and interoperability. Individually
managed knowledge graphs can then make use of this
centralized resource, like ENPKG does. This approach enables
comprehensive data access and analysis without the need to
centralize all the data in one location.

Data should not need to be “complete” in any way to be
included in such a centralized resource. We would like to
encourage the incorporation of orphan data, which includes but
is not limited to compounds without BGCs or mass spectra, as
well as mined metabolic gene clusters without associated
compounds. This approach highlights opportunities for further
research, inviting scientists to conduct follow-up studies on
data with few links. Wikidata should grow organically based on
the community's inputs and needs, but to ensure reproduc-
ibility, it is crucial to track changes and versioning of these
resources. This will allow experiments to remain reproducible
even as Wikidata, or individually managed knowledge graphs,
evolve. By maintaining the ability to revert to specific older
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versions of linked resources or excluding entities added or
changed after a certain time point, we can preserve the integrity
and reproducibility of scientific studies using the natural
product science knowledge graph.

This pivotal step would require an ongoing community
initiative, working together to make this aspiration a reality.
Good examples of community initiatives that can be learned
from are the ongoing Earth Metabolome Initiative (https://
www.earthmetabolome.org/) and the Human Microbiome
Project (https://hmpdacc.org/).

2. Unlocking the value of data
diversity in natural product science

Multimodal models incorporate and process multiple modes of
input or information, such as text, images, audio, video, or
other types of data - and aim to leverage the complementary
nature of different modalities to enhance the understanding of
data.

To be able to do this, so-called paired data is required. For
example, if we would like to enrich a dataset of medical images
with patient blood values, we need associated patient blood
values for every set of medical images. If you do not have
associated blood values for a particular set of images, you will
likely exclude that set of images from the training set for your
model. In natural product science, such paired data sets are
rarely created and almost never encompass the full diversity of
data that could be generated or use well-curated reusable terms
(i.e., ontologies or controlled vocabularies) to make the
connections between datasets and/or data points. As a result,
any combined dataset of global natural product diversity will
always be sparse, lacking specific types of data for various
subsets of the samples. Excluding samples due to a lack of
necessary associated data types and annotations or compro-
mising the quality of various subsets of your data is often not
a feasible option. Certain types of natural product data, such as
metagenomics or RNAseq data, can be resource-intensive (e.g.,
in terms of cost, time, and computation) to generate. When
incorporating these data in their workflows, scientists typically
cannot afford to have to choose between subsets of data with
different annotation levels, especially considering the limited
availability of such data to begin with. Foremost, we could help
mitigate this challenge by making sure that researchers and
scientists have access to all available data, regardless of
completeness. Different types of data in the knowledge graph
(Fig. 1bi), with their own unique identifiers, can be used to infer
missing entity properties of incomplete samples, and help to

made. (d) At any stage of construction, the constructed knowledge graph can be used for inference, either by using the graph directly, or through
first extracting datasets for downstream tasks. The knowledge graph can be used for entity resolution in order to dereplicate and denoise data. (e) In
time, we will be able to use the knowledge graph for advanced tasks that will empower natural product science. The knowledge graph could be
leveraged by Al in order for scientists to have "a conversation” with the knowledge contained in the graph. For example, for hypothesis creation. As
the graph grows, it will contain the necessary information for models to learn causal inference and, for example, anticipate expected molecular
scaffolds in previously unseen plants or other organisms based on metadata alone. Additionally, the knowledge graph could be used to map
underexplored regions in our datasets and spot biases, as well as it could help us to define the terms to describe our data better. SVG images used
and remixed from the SVG repo (https://www.svgrepo.com/) and Bio Icons (https://bioicons.com/).
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weight samples based on their metadata richness. The general
idea is that many incomplete datasets together, and perhaps
a few being low-quality as well, will paint a fuller picture of the
natural product data space (Fig. 1bii). For instance, you may
wish to predict protein targets or bioactivities for your
compounds, but these labels are not readily available for your
full set of compounds. In this case, a graph containing obser-
vations and experimental data like cytological profiles and
bioactivity assay results can help to impute missing labels.

There is a disparity in cost and quality associated with
different data types to consider, which are both hard to assess
for different types given the specialist background required to
do so. Some types of data are cheap to generate but are of lower
quality or provide lower information value, while other data
provides more valuable information while being more expen-
sive to generate and difficult to come by. This relates to, for
example, the difference between genome assemblies from long-
read or short-read sequences or the type of calculations done to
generate a molecular conformer. Although the output data is in
the same format, like an assembled genome or a three-
dimensional shape of a molecule, its value is different, espe-
cially for more expensive data, the quality matters. If you have
only a few examples of functional bioactivities associated with
BGCs, it will be highly important to ensure they are correct for
them to be of any use. It is challenging for experts in one natural
product science subfield but laypeople in another to appraise
datasets that overarch the subfields. This makes such datasets
inherently unFAIR even when available in open repositories.*
We must have metadata like quality assessments available to
ensure data can be understood holistically throughout the
natural product science field. Although it is nice that some
datasets offer multiple annotation or review levels, it should be
apparent from the metadata what the rationale was to give
a sample a particular annotation value or review level. In this
light, annotations from newer publications do not necessarily
take precedence over older annotations, and having access to
versioned annotations is important (Fig. 1biii). For non-
relational tabular data, you might filter out samples that are
of poorer quality. However, in a knowledge graph, it is possible
to weight associations by metadata content.'® So, apart from
including incomplete data, a knowledge graph makes it
possible to include data of various subjective qualities and take
the corresponding predictive value of the data into account
(Fig. 1biv). This information could potentially be leveraged to
assess the quality of a prediction.

A natural product science knowledge graph constructed
from aforementioned data (Fig. 1c) could help us understand
nature's diversity and preferences better. For example, life on
Earth is almost exclusively made of left-handed amino acids.
What are other, maybe more hidden, patterns there to discover?
One of the issues with data collection in general is the reporting
of negative results. Researchers are motivated to publish posi-
tive effects, like novel compounds with an exciting mechanism
of action against a harmful bacterium, but not so much that
a compound is not bioactive against a particular target.
However, for ML models, this data is precious. With a knowl-
edge graph we could define what is not explicitly stated and
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infer lower confidence for underrepresented concepts identified
through entity resolution (Fig. 1d entity resolution). Entity
resolution is the process of identifying and linking distinct data
entries that correspond to the same underlying entity (e.g., an
organism or a compound), despite variations in naming,
structure, or representation.

A knowledge graph encompassing all natural product
science related data would be invaluable for the wider natural
product science field and beyond (Fig. 1c and d). Not only could
we extract multimodal datasets from such a graph for super-
vised learning problem formulations that benefit from non-
graph structured data (Fig. 1d extraction), but we could also
learn directly on graph-structured data for tasks such as link or
node prediction, e.g., identifying potential biomarkers (Fig. 1d
generation).

Although there is plenty of well-supported natural product
data (i.e., reliable due to strong experimental evidence sup-
porting it), data integration (Fig. 1c deorphanization, integra-
tion, and annotation) across different modalities is,
unfortunately, still uncommon in natural product science. As
a community, if we collectively commit to establishing a unified
data infrastructure in the form of a knowledge graph for natural
product science data, we can gradually evolve the graph to
reflect our shared knowledge in the field (Fig. 1c and d knowl-
edge graph evolution). It is important for our data to be
consistent, reliable, and accessible. Therefore, using a central-
ized storage and management system like Wikidata is benefi-
cial. With decentralized content creation and maintenance,
Wikidata promotes a dynamic and comprehensive natural
product knowledge graph. We call upon the creators and
maintainers of popular natural product data resources for
chemical structures (e.g., NPAtlas at https://www.npatlas.org/
and COCONUT at https://coconut.naturalproducts.net/) and
their mass spectra (e.g., GNPS at https://gnps.ucsd.edu/),

metabolomics (e.g., MetaCyc at https://metacyc.org/),
genomics (e.g., MIBIG at https://
mibig.secondarymetabolites.org/ and KEGG at https:/

www.kegg.jp/), and bioactivity assay data (e.g., ChEBI at
https://www.ebi.ac.uk/chebi/) to follow the example set by the
LOTUS initiative and cross-link their data, through common
ontologies and identifiers, and to update and expand their
contributions to Wikidata.

2.1 Leveraging natural product data for natural product
anticipation with Al

We define an AI breakthrough in natural product science as
a model's ability to perform human-level inference and
extrapolation across different data types. For example, such an
Al could infer chemical structures from mass spectrometry data
similarly to a chemist or predict the types of metabolites ex-
pected in specific microbial communities similarly to a micro-
biologist. An AI breakthrough in natural product science would
come sufficiently closer through the availability of a knowledge
graph that integrates different types of data. The knowledge
graph could act as a resource for training multimodal models
that can holistically capture diverse dimensions of natural

This journal is © The Royal Society of Chemistry 2025
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product science. To achieve this, the necessary steps should be
taken to promote such data sharing and linking practices
entirely across the wider natural product community. Moreover,
the current utilization of AI models primarily focuses on
learning tasks on previously acquired data, neglecting its
potential to aid in hypothesis creation and experimental design
at the outset (e.g., through understanding existing analyses
better)."” Therefore, below we highlight the opportunities and
challenges of using a knowledge graph for natural product
anticipation, along the steps of a prototypical natural product
workflow (Fig. 1a).

2.2 Natural product extraction, targeting, and isolation

The natural product discovery process has historically been
driven by trial and error. Workflows included varying extraction
and isolation methods or culture conditions for plants, microor-
ganisms, or other organisms, with chemists seeking experimental
patterns to improve natural product discovery. The extraction
process ensues after identifying biological niches by harvesting or
cultivating cultures and sometimes involving the construction of
co-cultures in the laboratory to mimic conditions for producing
their specific extracts. However, reproducing the natural envi-
ronment that accurately underpins the observed morphological,
physiological, and behavioral characteristics is typically
nontrivial, as an organism produces different compounds based
on environmental conditions and moments in the life cycle.
Recreating the environment where an organism produces
a specific natural product of interest poses significant challenges.
Numerous intricate factors contribute to the emergence and
sustenance of these traits within the native habitat. Furthermore,
the lack of standardization in extraction protocols results in
considerable parameter variations such as solvents, pH, grinding,
sonication, temperature, duration, and more. These variations
significantly impact the composition of metabolites, leading to
imperfect extraction and potential artifacts being generated.
Upon completion of the extraction process, natural products in
the extracts await identification or even purification to facilitate
reproducing the biological effect in an in vitro setting. During this
stage, careful attention must be given to identifying and isolating
the compound of interest (i.e., unidentified, biologically active, or
a combination thereof). To do so, traditional bioactivity-guided
approaches have been enriched with integrated data-mining
workflows, including metabolomics and genomics data, to facil-
itate effective dereplication and prioritization.

When a natural product science knowledge graph contains
BGCs, their organisms of origin and sampling locations, and
additional physiochemical and climatic parameters, an algo-
rithm using community diversity metrics could already high-
light underrepresented ecological niches. Al models could be
created that enhance this experience further. For example, by
creating a model that can predict likely phenotypes based on
experimental designs of synthetic communities. Knowledge
graphs can reveal undersampled communities displaying
unique morphology or activity (Fig. 1eiii). Such communities
have a high probability of containing unexpected chemistries.
For example, unknown biosynthetic pathways or compounds

This journal is © The Royal Society of Chemistry 2025
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with unseen scaffolds. While recently created knowledge graphs
are a valuable foundation,"** data integration efforts across the
natural product science field must be broadened to unlock the
full potential for natural product anticipation with Al

Another approach that can be beneficial for natural products
is multi-criteria decision aiding. In this approach, the modeling
of the problem is not data driven but expert-driven. Even if the
data continues to play a determining role on the results, the
preferences and experience of the experts guide the process.
The methods aim to provide results in the presence of con-
flicting criteria. The mathematical properties of these models
being very well known and studied, the results obtained are
easily explainable. An example of an application can be target-
ing a natural product for isolation and detailed structural and
functional elucidation, which is a multifactorial problem and
often dependent on expert insights. Far from the natural
product chemistry field, this decision theory-driven strategy has
recently been augmented by ML-based approaches to predict
human decision-making."® By accessing a large dataset in which
the success of decisions as well as the historical changes in
those success rates are objectively measured, like a knowledge
graph, that contains natural product chemists' decisions and
rationales, we may be able to uncover more accurate models of
human decision-making for efficiently targeting natural prod-
ucts (Fig. leii). For instance, expert-based ranking of multi-
annotation outputs of commonly used tools could assign an
aggregated confidence and facilitate the query of specific
information on the knowledge graph.

2.3 Structure elucidation and bioactivity testing

Following the isolation of the compound of interest, the
subsequent steps involve determining its chemical structure
and assessing its biological activity through various assays. The
structure determination process necessitates matching the
conclusions provided by a profound interpretation of a set of
mutually supportive analytical read-outs, including NMR,
HRMS, MS/MS, IR, and VCD or ECD. Besides these spectro-
scopic and spectrometric pieces of evidence, in certain cases
natural product structures can be inferred from sequence
alone.”

By leveraging its analytical capabilities, Al methods can
assist in structure elucidation by prioritizing lists of candidate
structures enumerated from combined genomic and metab-
olomic datasets and considering additional context such as
environmental factors based on literature. In this way, AI could
be used to combine evidence from both genomics and metab-
olomics similar to how humans do it (Fig. 1eii). This would help
us to move away from correlation-based approaches followed by
selection and prioritization, that are now mainstream. More-
over, the knowledge graph can be used to flag pitfalls like
frequently observed contaminants and batch effects, empow-
ering researchers to ensure the integrity of their findings
(Fig. leiii). Using a knowledge graph, it would eventually be
possible to create a data-agnostic model that consumes various
types of read-out data from a sample extract and proposes ways
to analyze the data further (Fig. 1ei).
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Furthermore, the activity testing phase entails undertaking
binding assays to determine what protein a compound binds to
or phenotypic or functional screens. In the case of antibiotics,
a critical aspect involves determining whether they exhibit
a broad spectrum of activity against multiple organisms or
a more narrow, targeted range and assessing how easily resis-
tance can evolve. Although broad-spectrum antibiotics may be
advantageous in specific scenarios, human pharmacology typi-
cally favors compounds with a more focused target.

When developing new drugs, a common approach is
designing or generating derivatives of existing scaffolds, prior-
itizing compounds that contain known warheads or pharma-
cophores. Compounds can also be generated completely de
novo. In both cases, knowledge of quantitative structure-activity
relationships is helpful. State-of-the-art ML models try to
deduce these relationships from known links between
compounds, phenotypes, targets, and functional bioactivities.*
What is often lacking is data on the missing links: conclusive
information on what phenotype, targets, and functional bioac-
tivities are not related to a compound. These relationships are
even more obfuscated when the compound is a frequent hitter,
a compound which simultaneously influences multiple
screening methods. These considerations make building
generative models and classifiers for multiple labels chal-
lenging, as not all values for all labels are usually known.

An Al-powered information retrieval system can leverage
a knowledge graph data structure to help infer the missing
values based on mined text annotations, which is called
knowledge graph completion (Fig. 1eii).*® Moreover, devising
appropriate ontologies to label compounds is mainly done
through expert annotation, usually manually or semi-manually,
by counting words in text annotations. Knowledge graphs are
data structures that can help design new ontologies. ML models
have proven helpful in the semantic understanding of knowl-
edge graphs to perform entity resolution (Fig. 1eiv).?> Annota-
tions by different individuals, or even the same individual,
whether mined or manually added, are influenced by culture
and can contain spelling errors. Through entity resolution,
a model can learn which terms, with or without spelling errors,
refer to the same entity. This helps build an ontology on top of
the data, describing how terms are hierarchically related.
Although knowledge graphs already contain clearly identified
entities, ML models can be tasked to find appropriate labels to
separate a knowledge graph into communities based on given
metrics, thereby minimizing bias in training data. Importantly,
this approach is not limited to large language models; rather,
ML models in general would be able to leverage the knowledge
graph to discern additional relationships between entities and
to autonomously generate names or ontologies that best
describe the entities in a knowledge graph for a specific use
case.

2.4 (Bio)synthesis, optimization, and production

Once the compound responsible for a specific effect is identi-
fied, along with knowledge of its structure, target, and activity
levels, the subsequent phase typically involves synthesis and
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modification. Synthesis methods encompass a range of
approaches: organic synthesis as a classic choice, but also bio-
logical techniques such as heterologous expression or cell-free
biosynthesis.

CASP can be employed iteratively to facilitate effective
chemical synthesis and make (derivatives of) compounds of
interest. This iterative process utilizes computational tools and
algorithms to design and optimize chemical structures with
desired properties. By leveraging CASP, researchers can explore
a vast chemical space of possible structures and accelerate the
discovery of compounds with improved potency or novel char-
acteristics. In addition, these models can even propose shorter
and more inexpensive organic synthesis routes.® CASP models
could utilize the natural product science knowledge graph to
generate structures under many constraints that are more
difficult to optimize for—for example, proposing genetic
constructs for heterologous expression or cell-free synthesis to
produce natural product-like structures. Heterologous expres-
sion of BGCs can be expensive for research purposes alone but
incredibly costly when considering industry size scale-up
afterward. An AI model overlaying a knowledge graph that can
be queried for optimal growing conditions can supplement the
expert knowledge of technicians and help set up experiments
through conversational or structured prediction interfaces.
Additionally, experimental outcomes could be queried against
the knowledge graph for anomaly detection. In both cases, Al
models could ideally leverage the knowledge graph to go beyond
forecasting and reason what an outcome could be even when
there is no related training data available (Fig. 1eii).

3. How to enable an Al breakthrough
in natural product science

If we take a step back from the prototypical natural product
workflow discussed above, we could outline a utopian long-term
vision used to fuel the imagination of our community. Once
a holistic and mature knowledge graph is in use, one can
imagine the emergence of a natural product “tricorder”-type
technology. By simply scanning or sampling an organism,
a natural product scientist could access its digitized identity
including taxonomie, genomic, proteomic, metabolomic and
functional data to mine it, associate it with existing data, and
anticipate further discoveries.

An Al revolution in natural product science will not occur
simply by constructing a better classifier for bioactivity or by
creating a better genome mining tool for identifying BGCs.
Instead, it will require having models that can aid any natural
product scientist to leverage the full breadth of current knowl-
edge to help generate better hypotheses for what is yet
unknown. This is the core of natural product anticipation. Such
models would help us answer questions about where the best
place is to look for solutions when we have limited resources. To
achieve this, we should follow the examples of initiatives like
ENPKG, the LOTUS initiative, and Wikidata, and ensure that all
of our data becomes linked open data. This will ensure the true
democratization of our data resources.

This journal is © The Royal Society of Chemistry 2025
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At least two major steps are needed to move towards open
linked natural product science data. First, we as natural product
science researchers need to perform entity recognition to
identify key entities like compounds, sources, and biological
activities in our data sets. Additionally, we have to map rela-
tionships between these entities, such as a compound being
isolated from a plant or exhibiting certain activities. Then, we
have to allocate relevant attributes to each entity, like molecular
weight and source species. Other key metadata to include
involves specifics on the methods used to generate the data,
such as equipment details that could cause batch effects. This is
for example what the Paired Omics Data Platform is doing for
paired omics data.”® This first step transforms our non-
relational data into a knowledge graph.

The second step we need to take is to assign unique identi-
fiers (i.e., uniform resource identifiers or URIs) to each entity,
using Resource Description Framework (RDF) standards, and
serialize the data in formats like RDF/XML.? Then, we need to
publish the data on the web using HTTP URIs, and establish
links to other related datasets by referencing their URIs. This
step will ensure the knowledge graphs we create are open and
linked.

In natural product science, extensive datasets often lack
standardized bioactivity screening data and interconnections
among various components such as structures, biosynthetic
gene clusters, mass spectrometry spectra, and unexplored
organisms. Despite these challenges, we encourage the wider
natural product science community to contribute as much data
as possible to Wikidata, centralizing the information effectively.
Subsequently, we recommend creating smaller, individually
managed, user-specific knowledge graphs around this central-
ized resource, such as ENPKG, and integrating older knowledge
graphs into newer ones. The goal is to record knowledge,
annotations, interpretations, and review processes, making our
data and rationales interpretable and machine-readable - thus
making our data truly FAIR. This data infrastructure can serve as
a resource to create AI models that evolve alongside our
collective knowledge, enabling the synthesis of new concepts
and anticipation of novel chemistry.
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