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Enantiodifferentiation of chiral hydroxy acids via
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We present a high-resolution °F NMR platform for the enantiodifferentiation of chiral hydroxy acids via a
rapid three-component derivatization reaction between a '°F-labeled chiral amine, 2-formylphenylboronic
acid, and the hydroxy acid analyte. The probe design includes two different fluorinated groups (-CFs and
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—OCF3), allowing for detection using dual-site '°F readout. This dual-fluorine strategy markedly improves
chiral resolution and minimizes signal overlap, a common limitation of conventional *H NMR approaches.
The method simultaneously distinguishes up to ten chiral hydroxy acids within a single spectrum and

allows accurate determination of enantiomeric excess, offering a versatile, efficient, and separation-free

rsc.li/njc

Introduction

Chirality is a defining feature of many biologically relevant mole-
cules, including amino acids, sugars, proteins, and nucleotides."
The two enantiomers of a chiral compound frequently display
markedly different biological and pharmacological properties.” For
example, dextropropoxyphene acts as an analgesic, whereas its
mirror image, levopropoxyphene, functions as an antitussive
agent.’ In agrochemicals, R-(+)-chlorbufam exhibits nearly four-
fold higher herbicidal activity than S-(—)-chlorbufam.” These
examples highlight that the function and bioactivity of chiral
compounds are intimately linked to their stereochemistry.” Chiral
hydroxy acids, such as lactic, malic, and tartaric acids, occur widely
in nature and play important roles in biological systems. In the
food industry, the 1/p lactic acid ratio serves as a key quality metric
for fermented products.® In pharmaceuticals, the anticancer drug
paclitaxel depends on the chirality of its key precursor, 2,3-
dihydroxy-3-phenylpropionate, for therapeutic efficacy.” Given
their critical roles, reliable and efficient methods for distinguish-
ing hydroxy acid enantiomers are essential in food quality control,
pharmaceutical production, and related fields.

The demand for accurate enantiomer differentiation spans
chiral synthesis,® catalysis,”’® pharmacology, and biochemistry,"*
driving the development of diverse chiral recognition and separa-
tion techniques. Widely used methods include high-performance
liquid chromatography (HPLC),">™** gas chromatography (GC),">"”
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platform for the rapid chiral analysis of structurally diverse hydroxy acids.

capillary electrophoresis (CE),"*2° and nuclear magnetic resonance

(NMR) spectroscopy.>' >* Among these, NMR offers several advan-
tages: It enables rapid enantiopurity assessment and typically
requires no physical separation of analytes.”> As a result, NMR
has been extensively applied to the analysis of chiral hydroxy acids,
often by converting enantiomers into diastereomers through deri-
vatization with chiral derivatizing agents (CDAs)**>° or complexa-
tion with chiral solvating agents (CSAs).***® Quantitative
enantiomer discrimination is then achieved by integrating distinct
diastereomeric signals. Representative examples include Suryapra-
kash’s three-component protocol employing 2-formylphenyl-
boronic acid and [1,1-dinaphthyl}-2,2-diamine for "H NMR analysis
of chiral acids,** Zhang’s R-amino acid-derived carboxylic acid
receptors for hydroxy acid analysis,” and Riguera’s BINOL borate
approach for absolute configuration determination.®® More
recently, Liu and coworkers utilized cinchona alkaloid dimers as
CSAs to resolve aminobutylamine derivatives by "H NMR.*” Despite
these advances, "H NMR spectra often suffer from severe signal
overlap between analytes and chiral auxiliaries, particularly when
primary amines are used, hindering accurate determination of
enantiomeric excess (ee).

To overcome the spectral crowding inherent to 'H NMR-
based chiral assays, a more selective detection modality is
required. '°F NMR offers several compelling advantages for
chiral analysis: '°F has 100% natural abundance, high recep-
tivity, and a broad chemical shift dispersion, while being
essentially absent from most biological matrices, resulting in
negligible background signals. These attributes have enabled
its successful application to the enantiodifferentiation of
diverse functional classes, including amines, amino acids,
alcohols, amides, sulfoxides, nitriles, and N-heterocycles,**™*?
as well as to the real-time monitoring of biological activity
and metabolic processes.***® Many reported '°F NMR chiral
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sensing systems rely on a single fluorine source; however, the
optimal chemical shift discrimination varies across analyte
classes, and a fixed fluorine environment rarely delivers uni-
formly high resolution. We envision that integrating multiple
spectroscopically distinct fluorine moieties into a single probe
could provide multiple detection sites, thereby enhancing
analyte scope and resolution. Herein, we report a "’F NMR
platform have two fluorine sources for the enantiodiscrimina-
tion of chiral hydroxy acids. The system is assembled in situ
from a strategically designed optically pure '°F-labeled chiral
amine (1) bearing -CF; and -OCF; substituents, and
o-formylphenylboronic acid (2). In the presence of a hydroxy acid,
a rapid three-component condensation produces fluorinated dia-
stereomeric boronate esters, driven by the strong affinity between
phenylboronic acids and cis-vicinal hydroxyl groups (Scheme 1).*”
The distinct stereochemistry of each enantiomer alters the local
magnetic environment of both fluorine sites, generating well-
resolved '°F NMR signals. Two fluorine labels with differential
resolving ability enable high-confidence enantiodifferentiation
across a broad range of hydroxy acids with exceptional resolution,
enabling the simultaneous differentiation of multiple chiral
hydroxy acids within complex mixtures.**>° In addition to being
cost-effective, it circumvents the signal-overlap issues common in
conventional "H NMR spectra, thereby allowing accurate determi-
nation of ee values for chiral acids using "°F NMR.

Experimental
Preparation of NMR samples

Stock solutions of the analytes (15.4 mM in CDCl;), compound
1 (7.7 mM in CDCl;), and compound 2 (7.7 mM in CDCl;) were
prepared. For each measurement, 200 pL of the 1 solution
(containing 1 mg of 1), 100 pL of the analyte solution (containing
0.58-0.84 mg of analyte), and 200 pL of the 2 solution (containing
0.58 mg of 2) were combined, mixed thoroughly to ensure rapid
reaction, and immediately transferred to an NMR tube for *°F{'H}
NMR analysis.

NMR measurements

F NMR spectra were acquired on a Bruker Avance NEO 600
spectrometer (565 MHz for '°F) equipped with a BBFO probe at
298 K. Data were collected with a relaxation delay (D;) of 1 s and
32 scans. For all '>F NMR, proton decoupling was performed
for simplifying the spectra, chemical shifts () are reported in
parts per million (ppm) All spectra were processed using
MestReNova software. During this processing, we employed
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Scheme 1 19F NMR Chiral discrimination of hydroxy acids via a three-
component reaction.
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manual phase correction to ensure the accuracy of the spectral
representation. Subsequently, integration of the peaks was
performed manually to determine the ratio between peak areas.

Results and discussion

We first examined the reaction between the -CF;/-OCF;-labeled
chiral amine 1 and o-formylphenylboronic acid 2 (Fig. 1(a)).
Previous studies have shown that 2 can efficiently couple with
various amines, providing a versatile platform for -chiral
discrimination.”™* Upon mixing equimolar solutions of 1 and 2,
the '°F NMR spectrum displayed a new set of signals (Fig. 1(d)),
consistent with the formation of imine 3. The condensation
proceeded with high efficiency, converting nearly all of 1 to 3
under equimolar conditions (Fig. S1). The reaction was reversible:
addition of excess 1-phenylethanamine to 3 regenerated free
amine 1 (Fig. S2). To assess the chiral discrimination capability,
we chose br-3-phenyl-lactic acid (A;) as a model hydroxy acid

a
(S) HQ HEFs
0CF3 @) _CDCly_ HO\B<_N>(S)\©
I
©) F,CO
1
b
°“B+.N>‘°7©
F,CO
4-A,
c

J [

e Ar
|
L |
f | — A1S\
T T~
" ) L
gl I Ars —_|
|y I
OCF, CF,
-5l7,0 7 -69I,0 '-;35 -7(.3.5 ppm

Fig.1 (a) Reaction between 1 and 2 (7.7 mM each); (b) formation of
boronic acid esters; (c) **F{*H} NMR spectrum of ‘°F-labeled amine 1; (d)
9F(*H) NMR spectrum of 1 + 2; () 1+ 2 + Agg; (N1 + 2+ A5 (@1 +2 +
racemic A;. PF{*H} NMR spectra were acquired on a Bruker Avance NEO
600 spectrometer (565 MHz for 1°F) equipped with a BBFO probe at 298 K.
Data were collected with a relaxation delay (D) of 1 s and 32 scans.
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(Fig. 1(b)). Treatment of 3 with either the (R)- or (S)- enantiomer of
A, yielded distinct *°F NMR patterns (Fig. 1(e) and (f)), attributable
to the formation of diastereomeric boronate esters. In situ '’F NMR
revealed only signals from 1, 3, and the desired boronic ester,
while a transient, reversible broadening of the CF; signal upon
mixing 1 with A, vanished after addition of 2, indicating that any
weak acid-base interaction exerts minimal impact on the detection
process (Fig. S9¢). We also performed a titration experiment using
A, to confirm that the reaction is rapid and selective (Fig. S8). The
minor residual signals of 1 and 3 in Fig. 1(d)<(g) reflect an
equilibrium under limited analyte, as confirmed by titrations that
diminish these signals with increasing A, (Fig. S10). The chemical-
shift differences between the enantiomeric adducts reflect the
stereochemistry-dependent magnetic environment at each fluorine
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site. Analysis of a racemic mixture of A; produced two signals that
precisely matched those from the individual enantiomers
(Fig. 1(g)), confirming the method’s accuracy in distinguishing
hydroxy acid enantiomers.

The specific equation for calculating the resolution (Ry).

oa — 0B

SR AT W

To assess the generality of the method, we extended the study
to hydroxy acids with diverse structural motifs (Fig. 2). To
quantify enantiodiscrimination, we employed the resolution
parameter (R, eqn (1)), where J, and g are the '°F chemical
shifts of the enantiomeric pair, and Wy(A) and Wy, (B) are the
corresponding half-height line widths.>® This metric is preferred
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Fig. 2 (a)—(t) °F{*H} NMR spectra of mixtures containing *°F-labeled chiral amine 1 (7.7 mM), 2 (7.7 mM), and analytes (15.4 mM each) in CDCls. The
signals for OCFz and CF3 labels are shown in dark blue and dark red, respectively. 19F{*H} NMR spectra were acquired on a Bruker Avance NEO 600
spectrometer (565 MHz for °F) equipped with a BBFO probe at 298 K. Data were collected with a relaxation delay (D) of 1 s and 32 scans.
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over simple AJ values because *°F line widths can vary substan-
tially due to dynamic binding or conformational exchange,
leading to peak broadening that compromises A§ accuracy.’*
Using this definition, we evaluated a series of aromatic hydroxy
acids (A;-A,o) in both the -CF; (red traces) and —-OCF; (blue
traces) ranges at 298 K on a 600 MHz spectrometer (Fig. 2). In the
CF; range, Ao values were generally large enough to provide
baseline separation, affording Ry values from 3.7 to 59.7. Bulky
a-substituents, such as cyclopentyl (A,) and cyclohexyl (A3), gave
the highest resolutions (R; = 59.7 and 49.6, respectively), while
phenyl substitution (A4) produced a modest R; of 8.5. Compar-
ison of A, (phenyl) and A;, (cyclohexyl) suggests that increased
steric bulk enhances chiral differentiation (R; = 20.6 for A;,),
likely by restricting conformational flexibility in the boronate
ester. ortho-Halogenation also influenced resolution: A (Br,
Ry =3.7) < A5 (Cl, Ry = 4.2) < Ay3 (F, R = 8.7), with the difluoro
derivative Ay (Rs = 12.3) exceeding the unsubstituted A,. In
contrast, the OCF; range displayed R values of 0.7-24.9. Here,
bulky o-substituents produced mixed effects: A, (Rs = 16.4) and
A; (Ry = 24.9) showed enhanced resolution relative to A,
(Rs = 2.9), whereas A;, (cyclohexyl) gave a reduced R, of 1.8,
possibly because the flexible cyclohexyl group lies further from
the OCF; site, diminishing steric control. ortho-Halogenated
derivatives generally exhibited lower resolution than A,, with
no clear correlation to halogen electronegativity. We also per-
formed additional experiments with hydroxy acids bearing long
alkyl chains, which confirmed that our method enables their
chiral discrimination (Fig. S6). Overall, the CF; label provided
superior discriminatory power, delivering higher R; values for
most analytes. Nonetheless, the OCF; label still afforded clear
chiral discrimination across the entire hydroxy acid set, under-
scoring the complementary nature of the dual-site design.
Leveraging the high resolution of our dual-site "°F readout
platform, we next examined its capacity for multiplexed
enantiodiscrimination. A mixture of five structurally distinct
hydroxy acids was prepared, including two enantiopure species
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(A; and A;g). Following addition of 1 and 2, '°F NMR spectra
were acquired. In the CF; range, partial signal overlap was
observed (Fig. S4). Strikingly, the OCF; label yielded ten well-
resolved '°F resonances, each unambiguously assigned to one
enantiomer of a specific analyte (Fig. 3). This experiment
demonstrates that the strategy enables simultaneous, unam-
biguous identification of multiple chiral hydroxy acids in a
single measurement. Consistent with electronic/steric expecta-
tions, the bulky electron-withdrawing bromo substituent (Ao)
yields a weaker response than the electron-donating cyclohexyl
group (A3), whereas fluorine substitution has little effect, likely
due to its small size and efficient conjugation. Beyond enhan-
cing throughput, the detection results of two fluorine sources
provide complementary data streams, offering flexibility in
detecting label selection for optimal resolution. Compared to
conventional chiral HPLC, which requires sequential separa-
tions, our method affords rapid, separation-free discrimination
of complex enantiomeric mixtures.

To evaluate the accuracy of ee determination, we selected
4-methylmandelic acid (A;¢) as a model analyte. Solutions with
defined ee values were prepared and analyzed by '’F NMR.
Because A;¢ exhibits limited solubility in CDCl;, 10 pL of
triethylamine was added to each NMR tube to ensure complete
dissolution. Control experiments varying the amount of triethyl-
amine showed that lower amounts (e.g., 5 pL) resulted in over-
lapping '°F NMR signals, while higher amounts (15-20 uL) gave
results comparable to those obtained with 10 pL (Fig. S7). Probe
1 contains two fluorinated sites (-CF; and —~OCF;), both capable
of resolving the R and S enantiomers of A4¢; for quantification,
the CF; range was selected due to its higher resolution. Enan-
tiomeric excess values were obtained by integrating the relevant
'9F resonances and applying a correction factor to account for
the slightly different complexation affinities of boronic acid 2
toward the two enantiomers. Across the ee range tested, the
deviations between measured and actual values were less than
1.0% (Table 1 and Fig. S5). The mathematical foundation for
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Fig. 3 °F{*H} NMR spectra (OCFs range) of solutions containing chiral amine 1 (7.7 mM), 2 (7.7 mM), and analytes (15.4 mM each) in CDCls. *°F{*H} NMR
spectra were acquired on a Bruker Avance NEO 600 spectrometer (565 MHz for °F) equipped with a BBFO probe at 298 K. Data were collected with a

relaxation delay (D;) of 1 s and 32 scans.
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Table 1 Evaluation of the enantiomeric excess values using signals from
CF3 label

R-4-Methylmandelic acid (Ays)

Actual ee (%) Calculated ee (%) Deviation (%)

0 0 0
10.9 10.8 0.1
20.2 19.8 0.4
29.1 29.0 0.1
39.9 39.4 0.6
52.0 51.4 0.6
60.7 60.3 0.4
70.8 70.4 0.4
79.9 79.8 0.2
90.3 89.8 0.6

determining the ee value can be found in (Table S1). These
results confirm that the method delivers precise and reliable ee
determinations, underscoring its utility for rapid, quantitative
chiral analysis of hydroxy acids.

Conclusions

In summary, we have developed a sensitive, precise, and
separation-free '°F NMR platform for the enantiodifferentiation
of chiral hydroxy acids. The system is assembled in situ from o-
formylphenylboronic acid and a chiral amine bearing -CF; and
—-OCF; labels, producing fluorinated boronate esters whose diaster-
eomeric forms exhibit well-resolved, label-specific *°F resonances.
Dual-site '°F readout overcomes the spectral overlap that often
limits "H NMR methods, enabling the simultaneous discrimina-
tion of up to ten hydroxy acid enantiomers of diverse structures and
the accurate quantification of enantiomeric excess. With its sim-
plicity, broad analyte scope, and high throughput, this strategy
provides a versatile tool for chiral analysis in pharmaceuticals, food
chemistry, and bioanalytical applications, and its modular design
should be readily adaptable to other classes of chiral molecules.
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