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1. Introduction

Innovative CuBTC/g-CsN, materials for
tetracycline mitigation: adsorption,
photocatalysis, and mechanistic perspectivest

Palkaran Sethi,® Soumen Basu *D

*@ and Sanghamitra Barman
The widespread accumulation of antibiotic pollutants in water sources calls for advanced and efficient
remediation strategies to curb environmental contamination. In this study, a CuBTC (copper benzene-
1,3,5-tricarboxylate) with g-CsN4 heterojunction photocatalyst was synthesized via a hydrothermal
approach in varying ratios (1:1, 1:3, and 3:1) and comprehensively characterized using XRD, FESEM,
EDS, HRTEM, EIS, UV-DRS, PL, TGA, FTIR, XPS, and BET measurements, confirming the composite’s
crystallinity, morphology, elemental composition, charge transport properties, optical behavior, stability,
and porosity. Among the tested compositions, the 3:1 CuBTC/g-C3sN4 composite exhibited the highest
efficiency, achieving an impressive 97.4% degradation of 25 ppm tetracycline (TC) within just 60 minutes
under UV illumination, with a remarkable rate constant of 0.02098 min~! Stability assessments
confirmed its excellent reusability over six consecutive cycles, with only a slight decline in performance
to 82.7%. The adsorption behaviour of the composite was analyzed using six isotherm models—
Langmuir, Freundlich, Halsey, Harkins—Jura, Temkin, and Dubinin—Radushkevich—along with five kinetic
models, including pseudo-first-order, pseudo-second-order, intraparticle diffusion, Elovich, and liquid
film models. Adsorption followed the Langmuir isotherm (R? = 0.992) and pseudo-second-order kinetics
(R? = 0.968), while photocatalytic degradation aligned with pseudo-second-order kinetics (R = 0.993).
Mechanistic studies identified superoxide radicals as the primary reactive species, supported by hydroxyl
radicals, electrons, and holes in the degradation pathway. Mineralization studies revealed significant
reductions in TOC (67.8%) and COD (68.6%), while LC-MS analysis provided a comprehensive
degradation pathway, illustrating the breakdown of TC into intermediates through ring-opening and
oxidative transformations. Thermodynamic assessments indicated that the degradation process was
exothermic and spontaneous. AG, AH and AS values were found to be 92.7 J mol™, —63.84 kJ mol™},
and —0.214 kJ mol™t K~! respectively.

potential risks they pose to aquatic life. Consequently, they are
now classified as emerging pollutants.>™ Key contributors to

For over half a century, antibiotics have served as a vital shield,
protecting humans and animals from diverse pathogens.
In recent times, however, their production and use have surged
dramatically. Global antibiotic consumption was expected to
soar to 128 billion defined daily doses by 2023, marking a
staggering increase of over 200% since 2015." The persistence
of antibiotics in water sources has become a global concern
due to their detrimental effects on the environment and the
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their presence in aquatic environments include pharmaceuti-
cal industries, municipal wastewater, hospital effluents, and
sewage treatment plants.>® Tetracycline a broad-spectrum anti-
biotic is extensively used in human and veterinary medicine,
including salmon farming. Their overuse can cause serious
health issues like nephropathy, central nervous system distur-
bances, and increased antibiotic resistance.” Residual antibio-
tics harm ecosystems and contribute to the emergence of
bacterial strains with multi-drug resistance.® Thus, practical
technological solutions are necessary for their elimination.
Various approaches, such as physical adsorption,>'® chemical
oxidation,"* and biological treatments,'” have been explored
for removing tetracyclines (TCs). While each offers certain
benefits, they often come with drawbacks, including complex
procedures and risks of secondary pollution, limiting their
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practical applications.”"® In contrast, photocatalysis presents
advantages like simplicity, low energy consumption, high effi-
ciency, and minimal secondary pollution.'*'® However, photoca-
talysis can be hindered by rapid recombination of photogenerated
carriers and limited interaction with low-concentration antibio-
tics, reducing its effectiveness. To address these limitations, a
promising strategy combines adsorption and photocatalysis.'®™"°
This approach enhances degradation by first rapidly capturing
antibiotics through adsorption, followed by photocatalytic break-
down of the adsorbed pollutants and regeneration of the
adsorbent.’® Various materials, such as mineral adsorbents,
resins, activated carbons, silicon materials, polymers, metal oxi-
des, charcoal, coordination polymers, and metal-organic frame-
works, have been employed for antibiotic adsorption due to their
high surface area and functional properties, which play a key role
in enhancing adsorption efficiency.”* Coordination polymers
(CPs) are highly crystalline and porous materials formed by
transition metal ions and organic ligands.*" With adjustable pore
sizes, vast surface areas, and diverse structures, they excel in
adsorption, separation, and catalysis. Their unique combination
of metal clusters and organic linkers allows for efficient light
absorption and electron transfer, positioning them as exciting
contenders in photocatalysis.>**>® CPs gain enhanced properties
when combined with active materials. CP-carbon nanostructure
composites have recently emerged as promising solutions for
sustainable environmental applications. To enhance the photo-
catalytic activity of CPs, we integrate it with g-C;N,, transforming
the composite into an efficient photocatalyst and combining the
adsorption properties of CPs with the photocatalytic capabilities
of g-C;N,. Graphite phase nitrogenized carbon (g-C;N,) is a non-
metal semiconductor distinguished by its remarkable chemical
stability, cost-effectiveness, and availability. Due to its remarkable
photocatalytic efficiency, it is gaining heightened attention in the
field of photocatalysis.>’>° Recently, research on CP/g-C;N; com-
posites has expanded significantly, primarily concentrating on
applications such as photocatalysis, fuel cells, and the oxygen
reduction reaction, among others. For instance, a Ce-based CP/
2-C3N, composite demonstrated superior dye removal efficiency
compared to Ce-based CP or g-C;N, alone for the degradation of
methylene blue when exposed to UV-visible light.** Cu-BTC, a
well-known CP, has been widely explored for adsorption applica-
tions due to its high porosity and surface functionality. However,
its direct application in antibiotic degradation has been limited
due to its poor photo-reactivity as Cu-BTC itself does not effec-
tively absorb any light.** The incorporation of g-C;N, enhances
the composite’s photocatalytic performance by facilitating UV
light absorption. Compared to other reported composites, such
as TiO,-based materials, Cu-BTC/g-C;N, demonstrates superior
adsorption capacity and photoreactivity, making it a promising
candidate for antibiotic degradation offering a more effective and
stable solution for environmental remediations.” Also, a Bi-based
CP/g-C3N, composite demonstrated exceptional photocatalytic
efficiency for both pollutant degradation (rhodamine B) and
nitrogen fixation, offering a promising approach to converting
wastewater into nutrientrich irrigation water, addressing both
environmental and agricultural sustainability.** In another study,
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a range of MIL-88A composites doped with Ag/AgCl and sup-
ported on g-C;N, were developed for the photocatalytic degrada-
tion of the herbicide Diuron.** Another composite, AgFeO,/
G@Cu,(BTC);, exhibited superior photocatalytic efficiency under
sunlight, achieving high removal rates for antibiotic pollutants
and 87.1% COD reduction in real wastewater. The enhanced
performance is due to efficient charge transfer via a Z-scheme
mechanism facilitated by graphene.** Also, Fe-based CP doped
sesame stalk biochar exhibited higher degradation rates of 92.5%
and 86.7% for norfloxacin and tetracycline respectively.*>>°

In comparison to CP/g-C;N,, MIL-88A/Ag/AgCl, and AgFeO,/
G@Cu,(BTC); composites, the Cu-BTC/g-C3N, composite exhi-
bits superior performance in antibiotic degradation because of
its distinct structural and functional characteristics. Its adsorp-
tion capacity is improved by its much larger surface area, which
surpasses 1000 m”> g~ ' and outperforms MIL-88A/Ag/AgCl and
CP/g-C3N,. Achieving over 97% tetracycline degradation, the
Z-scheme mechanism in Cu-BTC/g-C;N, facilitates effective
electron-hole separation, outperforming the plasmonic effect-
based MIL-88A/Ag/AgCl and AgFeO,/G@Cu,(BTC); composites.
Furthermore, compared to Ag/AgCl composites that are prone
to degradation, Cu-BTC/g-C;N, shows better stability and reu-
sability, maintaining its catalytic efficiency for more cycles with
less metal leaching. Its innovative nature is further enhanced
by its economical design and environmentally friendly synth-
esis, which position Cu-BTC/g-C3N, as an excellent material for
environmentally friendly wastewater treatment. Most of the
composites fail to achieve optimal charge separation or con-
sistent performance. To address this, we developed a CuBTC/
2-C3N, (CgC) composite in different ratios as CgC11 (1:1),
CgC13 (1:3), and CgC31 (3:1). The catalysts were thoroughly
analyzed employing techniques such as XRD, FESEM, EDS,
HRTEM, EIS, UV-DRS, PL, TGA, FTIR, XPS, and BET. A sequence
of experiments were meticulously crafted to elucidate the
synergistic interaction between adsorption and photocatalysis
of tetracycline. Thermodynamic parameters such as AH®, AG®,
and AS° were diligently analyzed alongside adsorption isotherms,
adsorption kinetics, and photocatalytic kinetic models. Addition-
ally, potential mechanisms for the adsorption and photocatalytic
degradation of tetracycline were proposed.

2. Experimental approach

2.1. Materials and methods

The materials were synthesized using high-purity reagents,
including urea, cupric nitrate trihydrate, and trimesic acid all
sourced from LOBA CHEMIE and GLR INNOVATIONS. Com-
mercial tetracycline powder was obtained from Sigma Aldrich.
Ultrapure double-distilled water was utilized for all solution
preparations.

2.2. Synthesis

2.2.1. Synthesis of CuBTC. CuBTC (HKUST-1) was synthe-
sized following the method by Williams and colleagues.®’
Copper nitrate (0.716 g, 3 mmol) and benzene tricarboxylic

New J. Chem., 2025, 49, 8454-8471 | 8455


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5nj00556f

Open Access Article. Published on 06 May 2025. Downloaded on 1/29/2026 3:54:17 AM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

NJC

acid (0.421 g, 2 mmol) were dissolved in a 12 mL ethanol-water
mixture and stirred for 30 minutes at room temperature. The
solution was subsequently transferred to a Teflon-lined auto-
clave and heated for 24 hours at 383 K. After crystallization,
the autoclave was allowed to cool naturally. The resulting
turquoise-blue crystals, designated as CBT, were sonicated for
5-10 minutes in a 50:50 EtOH-H,O solution, filtered through
Biichner filtration, and air-dried for 24 hours.'%%3°

2.2.2. Synthesis of g-C;N, (graphitic carbon nitride).
To prepare g-C3N,, 40 g of urea was first dissolved in 100 mL
of water within a silica crucible and recrystallized by heating at
90 °C. The recrystallized urea was then scraped, wrapped in
aluminum foil, and subjected to thermal treatment in a muffle
furnace. The temperature was incrementally increased to 550 °C
at a rate of 10 °C per minute and sustained for two hours. This
process produced yellow-brown precipitates of g-C;N,, which were
subsequently ground into a fine powder using a mortar and
pestle, yielding the material referred to as GC.*°

2.2.3. Synthesis of the CuBTC/g-C;N, composite. A required
amount of g-C;N, solution in a 50: 50 ethanol-water mixture was
prepared by sonication for 1 hour in an ice bath. Then, benzene
1,3,5-tricarboxylic acid (0.421 g, 2 mmol) and Cu (NO3),-3H,0
(0.716 g, 3 mmol) were dissolved in a 12 mL ethanol-water
mixture. This solution was combined with the g-C;N, suspension
and sonicated vigorously for 15 minutes. The mixture was then
added to a Teflon-lined autoclave and further heated at 383 K for
24 hours. After cooling to room temperature, the resulting hybrid
nanocomposites were collected and sonicated in an ethanol-water
solution for 5-10 minutes. These were then filtered and air-dried
for 24 hours. Three distinct CgC composites—CgC11, CgC13, and
CgC31—were synthesized by varying the Cu-BTC to g-C;N, ratio at
1:1,1:3, and 3:1, respectively (Scheme 1).
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e
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2.3. Characterization

Comprehensive characterization data, including analyses from
FTIR, XRD, FESEM, BET, and other methods employed to verify
the structural, surface, and morphological properties of the
Cu-BTC/g-C3N, composite, are available in the ESL¥

2.4. Adsorption and photocatalytic degradation experiments

The adsorption and photocatalytic experiment details are pro-
vided in the ESI.{ All statistical analyses were performed using
OriginPro 2018 64-bit (OriginLab, USA). Nonlinear regres-
sion was applied to fit the adsorption isotherm and kinetic
models, as these equations do not follow a linear trend.
Standard deviations were calculated from triplicate experi-
ments, and 95% confidence intervals were determined to assess
data reliability.

3. Results and discussion

3.1. Characterization of the CuBTC and g-C;N, composites

CuBTC and g-C;N, composites in 1:1, 1:3, and 3:1 ratios,
termed CgC11, CgC13, and CgC31, were synthesized using a
hydrothermal technique. The octahedral CuBTC was formed
in situ between gC;N, sheets.

3.1.1. XRD analysis. The XRD patterns of CB, GC, and their
composites are shown in Fig. 1(a) which effectively confirm the
purity and crystalline structure of the synthesized composites.
For CB, the peaks at 6.66°, 9.5°, 11.64°, 13.42°, 17.5°, 19.08°,
20.24°, 26°, 29.34°, 36.7°, 39.38° and 47.14° were detected,
corresponding to the (200), (220), (222), (440), (422), (511),
(440), (660), (730), (751), (773), (828), and (751) planes, con-
firming the successful synthesis of the CUBTC structure.*'

Ground in

mortar pestle g-CN,

Sonicate g-C;N,
in ethanol-water

mixture

Solution A

Solution B
Copper nitrate + BTC in
ethanol-water mixture

= %
Filtered and dried the ¢ R
yield s s ‘-:'1' bl
cB gC CgC11 CgC13 CgC31

Scheme 1 Schematic illustration of the synthesis process for CgC composites.
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Fig. 1

A peak at 27.46°, corresponding to the (002) crystal plane, was
observed for GC, which is its characteristic peak.*> The XRD
pattern of all the hybrid composites aligned well with those of
CB and GC, indicating the formation of GC nanosheets and the
CB structure in the nanocomposite. Compared to pure CB and
GC, the XRD patterns of the composites showed slight shifting
in the peaks, suggesting possible interactions between them.
The relative crystallinity of CB remained intact, which may
influence adsorption performance. These findings align with
previous studies on heterojunctions,®® where crystallinity plays
a key role in adsorption efficiency and material stability.

3.1.2. FT-IR measurement. The FTIR spectra of CB, GC,
and their composites are presented in Fig. 1(b) In GC, a broad
peak between 3000 and 3300 cm ' was observed, corres-
ponding to the N—H stretching vibration, while bands in the
1200-1650 cm ™' range, with specific peaks at 1223, 1309, 1396,
1458, 1535, and 1637 cm ™', were attributed to C—N and C=N
within heterocycles. The triazine breathing mode was noted at
809 cm™'.*? For CB, distinctive peaks were observed at approxi-
mately 3300 cm™' (O-H/-OH), 1644 and 1547 cm™ ' (asym-
metric -CO,_), 1442 and 1365 cm ' (BTC carboxylate),
and 1111 em ' (C-O-Cu), with benzene ring C-H bending
vibrations at 760 and 728 cm '.** The observed shifts in key
functional group vibrations, such as the stretching modes of
Cu-0 and C-N bonds, provided evidence of strong interactions
between CB and gC in the composites. Specifically, the shift in
the Cu-O stretching band indicated coordination changes due
to the integration of g-C3;N,, while the variations in the C-N
stretching region suggested electronic interactions between the
two components. The nanocomposites exhibited absorption
peaks associated with these functional groups, with minor
shifts in wavenumbers, indicating the successful formation of
the hybrid nanocomposites.*

3.1.3. BET surface area analysis. The BET surface area,
pore size distribution, and total pore volume of CB, gC, and
their composites were assessed using N, adsorption isotherms,
as shown in Fig. 1(c) and Table 1. The CB and CgC31, which
had a higher CB ratio, display a reversible type I adsorption

This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2025

Relative Pressure (p/pg) Pore diameter (nm)

(a) XRD spectra, (b) FT-IR spectra, (c) BET surface area isotherms and (d) BJH plots of CB, g-C3N,4, CgC11, CgC13, and CgC31.

Table 1 Surface area, average pore size, and total pore volume of photo-
catalysts

Surface area Average pore Total pore

Catalyst (m*>g™) size (nm) volume (cm® g™ %)
CB 1223.9 1.66 0.5098
gC 97.5 11.23 0.2735
CgC11 112.0 5.66 0.1585
CgC13 71.8 17.29 0.3104
CgC31 913.9 2.28 0.5202

isotherm, indicating high microporosity. In contrast, samples
such as gC, CgC11, and CgC13 exhibited a hysteresis loop
typical of type IV isotherms, suggesting the presence of
mesopores. As indicated by the BJH plots in Fig. 1(d), gC,
CgC11, and CgC13 exhibited mesopores with pore sizes ran-
ging from 2 to 50 nm, whereas CB and CgC31 were micro-
porous with pore sizes under 2 nm. The BET surface area and
total pore volume of CgC31 are notably higher than those of
¢C alone, indicating that CB incorporation enhanced the
available adsorption sites which further enhanced degrada-
tion. Moreover, in comparison to similar CP-based adsorbents
reported in the literature, the specific surface area of Ti-CP
was 445.018 m> g~ ', while that of the CdS/g-C3N,/CP compo-
site was 238.43 m”> g~ . Therefore the Cu-BTC/g-C3;N, compo-
site exhibited a competitive surface area, promoting higher
adsorption efficiency and degradation.*®

3.1.4. XPS analysis. The elemental structure, oxidation
states, and core electron binding energies were analyzed utilizing
X-ray photoelectron spectroscopy (XPS). This method allowed the
distinction between two binding energies related to metal ion
spin-orbit splitting. The initial composite survey spectrum of
the CgC31 composite, primarily composed of copper, oxygen,
nitrogen, and carbon, is presented in Fig. 2(a). The spectra were
successfully deconvoluted using a least-square Gaussian-fit
model. In the Cu 2p spectrum, a peak at approximately 934.3 eV
corresponded to Cu(u) in the Cu 2p;/, state, while a peak at
954.9 eV was attributed to Cu(u) in the Cu 2p,, state, as shown
in Fig. 2(b). Additionally, shake-up satellites were observed in

New J. Chem., 2025, 49, 8454-8471 | 8457
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Fig. 2 XPS spectra of CgC31, (a) survey spectra, (b) Cu 2p, (c) O 1s, (d) N 1s, and (e) C 1s, and (f) TGA curves of CB, gC, and CgC31.

the 960-964 eV and 940-945 eV regions. The deconvoluted O 1s
spectra in Fig. 2(c) revealed two peaks at 533.3 eV and 529.8 eV,
corresponding to oxygen from water and BTC, respectively.

In Fig. 2(d), the nitrogen (N 1s) spectra displayed peaks
corresponding to graphitic N, pyrrolic N, and pyridine N at
400.7 eV, 399.2 eV, and 398.7 eV, respectively. In the C 1s
spectra in Fig. 2(e), a peak at 288.4 eV indicated the presence of
BTC, while peaks at 286.2 eV and 285.2 eV corresponded to the
C-H and C-C bonds. All results confirmed the successful
synthesis of the CuBTC and g-C;N, composite.*”*3

3.1.5. Thermogravimetric analysis. Thermogravimetric ana-
lysis (TGA) was performed to evaluate the thermal stability of CB,
¢C, and their composite CgC31, as shown in Fig. 2(f). For g-C3N,,
significant weight loss occurred between 600 and 750 °C due to
carbon nitride decomposition.’® CB showed initial water loss
near 150 °C and further weight loss between 200 and 330 °C from
the breakdown of its structure. The composite exhibited patterns
from both materials, with water loss below 200 °C, CB decom-
position around 350 °C, and final weight reduction at 550 °C due
to gC degradation.

3.1.6. FESEM-EDS mapping and HRTEM analysis. The struc-
tural properties of the synthesized composite were examined
using field emission scanning electron microscopy (FESEM).
As illustrated in Fig. 3, the FESEM images of CB, gC, and the
CgC31 composite revealed distinct morphologies. CB was char-
acterized by an octahedral structure, while gC exhibited sheet-
like formations. In the nanocomposite, both morphologies
were observed, confirming the successful integration of CB
and g-C;N,, and the construction of a heterojunction structure.
The stoichiometric composition of the nanocomposite was
determined through energy dispersive spectroscopy (EDS),

8458 | New J Chem., 2025, 49, 8454-8471

which confirmed the presence of Cu, C, N, and O. Furthermore,
elemental mapping demonstrated the homogeneous distribu-
tion of these elements, contributing to the enhanced photo-
catalytic activity of the composite. The HRTEM images of the
synthesized nanocomposite revealed agglomerated particles
within sheet-like structures, with three distinct sets of lattice
fringes identified, corresponding to the (102), (100), and (003)
crystallographic planes. The observed fringes showed d-spacing
values of 0.53 nm and 0.367 nm, attributed to CB (20 = 17.5°)
and gC (20 = 27.46°), respectively.

3.1.7. Photoluminescence (PL) analysis. Photolumines-
cence (PL) analysis was performed to assess charge carrier
migration and recombination.’® A decrease in PL intensity
suggests minimized recombination, resulting in enhanced
charge transfer and improved photocatalytic performance.’
The PL spectra in Fig. 4(a), recorded at 320 nm, showed that
pure CB and g-C3N, had the highest PL intensities, while the
CgC31 composite exhibited the lowest. This suggests more
efficient charge segregation and transport in the composite,
due to the formation of a heterojunction. As the CB content was
increased, a further reduction in PL intensity was observed,
suggesting that the majority of photogenerated charge carriers
were derived from CB.

3.1.8. UV-vis DRS analysis. Diffuse reflectance spectro-
scopy (DRS) was used to analyze the light absorption capacity
and band gap of the materials. As depicted in Fig. 4(b), signi-
ficant UV light absorption was observed in the synthesized
photocatalysts. While the bare CB material was inactive under
UV light and only adsorbed pollutants, combining it with gC
formed a composite that not only adsorbed but also degraded
pollutants under UV irradiation. The band gap energy was

This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2025
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heterojunction.

calculated utilizing a Tauc plot in Fig. 4(c), derived from the
corresponding eqn 1.

Bf—

(ahv)2 = hv — E, (1)
In this equation, the variables %, v, «, and E, represent

Planck’s constant, light frequency, absorption coefficient, and

band gap energy, respectively. The band gap was determined

where the linear portion of the plot intersects the x-axis.>> The
calculated band gaps for CB, g-C3N,, CgC11, CgC13, and CgC31
photocatalysts were 1.85, 3.07, 3.05, 2.97, and 2.92 eV, respec-
tively. Despite CB having the lowest band gap, it remained photo
catalytically inactive, serving primarily as an adsorbent, while its
composite with g-C3N, especially CgC31 exhibited enhanced
photocatalytic degradation under UV light due to the effective
heterojunction formation and synergistic charge separation.
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3.1.9. EIS analysis. EIS analysis was conducted to assess
the charge transfer efficiency of CB, g-C;N,, and the nanocom-
posite. A reduced arc radius in the Nyquist plot indicates
improved charge separation and enhanced interfacial charge
transport.>® The observed arc radii followed the order: g-C;N, >
CB > CgC31. As shown in Fig. S1 (ESIt), the incorporation of CB
and g-C3Ny led to a reduction in the arc radius, demonstrating
lower electron transfer resistance and minimized electron-hole
recombination. The CgC31 composite showed the smallest
arc radius, signifying superior conductivity and faster charge

(@) (b)

920 100

migration, which aligns with the PL analysis showing enhanced
charge separation.

3.2. Impact of the catalyst dose

The effectiveness of photocatalysis heavily depends on using
the optimal catalyst amount. Too much catalyst can lead to
particle aggregation, reducing efficiency. Using the right dosage
maximizes photon absorption and promotes efficient degrada-
tion. Tests with catalyst concentrations from 0.1 gL ' t0 0.6 g L™ *
in Fig. 5(a) showed that degradation efficiency decreased beyond
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Fig. 5 Impact of (a) catalyst dose, (b) various lights, (c) pH, (d) pzc studies, (e) scavengers, and (f) temperature. Error bars represent the standard deviation

from triplicate experiments with 95% confidence intervals.
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0.1 g L™" due to increased opacity, which scattered light and
limited its impact on the solution. Additionally, the catalyst
surface became saturated, offering no further improvement in
degradation. Thus, 0.1 g L' was identified as the optimal
concentration for future experiments.

3.3. Impact of various lights

Comparative photocatalytic experiments under UV, visible, and
natural sunlight were conducted to assess pollutant degrada-
tion. As shown in Fig. 5(b), decomposition reached 51.3%
under sunlight and 45.8% when exposed to visible light, while
the highest removal rate of 87.4% was achieved when exposed
to UV light using the CgC31 heterojunction photocatalyst.
These results highlight the superior effectiveness of UV light
in driving pollutant degradation with the developed photoca-
talyst, making it more efficient.

3.4. Impact of pH

PH plays a crucial role in controlling photocatalyst degradation
efficiency, as it influences adsorption capacity, surface charge, and
the ionization state of the catalyst.>® The photocatalyst’s point of
zero charge (PZC) was determined to be 4.57 in Fig. 5(d). Below pH
4.57, the surface is positively charged, and above it, negatively
charged. Tetracycline (TC) exhibits different ionic forms depend-
ing on the pH due to its multiple pKa values (3.3, 7.7, 9.7, and
10.7). At pH < 3, TC is positively charged, while at pH > 7.7,
it becomes anionic. TC is in a zwitterionic form in the pH range
of 3.3-7.7.%° The degradation efficiency of TC by the CgC31
photocatalyst was lower in highly acidic or basic environments
due to repulsive interactions between the ionic forms of TC and
the charged catalyst surface. However, at pH 7, where TC is in its
zwitterionic form, the electrostatic affinity between TC and the
negatively charged photocatalyst surface enhanced degradation,
achieving maximum removal efficiency (96.8%) under neutral to
alkaline conditions in Fig. 5(c). This highlights the photocatalyst’s
optimal performance in real-world applications.

3.5. Impact of temperature

The effect of temperature on tetracycline removal using CgC31 is
shown in Fig. 5(f). Experiments conducted between 30 °C and
50 °C revealed a decrease in removal efficiency with increasing
temperature, indicating an exothermic adsorption process. The
highest removal was achieved at 30 °C, where TC molecules gained
sufficient energy for adsorption. At higher temperatures, weakened
electrostatic interactions caused a shift towards desorption. There-
fore, 30 °C was chosen as the optimal temperature for the
adsorption experiments. The temperature range (25-50 °C) was
selected to evaluate the thermal effects on adsorption under
conditions relevant to practical wastewater treatment. This range
captures the influence of moderate thermal fluctuations on
adsorption efficiency, as excessive temperatures may lead to
material degradation or altered adsorption mechanisms.*

3.6. Adsorption isotherms

The fundamental equations and theoretical framework of
adsorption isotherms are provided in the ESL ¥

This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2025
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The adsorption data were first analyzed using the Langmuir
isotherm model, which assumes monolayer adsorption on a
homogeneous CgC31 surface. Here, Q,, represents the maximum
adsorption capacity or the highest amount of tetracycline adsorbed
per gram of CgC31 (mg g ').>® The Langmuir constant, Ki
(L mg "), reflects binding efficiency and was used to calculate
the separation factor (R;). Fig. 6(a) inset shows that R;, decreases as
the initial concentration (Cy) increases, with 0 < Ry, < 1 confirm-
ing favorable adsorption.

The Freundlich isotherm describes adsorption on hetero-
geneous surfaces in layers. An n value above 1 indicates
effective sorption, and the Freundlich constant, approximately
3.546, suggests a suitable adsorption mechanism, while a 1/n
value between 0 and 1 further supports favourable adsorption.®”
The Freundlich plot is shown in Fig. 6(b). The Dubinin-Radush-
kevich (D-R) model, based on Polanyi’s theory, indicates non-
uniform adsorption, with an average adsorption energy (E) of
0.3429 kJ mol ', suggesting physisorption in Fig. 6(c). The Temkin
isotherm, seen in Fig. 6(e), proposes that the adsorption heat
decreases as bonding increases between the adsorbate and the
adsorbent. With f representing maximum bond energy, BT = RT/f}
was calculated at 10.22 k] mol ", indicating physical adsorption.®
The Harkins-Jura and Halsey in Fig. 5(e and f) isotherms illustrate
heterogeneous pore distribution and multilayer adsorption. The
Langmuir isotherm with the highest R* value indicates monolayer
adsorption on CgC31, while the D-R model confirms an uneven
adsorbent surface.” To further validate the model accuracy, statistical
error values were calculated, where the Langmuir model exhibited the
lowest y* (0.288) confirming its superior fit compared to the other
models. These findings indicate monolayer adsorption as the domi-
nant mechanism, consistent with previous studies (Table 2).*°

3.7. Adsorption kinetics

The primary equations and theoretical framework for adsorp-
tion kinetics are detailed in the ESI.f The parameters and
coefficients for the pseudo-first-order, pseudo-second-order,
intraparticle diffusion, Elovich, and liquid film models are
summarized in Table 3. A satisfactory correlation with the experi-
mental data is observed across all models, with the pseudo-first-
order kinetic model showing the highest fit (R> = 0.96075) with
95% confidence intervals for the adsorption of tetracycline onto
CgC31, suggesting that the rate of tetracycline adsorption onto
CgC31 is primarily governed by the initial concentration of
tetracycline in the solution, reflecting a surface-driven inter-
action. Additionally, strong correlations with intraparticle diffu-
sion (R* = 0.93594) and liquid film models (R* = 0.96075) as
compared to the other models as pseudo-second-order (R* =
0.88119) and Elovich model (R*> = 0.89516) with similar con-
fidence ranges suggest that both internal particle diffusion and
boundary layer effects contribute significantly to the adsorption
efficiency of tetracycline onto CgC31, highlighting a multi-step
adsorption pathway (Fig. 7).**

3.8. Photocatalytic degradation kinetics

The photocatalytic degradation dynamics of the antibiotic
were assessed by monitoring its concentration via UV-vis
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spectrophotometry, providing degradation rate and time data,
with fundamental equations detailed in the ESI.f The kinetic
analysis indicates that the degradation process aligns closely
with pseudo-first-order kinetics, as evidenced by an R* value
near unity with a rate constant of k = 0.02098 min~'. This
suggests that the reaction rate is primarily dependent on the
concentration of the tetracycline pollutant, highlighting the
efficiency of the composite in facilitating rapid degradation.
The efficiency of various photocatalysts, including CB, gC,
CgC11, CgC13, and TiO2-P25, was compared in a series of
same experiments. The results revealed that CgC31 outper-
formed the others, exhibiting a rate constant of 0.02098, which
was significantly higher than those of CB (1 x 10~'® min™"), gC
(0.0038 min ), TiO,-P25 (0.0062 min~'), CgC11 (0.003 min %),
and CgC13 (0.004 min~'). A synergy factor (R) was calculated
using the below eqn (2) to assess the enhanced performance of
the composite materials.

_ kcBigC @)

ke + kgc

This factor was derived using the photodegradation rate
constants of the CB/gC composite and its components. The
highest synergy factor of 5.53 was observed for CgC31 as
compared to 0.789 for CgC11 and 1.053 for CgC13 which corre-
lated with its superior photocatalytic degradation efficiency.®>
The enhanced photocatalytic activity of the CgC31 composite
can be attributed to the synergistic effects between Cu-BTC’s high
surface area and porosity and g-C3N,’s electronic properties.

8462 | New J Chem., 2025, 49, 8454-8471

Cu-BTC provides abundant active sites for adsorption, while gC
facilitates charge transfer, reducing electron-hole recombination
and improving photocatalytic efficiency. The intimate interfacial
contact between the two materials enhances charge separation
and strengthens adsorption interactions, leading to superior dye
removal performance.®® This is further supported by literature
findings on charge transfer dynamics in similar heterojunction
systems.®

3.9. Thermodynamic studies

The thermodynamic analysis of tetracycline removal onto
CgC31 indicates that the process is spontaneous at lower
temperatures (303 K), as shown by the negative Gibbs free
energy (AG° = —0.0927 k] mol™"). However, at higher tempera-
tures (308-323 K), AG® becomes positive suggesting reduced
adsorption efficiency. A more negative AG with increasing
temperature suggests enhanced feasibility of adsorption at
higher temperatures. The negative enthalpy change (AH® =
—64.8359 k] mol ) confirms that adsorption is exothermic,
indicating strong interactions between tetracycline mole-
cules and CgC31. Since adsorption releases heat, higher
temperatures may reduce adsorption efficiency by shifting
equilibrium toward desorption making the process more favor-
able at lower temperatures. The positive entropy change (AS° =
0.214286 J mol ' K™ ') suggests increased disorder at the solid-
liquid interface, likely due to tetracycline molecules displacing
water molecules on the adsorbent surface. However, as tempera-
ture increases, AS° slightly decreases, indicating a reduction in

This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2025
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Table 2 Adsorption isotherm parameters for tetracycline adsorption on CgC31

Equilibrium isotherms Equation Parameters Values
Langmuir C_ 1 N —C Qm (mg g™ 15.74
Ge  OmKL  Om Ky (Lmg™) 0.069
R’ 0.99188
X 0.288 best fit
Freundlich e = KsCM'" K [(mg g ).(L mg™)"""] 3.546
1/n 0.3204
R 0.82594
b'e 1428081 very high
Freundlich qe = KgCM" Kg [(mg g7 ").(L mg™ )" 3.546
1/n 0.3204
R 0.82594
x> 1428081 very high
D-R model Ing. = InQs — Be® Qs (mg g~* 57411.65
[(mol J~ ) 4.25
k] mol™~ 0.3429
R2 0.67093
x NA
Harkins-Jura 1 (B 1 loa C. A 0.00723
ge \4) a8 B 2.156
R’ 0.81257
X 6188.36 very poor fit
Temkin ge = BrInKy + BrlnC, Br 0.24626
Kr (Lmg ") 22.309
B (] mol ™) 10220.86
R’ 0.82543
x* 299.6 moderate fit
Halsey isotherm 1 1 N —3.121
Ing.=-InK —-InC
Nge =310 n e K(mgL™h 51.96
R 0.82594
X 670.61
Table 3 Adsorption and degradation kinetic parameters
Kinetic model Equations Parameters Values
Adsorption kinetics
Pseudo-first-order nf1_4 ot k; (min™") 0.03565
—In({l1-=) = ?
e ! Q. (mgg™ 2.4622
R 0.96075
Pseudo-second-order 1 n ki k, (min™) 0.03397
qt kZQez qe Qe (mg gil) 0.3956
R® 0.88119
" cer i "
Intra-particle diffusion G=kE+C K; (min 7)1 0.02541
C, (mgg™) 0.03029
R 0.93594
Elovich model 1 1 a(mgg ' min~" 0.6485
¢ = ~In(@f) + =In(7) (mgg™ )
B B b (g mg™) 11.88
R® 0.89516
Liquid-film model —In(1 — F) =Ky x t Kiq 0.0356
R 0.96075
Degradation kinetics
Pseudo-first-order In(Cy) = In(Co) — kyt & (min™") 0.02098
R 0.99268
Pseudo-second-order o 1 n Ea k, 0.2729
C kCe G R? 0.90586

randomness. These findings highlight that tetracycline adsorp- increasing AG°.** The theory, equations, and plot provided in

tion is thermodynamically favorable at moderate temperatures, Fig. S2 and Table S1 (ESI{) were used for the thermodynamic
but higher temperatures reduce its efficiency due to the calculations.
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triplicate experiments. The 95% confidence intervals for the best-fitting model are shown.

3.10. Possible adsorption and photocatalytic mechanism with
the effect of scavengers

The adsorption mechanism of the CB/g-C;N, composite for
tetracycline hydrochloride can be explained through a combi-
nation of potential interactions including hydrogen bonding,
pore filling, n-m interactions, van der Waals forces, and electro-
static interactions. The presence of hydroxyl and carboxyl
groups on the composite surface suggests that hydrogen bond-
ing with tetracycline’s polar functional groups likely plays a
significant role in adsorption.

8464 | New J Chem., 2025, 49, 8454-8471

Additionally, the porous nature of CB/gC, observed through
BET surface area analysis, points toward pore-filling as an
effective means of trapping tetracycline molecules within the
composite’s structure. The n-n interactions between the aro-
matic rings of tetracycline and the composite could also con-
tribute to the composite’s affinity for the antibiotic, aligning
with observed trends in adsorption studies of similarly struc-
tured pollutants.

Electrostatic forces may influence adsorption as well, given
that the pH of the solution affects both the composite’s charge

This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2025
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and tetracycline’s ionization state, which can favor attraction or
repulsion based on the pH. These combined mechanisms
suggest that the Cu-BTC/g-C;N, composite leverages multiple
types of interactions for effective adsorption of tetracycline,
confirming its potential as a versatile adsorbent for environ-
mental remediation.

The energy levels of the valence band (VB) and the conduc-
tion band (CBT) were determined using eqn (3) and (4)
provided below.

Eyvg =X — E. + 0.5E, (3]
Ecpr = Evg — Eg (4)

In these equations, Ecgr and Eyg denote the energies of the
conduction band and the valence band, respectively. X signifies
the compound’s electronegativity, while E. is the electron
energy relative to hydrogen, which is set at 4.5 eV.

The Ecpr values for CB and g-C;N, were determined to be
0.52 eV and —0.99 eV, respectively, while their corresponding
Eyg values were determined to be 2.37 eV and 2.08 eV,
respectively.®>°°

The degradation process is primarily driven by electrons in
the conduction band (CBT) and holes in the valence band (VB),
along with reactive species such as superoxide and hydroxyl
radicals, which are the key players.®” A scavenger study deter-
mined the predominant species involved in the degradation
mechanism. Various scavengers were utilized, including
dimethyl sulfoxide (DMSO), methanol, benzoquinone (BQ),
and isopropyl alcohol (IPA), to selectively quench electrons
(e7), holes (h"), superoxide radicals (0,°~), and hydroxyl radi-
cals (OH*), respectively.”® In the absence of any trapping
agents, the antibiotic underwent 87.2% degradation. However,
the addition of scavengers to the reaction medium significantly
suppressed the photocatalytic degradation rate. The compar-
able inhibition effects observed in Fig. 5(e) for all scavengers
suggest that multiple reactive species, including holes, elec-
trons, superoxide radicals, and hydroxyl radicals, were actively
involved but superoxide radicals contributed the most to the
degradation process.

So upon exposure to light, electrons within the valence bands
of the semiconductors become excited and transition to their
respective conduction bands. When the semiconductors are in
close proximity, holes migrate from the more positively charged
valence band of CB to the less positively charged valence band of
¢C, effectively inhibiting the recombination of photogenerated
charge carriers. Concurrently, electrons transfer from the more
negatively charged conduction band of gC to the less negatively
charged conduction band of CB. Within CB’s conduction band,
these electrons participate in the reduction of oxygen to pro-
duce O,°, which subsequently reacts with water to generate
*OH radicals. These oxidative species effectively degrade TC
into H,0, CO,, and other less toxic products. Additionally, the
holes in the valence band of g-C;N, react with water to produce
OH* radicals, further oxidizing pollutants into simpler com-
pounds. The effective separation of electron-hole pairs and the
reduction of recombination greatly improve the photocatalytic
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performance of the CgC31 composite, as depicted in Scheme 3.
The possible reaction steps are presented in the following
equations.

CB/gC+hm — e +h' 5)

€ cert Oy & Oy° (6)

0, * + H,0 — HOO*® + OH* (7)

h'yg + OH™ — OH® (8)

OH*/h" + pollutant — degraded products 9)

3.11. Mineralization studies

The intermediates formed during the photodegradation of
organic dyes were identified by measuring total organic carbon
(TOC) and chemical oxygen demand (COD) during irradiation.
After 60 minutes of UV light exposure, TOC and COD reduction
efficiencies for TC were observed to be 67.8% and 68.6%,
respectively. As shown in Fig. 8(a), the solution was miner-
alized, with the remaining intermediates exhibiting low minera-
lization potential. The formation of intermediate organic com-
pounds during the process, before complete conversion of TC
into CO, and simpler byproducts, led to a lower percentage of
TOC and COD removal compared to the degradation rate.

3.12. Probable degradation pathway of tetracycline

The products and the intermediates generated during the
photocatalytic degradation of tetracycline (TC) were analyzed
using LC-MS. The corresponding mass spectra are presented in
Fig. S3 (ESIt). The degradation process was found to proceed
via three distinct pathways, as illustrated in Scheme 2.
In pathway I, the first intermediate, product 1 (m/z = 462),
undergoes further decomposition, yielding two secondary inter-
mediates: product 2 (m/z = 434) and product 3 (m/z = 478).
These intermediates lead to the formation of additional minor
intermediates and ring-opened byproducts as the reaction
progresses. Pathway II begins with the formation of product 8
(m/z = 434) through the loss of an N-methyl group, resulting
from the cleavage of the N-C bond. This intermediate subse-
quently undergoes ring cleavage and dehydroxylation via oxida-
tion by hydroxyl radicals, leading to the formation of product 9
(m/z = 304). In pathway III, product 11 (m/z = 475) is formed via
a 1,3-dipolar cycloaddition at the double bond, followed by a
rearrangement and oxidation by hydroxyl radicals. Product 11
is then converted to product 12 (m/z = 437) through N-C bond
cleavage and hydroxyl substitution reactions. Further degrada-
tion transforms product 12 into product 13 (m/z = 210) via the
loss of methyl and hydroxyl groups and the cleavage of the C-C
bond, leading to the breakdown of rings. Subsequent oxidation
of products 9 and 13 generates product 10, which is identified
as the final intermediate before complete mineralization. The
degradation process ultimately results in the production of
simpler byproducts, primarily CO, and H,0, completing the
mineralization of TC (Scheme 3).
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3.13. Reusability studies 80%, confirming the reusability of CgC31. The reduction in

Evaluating the durability of a photocatalyst is essential for its
practical application. To assess the repeatability and photo-
stability of the CgC31 photocatalyst, recycling experiments were
conducted under identical conditions to observe the photode-
gradation of TC over multiple cycles. Following each cycle, the
catalyst was separated using centrifugation, cleaned, dried, and
then reused in subsequent cycles. As illustrated in Fig. 8(b),
after six cycles, the degradation efficiency remained around

)

Tetracycline OH O HO IC_|) o]

17-TT interactions |

Hydrogen !
bonding Electrostatic
! interactions

Pore filling I

T gCN,

ADSORPTION

Scheme 2 Possible adsorption and photocatalytic mechanism.
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Tetracycline

efficiency from 97.4% to 82.7% may be attributed to catalyst
loss during recovery and the accumulation of untreated inter-
mediates on the surface, which could block pores and active
sites. Furthermore, the structural stability of the CgC31 catalyst
was confirmed through XRD analysis after six cycles (Fig. 8(c)),
indicating that the positions and intensities of the diffraction
peaks remained consistent, with no additional peaks observed,
confirming the preservation of the crystal structure. Hence, this

CO, + H,0
+
Simpler
products

H,0

Simpler
products

PHOTOCATALYTIC DEGRADATION
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promising adsorption and photocatalytic performance of our Its dual-functionality—adsorption and photocatalysis—allows
composite suggest its potential application in wastewater for effective tetracycline degradation under UV light condi-
treatment plants for the removal of antibiotic contaminants. tions, making it energy-efficient compared to conventional
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Table 4 Contrast with different photocatalysts for tetracycline degradation
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Photocatalyst Dose (g L") Initial concentration of TC (ppm) % Degradation Time (min) Ref.
Bi,05/Sb,S; 0.3 10 91.5 120 68
g-C5N,/Sb,S; 0.2 5 99 120 53
Sb,S,:/ZnIn,S, 0.3 10 85.36 140 69
BiVO,/Sb,S; 0.3 10 88.7 120 70

TiO,/GO 0.6 20 920 240 71
CB/g-C3Ny 0.1 25 97.4 60 Present work

photocatalysts like TiO,. Additionally, its structural stability
over multiple cycles indicates feasibility for long-term use
in real-world treatment systems. Future studies could explore
scaling up the composite for efficient removal of contami-
nants like heavy metals, antibiotics, dyes and other organic
pollutants. The composite can be incorporated into advanced
filtration systems in industrial wastewater plants.

As shown in Table 4, our catalyst surpasses previously
reported studies, demonstrating exceptional effectiveness even
at lower dosages. The CB and gC combination stands out,
achieving remarkable results in this work.

4. Conclusion

This study introduces an innovative CB/gC heterojunction photo-
catalyst synthesized via a sustainable hydrothermal approach,
designed for effective antibiotic removal, particularly tetracycline,
from wastewater. Characterization techniques including XRD,
XPS, FE-SEM-EDS, TGA, BET, EIS, FTIR, HRTEM, UV-DRS, and
PL validated the successful synthesis, structure, and stability of
the composite. SEM imaging highlighted the seamless integra-
tion of gC onto CB, forming a heterojunction with enhanced light
absorption and significant surface area. The CB/gC composite
exhibited exceptional photocatalytic performance, achieving
97.4% degradation of 25 ppm tetracycline within 60 minutes
under UV light. The degradation follows a pseudo-first-order
reaction with a rate constant of 0.02098, which is 2.1 x
10™ times higher than that of pure CB and 5.5 times higher
than that of pure gC;N,. This demonstrates strong synergy in the
composite. Notably, the rate constant is 3.39 times greater than
that of the commercial TiO,-P25 photocatalyst. Key parameters
such as the catalyst dose, pollutant concentration, pH, light
sources, and scavenger analysis were systematically optimized,
revealing the dominant roles of *OH radicals, electrons, holes,
and superoxide species in driving the degradation pathway.
Notably, the catalyst demonstrated high reusability, maintaining
over 82.7% degradation efficiency across six cycles. Post-use XRD
analysis confirmed its structural resilience, while TOC and COD
measurements indicated substantial reductions of 67.8% and
68.6%, respectively, reflecting effective pollutant mineralization.
Degradation intermediates and products were mapped using
LC-MS, offering insights into the degradation mechanism. This
study establishes CB/gC as a powerful, sustainable solution for
antibiotic remediation, with potential for broader applications in
solar-driven environmental purification, positioning it as a robust
tool for addressing water pollution challenges. However, one

8468 | New J. Chem., 2025, 49, 8454-8471

potential challenge in practical applications is that the presence
of other contaminants in industrial wastewater may lead to pore
blockage or surface fouling, potentially affecting the photocata-
Iytic efficiency. However, this can be mitigated by optimizing
pretreatment steps or periodic regeneration of the catalyst
to maintain long-term performance. Also, the absence of ESR
analysis limits the direct identification of reactive species.
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