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Impact of nanoparticle morphologies on property
prediction using explainable AI

Tommy Liu and Amanda S. Barnard *

Every decision made during a machine learning pipeline has an

impact on the outcome. Feature selection can reduce overfitting

and focus models on the attributes that matter most, and sample

selection can reduce bias to ensure models recognise patterns

comprehensively. eXplainable AI (XAI) can provide quantitative

ways of evaluating the impact of these decisions, and help ensure

the right data is used for training models predicting structure

property relationships. In this paper we explore the use of residual

decomposition with Shapely values to identify which nanoparticle

shapes are most influential in predicting charge transfer properties

of gold nanoparticles and how they impact the ability to predict the

properties of the different morphologies.

The most important decision when using machine learning to
predict the structure–property relationships of nanomaterials is
which structures to include in the training set.1 Unlike conven-
tional physics-based and phenomenological models, which can
be capable of reliable extrapolation,2,3 machine learning excels
at interpolation,4,5 so it is essential that the training set con-
tains a diverse set of samples that comprehensively cover the

configuration space.6–8 Training sets do not need to be
exhaustive,9 but some configuration spaces are combina-
torial,10,11 making it difficult to decide what to exclude without
compromising predictive performance. The value of a machine
learning-based structure–property relationship is that it can
predict the properties of unseen nanomaterials, and this is
redundant if almost all samples must be seen to ensure the
results are reliable. One way to overcome this dilemma is to
undertake an exploratory (preliminary) study using limited
numbers of samples with extreme diversity, and measure
exactly what each structure is doing to the model and its ability
to predict the properties.

eXplainable AI (XAI)12 provide a suite of post-hoc model-
agnostic methods capable of forensic examination of machine
learning models.13 XAI can help researchers understand which
structural features are most important to the underlying
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New concepts
This paper demonstrates a new application of eXplainable AI (XAI) using
a technique known as residual decomposition with Shapley values
(RSHAP) to evaluate how nanoparticle morphologies impact predictions
of charge transfer properties. Unlike traditional physics-based models
that excel at extrapolation, machine learning approaches typically require
diverse but representative training sets to enable accurate interpolation.
This study applies RSHAP to a dataset of gold nanoparticles to quantita-
tively reveal which morphologies enhance or degrade the prediction of
ionisation potential and electron affinity. This method differentiates
nanoparticle contributions as ‘‘givers’’ or ‘‘takers,’’ identifying morphol-
ogies that significantly improve predictive accuracy versus those that
negatively influence outcomes. The approach provides a granular view
of data valuation by decomposing residual predictions into pairwise
interactions among samples. This technique contributes novel insights
into nanoscience by clarifying the role individual shapes play in pre-
dictive models, aiding strategic selection of morphologies for training
sets. It specifically underscores that including certain unconventional or
polycrystalline shapes may not necessarily degrade predictive perfor-
mance, challenging typical data exclusion practices and offering an
evidence-based approach for optimizing experimental and computational
resources in nanotechnology research.
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prediction,14 regardless of the model architecture, and therefore
how removing structural features during data pre-processing
impacts the outcome.15–17 XAI can also help researchers under-
stand which individual structures are most influential,18,19 and
how decisions to remove outliers or restrict the configurations
space to sub-set of samples affects property predictions. This can
assist in data valuation, and inform data acquisition to insure that
costly or time-consuming experiment are focused on structures
that improve performance. Recently a new method known as
RSHAP was reported20,21 that decomposes the residual of model
predictions to explain how sample instances contribute to the
prediction of themselves and others, and how choosing the right
data can make a difference.

A long standing topic in nanoscience has been the relation-
ship between the morphology of nanoparticles and their
properties.22–28 It has been well-established that some proper-
ties are shape-dependent,29–32 and there is compelling evidence
that other properties are affected by the overall shape,33,34

particularly those related to the surfaces.35,36 In these cases it
is clear that a diverse range of shapes should be included in
predictive studies to capture latent relationships, but it is
unclear which shapes and how many of them. In this study
we apply the RSHAP approach to a modest set of gold nano-
particles to identify which morphologies contribute most to the
residual of models predicting the ionisation potential (IP) and
the electron affinity (EA), using a public data set originally
generated with electronic structure simulations. We compare
models trained using features describing the structure of entire
nanoparticles or those describing just the surfaces, and find
that different shapes can improve overall model performance
and the ability to accurately predict the charge transfer proper-
ties of other shapes.

The nanoparticle data set37 used here contains 2248 gold
nanoparticles, but was not generated as part of this study.
In this study we use the 691 sample structures that have been
labelled with IP and EA ranging in size from 13 atoms to 2479
atoms in size, described by a range of manually extracted
features outlined in the metadata. The feature space includes
the number of Au atoms with coordination numbers (CN),
generalised coordination number (GCN) and q6q6 order para-
meters, calculated using the NCPac software38 based on the
total atoms in the nanoparticle (T), the bulk atoms (B) and the
surface atoms (S). The method for calculating these features is
reported elsewhere.39 The feature space also contains various
bond lengths and angles which would be common to all groups
and therefore not used in this study. For the purposes of this
demonstration, we have used subsets of features for T and S
feature groups (descriptors), which are entirely disjointed. The
B descriptor has been omitted as it is assumed interior atoms
have little or no impact on surface charge transfer properties,
and a comparison of T and S will be sufficient to determine if
models predicting surface properties should be trained exclu-
sively with surface features. This assumption will only hold for
samples that have a significant number of interior atoms. For
example, it has been reported that in the case of Nb, structural
isomerism has a very strong effect on the reactivity of small Nb9

and Nb12 clusters40 (which have no interior atoms), which would
invalidate this assumption. In the present study only one sample
(out of 691) was characterised in the meta data as ‘‘all surface’’
(bulk atom coordination number is NaN). Details of the data set,
the feature space and descriptors are provided in the SI.

The morphology identifiers (IDs) are detailed in Table 1,
along with the population of each of these shapes. Each
nanoparticle in the data set is annotated by a morphology
identifier as an external label that is not used for training,
and the distribution of the charge transfer properties for each
morphology is shown in Fig. 1.

We have trained regression models to predict the IP and EA
for the T and S descriptors. Linear Ridge regression41 was
compared to XGBoost42 and found to be superior for each
descriptor and target label. Details of the methods, model
tuning and hyperparameters are provided in the SI, but the
final model scores are listed in Table 2. Fig. 2(a) and (b) show
the IP and EA parity plots for the testing set with the T
descriptor, and Fig. 3(a) and (b) show the IP and EA parity
plots for the S descriptor, respectively. In each case the points
are annotated by the nanoparticle morphology. The learning
curves, and feature importance profiles are provided in the SI.
The testing results (Table 2) show that the model scores are
imperfect, with numerous samples having significant residuals
(see SI). The charge transfer properties for some morphologies
are more difficult to predict than others, regardless of their
values or distributions.

A better understanding of the influence of certain samples
and morphologies can be achieved using concepts from

Table 1 External labels used for annotation (not used for training). N = the
population in the data set following data cleaning (in %). m = modified
(chamfered edge), t = minimally truncated vertex (removal of vertex
atoms). * Contains twinning and/or stacking faults (358 nanoparticles),
representing 52% of the data set

ID Morphology Facets N

C Cube (hexahedron) {100} 11
CO Cuboctahedron {100}, {111} 11
DH* Decahedron {110}, {111} 152
GRC Great rhombicuboctahedron {100}, {110}, {111} 13
HO Hexoctahedron {123} 24
IH* Icosahedron {111} 5
OH Octahedron {111} 10
POLY* Irregular polycrystalline particle Various 206
RD Rhombic dodecahedron {110} 9
RH Rhombi-truncated hexahedron {100}, {110} 22
RO Rhombi-truncated octahedron {110}, {111} 9
SRC Small rhombicuboctahedron {100}, {110}, {111} 15
T Tetrahedron {111} 11
TC Truncated cube {111} 8
TH Tetrahexahedron {210} 10
TO Truncated octahedron {100} 19
TR Trisoctahedron {331} 15
TZ Trapezohedron {311} 9
mTO Modified truncated octahedron {100}, {110}, {111} 26
tHO Truncated hexoctahedron {123} 29
tRD Truncated rhombic dodecahedron {110} 7
tT Truncated tetrahedron {111} 21
tTH Truncated tetrahexahedron {210} 22
tTR Truncated trisoctahedron {331} 5
tTZ Truncated trapezohedron {311} 22
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cooperative game theory such as computing the Shapley values
(fi),

43,44 as described by:

fi ¼
X

S�Fnfig

jSj!ðjF j � jSj � 1Þ!
jF j! vðS [ figÞ � vðSÞ½ �: (1)

where F is the set of all samples, i is an individual nanoparticle i
A F, and v(�) is the cooperative game (the loss). Shapley values
are the weighted overage over all possible subsets that do not
contain i and the marginal effect of i is measured by v(S,{i}) �
v(S). One of the core concepts around using Shapley values is
the additive property, where the sum of the Shapley values of
each individual sample i sums to the value of the set, that is
Pn

i¼1
fi ¼ vðFÞ. By solving for fi for each instance, we can identify

the nanoparticles most responsible for improving model
accuracy.45,46 This can inform which types of new data instances

we should generate or sample to produce better models; which
nanoparticle shapes are more ‘‘valuable.’’

The residual decomposition framework for Shapley values
(RSHAP) extends the concept of data value20 to consider the
pairwise effect of each sample instance on other instances (in
the context of the model), in terms of their contribution and
composition (CC). The contribution measures how much an
individual sample affects the predicted outcomes of other
samples, and the composition measures how other samples
affected the model prediction for a given sample. These ‘‘CC’’
effects are calculated by setting the value function v(�) to be the
impact that a sample xi has on the predicted outcomes of all
other samples in F\{xi}, and is precisely evaluated using the
residual values over the entire set as:

v(S) = {fS(xi) � yi}
n
i=1. (2)

The resultant contribution-composition matrix (‘‘CC-matrix,’’
F) contains rows of Shapley values fi for each ith nanoparticle,
and n values predicting how much i affects the prediction of all
n nanoparticles (including i). A simple interpretation of a
CC-plot is outlined in Fig. 4, where positive Contribution values
indicate that instances work to make the model worse, and
negative contributions work to improve the performance of
the model. This method has recently been used to explore the
impact of specific chemical elements on the prediction
of properties of dilute solutes, perovskites, and metallic
glasses,21,47 presenting the CC-matrix via ‘‘CC-plots,’’ and the

Fig. 1 Distribution of (a) the ionisation potential (IP) and (b) the electron
affinity (EA) for each of the Au nanoparticle morphologies listed in Table 1,
following data cleaning to remove outliers.

Table 2 Ridge regressor model performance trained with each descrip-
tor, predicting each charge transfer property

Descriptor

Ionisation potential (IP) Electron affinity (EA)

MAE RMSE R2 MAE RMSE R2

T (all) 0.041 0.003 0.863 0.039 0.003 0.922
S (surface) 0.048 0.004 0.818 0.048 0.004 0.890

Fig. 2 Model testing results predicting (a) the ionisation potential (IP) and
(b) the electron affinity (EA) for Au nanoparticle morphologies listed in
Table 1, using the T descriptor describing the structure of the entire
nanoparticles.
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pairwise interactions via heatmaps. Code and notebooks to
reproduce these results are provided at ref. 48.

The CC-plots for the T descriptor generated using all Au
atoms in each particle are shown in Fig. 5 and 6, for the IP and
EA of the testing sets, respectively. Firstly, we see that the
majority of the samples lie around the origin indicating that
their overall impact is relatively low. In Fig. 5(a) and 6(a) the

CC-plots are annotated by the charge transfer properties, and
we can see that higher energies occupy the upper left or the
lower right quadrant. The upper left quadrant contains samples
that contribute more to the residuals, making the prediction of
the IP or EA worse, but with low residuals of their own. This can
occur when data that does not fit the trend of the model or
arose from a different distribution (outliers) and we can think
of them as the ‘‘takers.’’ The lower right quadrant contains
samples that have a negative contribution to the residuals,
improving the models, but having a higher residual themselves.
We can think of them as the ‘‘givers.’’ In contrast, a large
number of low IP and EA samples reside in the upper right
quadrant, where the particles have a high residual, and
increase the model residuals on other samples. These particles
significantly reduce model performance. Finally, in the lower
left quadrant are the samples that have low residuals and
decrease the residuals on other samples. These nanoparticles
significantly improve model performance.

In Fig. 5(b) and 6(b) the CC-plots are annotated by the
morphologies, where we can see that the undesirable morphol-
ogies is the upper right quadrant include the highly faceted tTZ,
tTR and tTH. These are shapes have 24 high index facets with
truncated vertices,49,50 resulting in 38 facets. These facets are
high energy planes and these shapes are usually omitted from
most studies due to the reduced thermodynamic stability; a
decision that is supported by the residual decomposition that
indicates they decrease model performance even when the
formation energetics are not considered. Very few of these
shapes occupy the desirable lower left quadrant of morpholo-
gies with low residual that also reduce the residuals on other
nanoparticles. When using the T descriptors calculated using
all Au atoms most desirable shape to include to improve the
prediction of the IP is the octahedron (OH) and the most
desirable shape to include to improve the prediction of the
EA is the cube (C); both shapes that are commonly included in
computational nanoscience research.51

The CC-plots for the S descriptor generated using the surface
Au atoms in each particle are shown in Fig. 7 and 8, for the IP
and EA of the testing sets, respectively. Although the distribu-
tion of the overall CC-plots for the S descriptor group are
similar to the T group, the separation of the high IP and EA
nanoparticles into givers and takers is more distinct, though
there are far more givers (of higher residuals) than takers.
There are also far more nanoparticles in the undesirable upper
right quadrant, and far fewer in the desirable lower left quad-
rant. Comparing the morphology-annotated Fig. 7(a) and 8(b)
with Fig. 5(b) and 6(b) we can see highly faceted near-spherical
nanoparticle are more centralised in the CC-plots, indicating
that the impact of these shapes on the model residuals is
mitigated by using descriptors based only on the surface atoms.

Regardless of the descriptor, POLY samples, which include a
wide variety of shapes with numerous internal point defects,
twins, staking faults, surface facets, terraces, edges, kinks,
vertices and protrusions,52 are rarely outliers in the CC-plots.
The ‘‘teal hexagon’’ annotation are most tightly packed in the
centre of the CC-plots, indicating that the impact of POLY on

Fig. 3 Model testing results predicting (a) the ionisation potential (IP) and
(b) the electron affinity (EA) for Au nanoparticle morphologies listed in
Table 1, using the S descriptor describing the structure of the surfaces of
the nanoparticles.

Fig. 4 An example of contribution and composition values for an exam-
ple dataset of five samples. Red values indicate the residual value the
model produces for that instance, black values indicate the contribution
effect that an instance has upon another. Figure reproduced from Liu and
Barnard under a CC 4.0 BY Deed license.

Communication Nanoscale Horizons

Pu
bl

is
he

d 
on

 1
0 

N
ov

em
be

r 
20

25
. D

ow
nl

oa
de

d 
on

 1
1/

19
/2

02
5 

6:
55

:5
2 

PM
. 

View Article Online

https://doi.org/10.1039/d5nh00683j


This journal is © The Royal Society of Chemistry 2025 Nanoscale Horiz.

the models, and the predictions of more perfect zonohedrons,
is low. Polycrystalline particles are often excluded from studies
of nanomorphology and machine learning of nanoparticles,
usually due to reduced thermodynamic stability53 with respect
to regular zonohedrons, but the present results suggest these
decisions may be unfounded. In this case including a diverse
mix of irregular morphologies does not significantly degrade
model performance.

The CC values can also be used to analyse the pairwise
effects of samples in the form of a heatmap. A CC-heatmap
shows how much each morphology contributes to the residuals
across the rows and the composition of each of the residuals
in the columns. Individual cells in the heatmap based on
some morphology (scaled to [�1, 1]) represent how much the

particular shape and structure of nanoparticle contributes to
our ability to accurately predict the charge transfer properties of
others. This is achieved by changing the Shapley valuation
function and normalisation to measure contribution values
using the residual values ei over each of the samples, as
given by:

v(S) = L(fS(X), Y). (3)

Fig. 9(a) and (b) show the pairwise CC-heatmaps for models
trained using the T descriptor to predict the IP and EA of the
testing sets, respectively. The order of the morphologies down
the rows and across the column has been changed to reflect the
average contribution to the (respective) model residuals;

Fig. 5 CC-plots for the Ridge regressor trained using the T descriptor predicting the ionisation potential (IP), annotated by (a) the IP in eV, and (b) the
particle morphology.

Fig. 6 CC-plots for the Ridge regressor trained using the T descriptor predicting the electron affinity (EA), annotated by (a) the EA in eV, and (b) the
particle morphology.

Fig. 7 CC-plots for the Ridge regressor trained using the S descriptor predicting the ionisation potential (IP), annotated by (a) the IP in eV, and (b) the
particle morphology.
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morphologies at the top (and left) lower the residuals on other
morphologies and those at the bottom (and right) increase the
model residuals. There are a few morphologies that stand out.
In the IP model (Fig. 9(a)) the tetrahedron (T) lowers the
residual on most shapes, but increases the residual on the
rhombitruncated octahedron (RO). The icosahedron (IH) signi-
ficantly increased the residual on the hexoctahedron (HO), but
there are very few of each of these shapes in the data set (see
Table 1). The tetrahexahedron (TH) increases the residual on
the cuboctahedron (CO) and the cube (C), and the truncated
tetrahexaherdon (tTH) increases the residual on numerous
shape including the CO and C. In the EA model (Fig. 9(b))
many more morphologies increase the residuals on others.
In particular the IH increases the residual on the truncated
tetrahedron (tT), the T increases the residual on the five-fold
twinned decahedron (DH) and the truncated trisoctahedron
(tTR) increases the residual on the trapezohedron. The most
desirable shape, the C, only increases the residual on itself.

Fig. 10(a) and (b) show the pairwise CC-heatmaps for models
trained using the S descriptor to predict the IP and EA of the
testing sets, respectively, ordered in the same way as Fig. 9. In
the case of the IP model (Fig. 10(a)) the T significantly increases
the residuals, but only on itself, which is likely due to the
impact of the highly acute edges and vertices that are unique to

this shape and enhanced when using the S descriptor. There is
no harm to keeping this shape even though the residuals are
high. The predictions of the modified truncated octahedron
(mTO) and the rhombi-truncated hexahedron (RH) are degraded
by the tTH and the TH. In the case of the EA model (Fig. 10(b)),
the T, trapezohedron (TZ), tTR and truncated rhombidodeca-
hedron (tRD) increased the residuals on the RH, small rhombicu-
boctahedron (SRC), tTR and TR, respectively.

Overall these results have shown that the choice of which
nanoparticle morphologies to include in data sets for machine
learning can impact the outcome, and that impact is not evenly
distributed. Certain shapes have higher residuals, degrading
model performance, and should be avoided. Some shapes
increase the residuals on others, regardless of their own
residuals, and should also be avoided. Other shapes have low
residuals, and can even lower the residuals on others, making
them very useful and ideal candidates to increase the size of a
data set. Depending on the focus of a given study, shapes can
be combined strategically to improve overall predictive ability
or to mitigate individual effects. For example, is the aim is to
study the EA of shapes enclosed entirely by {111} facets using
the entire nanoparticle (T descriptor) Fig. 9(b) indicates that the
IH increases the residual on tT, but this can be mitigated by
adding more T. The addition of T will increase the residual on

Fig. 8 CC-plots for the Ridge regressor trained using the S descriptor predicting the electron affinity (EA), annotated by (a) the EA in eV, and (b) the
particle morphology.

Fig. 9 CC-heatmaps for the Ridge regressor trained using the T descriptor predicting (a) the ionisation potential (IP), and (b) the electron affinity (EA).

Communication Nanoscale Horizons

Pu
bl

is
he

d 
on

 1
0 

N
ov

em
be

r 
20

25
. D

ow
nl

oa
de

d 
on

 1
1/

19
/2

02
5 

6:
55

:5
2 

PM
. 

View Article Online

https://doi.org/10.1039/d5nh00683j


This journal is © The Royal Society of Chemistry 2025 Nanoscale Horiz.

OH, but this can be mitigated including less OH or adding one
shape with {111} facets, such as the tTR (which has a shape very
similar to the OH).

Given some of these relationships will not be known in
advance, and they depend on the features used in the training
set and the target property label, the best approach is to start
with a minimal set of representative morphologies, train a
model and then explain it with RSHAP. Depending on the
outcome strategic decisions can be made as to which shapes
to add to achieve the goals of the study. The data set can easily
be iteratively expanded, or incorporated into an active learning
pipeline.54 This approach is general and can be applied to other
tasks, models and nanomaterial systems. Understanding how
the choice of data impacts final model and and its abilities
leads to better decision making in the beginning, and better
explanations at the end.
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