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New Concepts

This work demonstrates finely tunable multilevel conductance states in tin hexathiophosphate
(SnP2Se or SPS) memristors, a material where systematic analog switching studies remain limited.
By achieving up to 325 stable conductance states, this study highlights the capability of SPS to
support high-resolution analog memory and neuromorphic computing. The ability to reliably
access a large number of states within a fixed ON/OFF ratio provides additional insight into how
conductance modulation can be extended in emerging 2D materials. Alongside conductance
tuning, device-level synaptic behaviors such as long-term potentiation and depression were also
explored, with their implications assessed through artificial neural network simulations.
Together, these results establish SPS as an exploratory platform for investigating multilevel
switching in 2D memristors, broadening the range of materials available for in-memory and
brain-inspired computing research.
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High-Density Conductance States and Synaptic Plasticity in SnP,S¢
Memristors for Neuromorphic Computingt
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Memristors with programmable conductance are considered
promising for energy-efficient analog memory and neuromorphic
computing in edge Al systems. To improve memory density and
computational efficiency, achieving multiple stable conductance
states within a single device is particularly important. In this work,
we demonstrate multilevel conductance tuning in few-layer tin
hexathiophosphate (SnP.Se, SPS) memristors, achieving 325 stable
states through a pulse-based programming scheme. By analyzing
conductive filament evolution, we devised a voltage-pulse
approach that effectively suppresses current noise, thereby
maximizing the number of distinguishable states within the device
ON/OFF ratio. Furthermore, we experimentally emulated synaptic
plasticity behaviors including long-term potentiation and
depression, and validated their performance through artificial
neural network simulations on digit classification. These results
highlight the potential of SPS memristors as high-resolution analog
memory and as building blocks for neuromorphic computing,
offering a pathway toward compact and efficient architectures for
next-generation edge intelligence.

Introduction

The growing integration of artificial intelligence (Al) in edge
devices has accelerated the development of embedded Al and
ambient intelligence (Aml) systems, where real-time, low-
power, and efficient computing is essential.! Conventional von
Neumann architectures, limited by the separation of memory
and processing units, suffer from high latency, energy
inefficiency, and restricted throughput, making them less
suitable for always-on applications.> 3 To address these
challenges, non-von Neumann paradigms such as in-memory
computing have been proposed. Memristors are promising
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candidates owing to their simple two-terminal structure,
scalability, and low power operation.*® Their ability to
modulate conductance in response to voltage enables analog
memory functions and synaptic plasticity behaviors relevant for
neuromorphic computing.” 8 Depending on their operating
mechanisms, memristive devices can be broadly categorized
into electrical, optoelectronic, and ionic types. Electrical
memristors, such as those based on filamentary or interfacial
resistive switching, have been extensively studied for their
scalability and CMOS compatibility.>> © Optoelectronic
memristors combine optical and electrical stimuli to achieve
light-assisted programming and enhanced control over
conductance states.!> 12 Jonic memristors, in which ion
migration directly modulates channel conductivity, offer high
analog tunability and potential for bioinspired signal
processing.'3

Among these various device types, memristors with
multiple stable conductance states are particularly attractive
for neural network applications, especially at the edge, where
they allow direct mapping of pretrained weights, reduce
retraining overhead, and support adaptive tuning during
deployment. Such high-resolution control also promotes
consistent synaptic behavior across devices, improving learning
accuracy and inference stability. Beyond neuromorphic
computing, analog programmability in memristors offers
opportunities for broader applications, including scientific and
mortal computing.!* 1> Nonetheless, achieving precise and
reliable analog tuning over a wide dynamic range remains a key
challenge, particularly in two-dimensional (2D) material-based
devices.

2D materials have recently attracted attention for resistive
switching (RS) devices due to their atomic thickness, low
switching voltages,'® 17 reduced device variability,'® and ability
to exhibit both threshold and bipolar RS behaviors.1® 1 Among
them, nanoporous metal chalcogenophosphates (MP2Xs; M =
Sn, Ge, Pb; X = S, Se, Te) show potential for electronic
applications.2%2> Within this family, tin hexathiophosphate
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Fig. 1 (a) Cross-sectional BF-TEM image of the as-fabricated Ti/SnP,S¢/Au memristor. (b) Cross-sectional EDS map highlighting the SnP,Ss
layer. (c) Schematic illustration of the memristor device structure. (d) /-V curves of the memristor over 100 switching cycles with an /ccof 1
mA during SET processes. The corresponding distributions of (e) HRS and LRS currents, and (f) Vser and Vgeser. (g) Zoomed-in optical
microscopy image of a 6 x 6 CBA of SnP,S¢ memristors. The distributions of (h) HRS and LRS currents and (i) Vser and Vgeser for -V curves
measured across 36 devices from the CBA. In both (e) and (h), each box represents the distribution of multiple repeated measurements of
LRS and HRS currents. The central line inside each box indicates the median current, while the box edges correspond to the interquartile
range (IQR). The dot within each box represents the mean current, and the vertical whiskers extend to values within 1.5xIQR, with any points
beyond this range plotted as outliers. In (e), (f), (h), and (i), 4 denotes the mean, ¢ denotes the standard deviation, and C, denotes the

coefficient of variance.

(SnP;S¢ or SPS) is particularly notable due to its wide indirect
bandgap of 2.2 eV,
ferroelectricity,

ambient stability, room-temperature

and strong light-matter interactions.?6-30
Despite these favorable attributes, systematic demonstrations
of finely tunable analog conductance states in SPS memristors
remain limited.

Here, we explore the potential of SPS memristors for analog
memory and neuromorphic applications by demonstrating
multilevel conductance tuning using a high-precision pulse
programming (H3P) approach combined with a denoising

strategy. The H3P scheme employs conditional logic and

2 | J. Name., 2012, 00, 1-3

predefined pulse sequences without requiring device-specific

calibration, while the denoising process reduces current
fluctuations that often limit the resolution of conductance
states. This combination enables up to 325 stable states to be
accommodated within the available ON/OFF window. While the
approach is expected to be broadly useful for filamentary RS
SPS

demonstration of high-resolution conductance control in this

systems, its application to represents an early

material. Beyond conductance tuning, we emulate long-term

potentiation (LTP) and depression (LTD) through tailored pulse
trains and incorporate the measured responses into artificial

This journal is © The Royal Society of Chemistry 20xx
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neural network (ANN) simulations using MLP+NeuroSim V3.0.
The simulations indicate that improved linearity in LTP/LTD
responses correlates with higher classification accuracy,
underscoring the importance of pulse scheme design when
linking device behavior to system performance. This work thus
provides an exploratory demonstration of finely tunable analog
states and neuromorphic functions in SPS memristors.

Results and discussion
Device Structure and the Switching Performance in SPS memristors

The cross-sectional structure of the fabricated SPS memristor
was examined using bright-field transmission electron
microscopy (BF-TEM), which confirmed the Ti/Au/SnP,Se/Ti/Au
layer sequence (Fig.1(a)). Elemental mapping via energy-
dispersive spectroscopy (EDS) further verified the presence of
Sn, P, and S in the switching layer and indicated an SPS thickness
of approximately 8 nm (Fig. 1(b)). A schematic illustration of the
effective device architecture is provided in Fig. 1(c), showing the
exfoliated SPS flake sandwiched between the top Ti active
electrode and the bottom Au electrode. Spectroscopic
characterization was also performed on the exfoliated SPS
flakes. The Raman spectrum (Fig. S2(a), ESIT) shows three peaks
at ~142, ~169, and ~265 cm’, consistent with previous
reports.2® 27 The photoluminescence spectrum (Fig. S2(b), ESIt)
also matches earlier results,?”> 28 further confirming the
material’s properties.

Electrical characterization of the SPS memristor
demonstrated reproducible bipolar RS behaviour (Fig. 1(d)).
During a positive voltage sweep from 0 to 2 V with a compliance
current (lcc) of 1 mA, the device transitions from a high-
resistance state (HRS) to a low-resistance state (LRS).
Conversely, under a negative voltage sweep from 0 to -2 V, the
device resets to the HRS without requiring an Icc. All pristine
devices undergo an initial forming process, with a mean forming
voltage of ~3 V (Fig. S3, ESIt). To assess temporal variations in
switching voltages, the device was subjected to 100 direct
current (DC) cycles. The results show a switching memory
window exceeding 10? (Fig. 1(e)), with minimal variations in SET
and RESET voltages (Vser and Vreser). Statistical analysis (Fig. 1(f))
indicates mean Vsgr and Vgeser of 1.14 V and -0.94 V, with
standard deviations of 0.0758 V and 0.0832 V, respectively.
These variations are comparable to those reported for high-
performance memristors (Table S1, ESIt). To elucidate the RS
mechanism, EDS scans were performed on SPS memristors in
both HRS and LRS states. The line scans (Fig. S4, ESIt) reveal a
higher Ti concentration in the SPS switching layer in the LRS
compared to the HRS, while the Au concentration remains
unchanged in both states. This suggests that Ti ions are actively
involved in the switching process, classifying the device as an
electrochemical metallization (ECM)-type memristor. To further
verify this conclusion, an SPS-based memristor with Au
electrodes on both sides was fabricated. When subjected to
voltage sweeps up to +6 V, the device did not exhibit any RS
behaviour (Fig. S5, ESIt), confirming that Au ions do not
contribute to the switching process.

This journal is © The Royal Society of Chemistry 20xx
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In addition to evaluating temporal or cycle-to-cycle (C2C)
variations, spatial or device-to-device (D2D) variations were
analysed through electrical measurements on a 6 x 6 CBA of SPS
memristors fabricated on a uniformly thick SPS nanosheet (Fig.
1(g) and S6, ESItT). DC sweep cycles were recorded for all 36
devices, each undergoing six switching cycles (Fig. S7, ESIt).
Both /-V characteristics and statistical analyses of the HRS and
LRS currents confirm consistent switching behaviour, with a
switching memory window comparable to that observed in C2C
measurements (>102) (Fig. 1(h) and S7, ESIT). Furthermore,
across all 36 devices, statistical analysis yields mean Vsgr and
Vreser of 1.08 V and -0.79 V, with standard deviations of 0.0994
V and 0.0968 V, respectively (Fig. 1(i) and S8, ESIt), indicating
minimal D2D variations in switching voltage. Retention
measurements on a representative device confirm stable LRS
and HRS levels for 10* s without degradation (Fig. S9(a), ESIT),
while endurance tests on the same device show reproducible
switching up to 10% cycles (Fig. S9(b), ESIt), suggesting the
potential for stable non-volatile memory operation.

Multiple Conductance States using a High-Precision Pulse
Programming Scheme with Denoising Process

In the context of in-memory computing, the number of
distinguishable current levels plays a key role in determining a
memristor’s information storage capacity. In this study, we
employed the H3P scheme to achieve 325 distinct conductance
states in SPS memristors, providing a demonstration of
multilevel tuning in a 2D material system. Table S1 (ESIT)
provides representative reports of multilevel tuning in other 2D
memristor systems. Our H3P scheme utilizes ramped stair
pulses with positive or negative biases to induce SET or RESET
transitions, respectively. For example, when tuning the device
conductance from a higher LRS current of 130 pA to a lower LRS
current of 72 pA, negatively ramped stair pulses ranging from -
0.2 V to -4.5 V are applied. If the conductance falls below the
target of 72 pA, positively ramped stair pulses (0.2 V to 4 V) are
subsequently applied. This process is iterated until the
conductance stabilizes within an acceptable range around the
target value (72 £ 0.2 pA). Anillustration of this process is shown
in Fig. 2(a) and 2(b).

However, without an effective denoising strategy, the
programmed current levels exhibit noticeable fluctuations (Fig.
2(c)), reducing the minimum distinguishable range between
adjacent conductance states. In ECM-based memristors, such as
the SPS memristor studied here, such fluctuations can be
mitigated by disrupting weak filaments while preserving
stronger ones, a process referred to as the denoising
mechanism.* In our scheme, after reaching the target range,
we applied a sequence of positive-negative denoising pulse
pairs that effectively suppressed current fluctuations within an
acceptable precision margin (target current + 0.15 pA), which
was empirically determined as the minimum stable margin
during the denoising process. The full details of the H3P scheme
and its denoising procedure are shown in Fig. S10 (ESIt). This
approach enabled the generation of 325 distinct current levels
in SPS memristors (Fig. 2(d)), suggesting their suitability for

J. Name., 2013, 00, 1-3 | 3
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Fig. 2 (a) Example of SET and RESET operations using stair pulses with ramped-up voltage amplitudes under the H3P scheme. (b)
Corresponding current measured by a 0.2 V/1 us read pulse following each SET or RESET pulse in (a). (c) As programmed and after denoising
currents of the memristor, read using a constant voltage of 0.2 V. (d) Distribution of current deviation (I, - I, target) across 325 programmed
conductance states achieved in a memristor using the H3P scheme with denoising. Each box represents 1000 data points (10 s retention
monitoring per level), with box edges indicating the IQR, whiskers extending to 1.5xIQR, and the central dot marking the mean. (e) Current
spread corresponding to the deviations shown in (d). In both (d) and (e), current level index O corresponds to the highest current level, while
index 324 represents the lowest. (f) Retention measurements of three representative current levels from each of the high, medium, and low

conductance ranges after denoising.

multi-bit memory and analog in-memory computing
applications.

To evaluate the robustness of the multilevel states, we
analyzed current fluctuation behavior and inter-level
separability across three representative devices. Each of the
325 programmed levels was monitored for 10 s. The analysis of
current deviation from the target (Fig. 2(d) and S12, ESIT)
reveals noise distributions with minimal state overlap after
denoising, a trend consistently observed across all three devices
despite minor variations in noise characteristics. Scatter plots of
current deviation metrics (Fig. S13, ESIT) further illustrate
differences in distribution width and noise behavior between
devices. Nonetheless, the minimum inter-level spacing
(~400 nA) remains significantly larger than the observed current
fluctuations at each level (Fig. 2(e) and S13, ESIT), ensuring clear

4 | J. Name., 2012, 00, 1-3

separation between adjacent states. The lack of significant
overlap confirms the precision and reliability of the multilevel
programming scheme. Furthermore, the retention stability of
these states was further verified up to 10®s across three
conductance ranges (Fig. 2(f)), showing stable state
maintenance over time. In terms of energy and time
consumption, the H3P scheme with denoising process
consumes an average of ~116 nJ and requires ~7 ms to achieve
a stable conductance state (Fig. S14, ESIt). These
measurements were obtained using a passive device controlled
by a B1500A semiconductor analyzer, suggesting that further
optimization of the programming scheme could improve both
energy efficiency and switching speed. In this context, the H3P
scheme primarily serves to establish stable and reproducible
conductance levels, rather than being a continuously active

This journal is © The Royal Society of Chemistry 20xx
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Fig. 3 (a) Current map obtained from C-AFM scanning on the pristine area of the SnP,Se surface. (b) Current map obtained from the same
area after applying electrical stress of 3 V. (c) Current map obtained from the same area after the application of sub-threshold positive and
negative voltages, following the 3 V stress in (b). (d) Currents measured before and after denoising using a sub-threshold negative voltage,
read at a constant voltage of 0.1 V during C-AFM measurements. (e) Current map obtained from C-AFM scanning, corresponding to the
before denoising state in (d). (f) Current map corresponding to the after denoising state in (d). (g) Currents measured before and after
denoising using a sub-threshold positive voltage, read at a constant voltage of 0.1 V during C-AFM measurements. (h) Current map obtained
from C-AFM scanning, corresponding to the before denoising state in (g). (i) Current map corresponding to the after denoising state in (g).

All C-AFM scans were acquired using a read voltage of 0.1 V.

operation. For applications such as edge inference, where
trained neural networks are downloaded from cloud servers to
local devices for real-time recognition or decision-making and
only infrequently updated, the additional energy involved in this
scheme is expected to remain moderate.*

To explore the applicability of the proposed H3P scheme in
edge-inference  computing, we
implemented a proof-of-concept temporal convolutional
network (TCN) classifier using a 6 x 6 SPS memristor CBA, where
multiply-and-accumulate (MAC) operations were executed

SPS  memristors  for

This journal is © The Royal Society of Chemistry 20xx

based on conductance states programmed via H3P (Fig. S15,
ESIT). This demonstration illustrates how high-resolution
conductance tuning can be applied to a representative edge-
inference task. Using accelerometer features from the HAR70+
dataset,3! the TCN model was trained in software and the six 3
x 3 convolutional kernels were quantized to 8-bit precision.

These values were then programmed into the memristor array

using the H3P and denoising process. A pre-characterized MAC
dataset was generated by measuring column-wise current
outputs for all input voltage combinations, which were

J. Name., 2013, 00, 1-3 | 5
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subsequently retrieved during inference to execute convolution
steps, with remaining layers processed in software. The
hardware-assisted TCN achieved a classification accuracy of
82.81%, which, although lower than the 90.96% obtained from
the fully software implementation (Fig. S25, ESIt), indicates that
SPS-based hardware can reproduce inference results with
reasonable accuracy relative to software baselines. This
hardware-assisted inference provides an exploratory validation
that H3P-tuned multilevel states in SPS memristors can support
convolution operations, while highlighting opportunities for
further optimization toward closing the performance gap.

Investigation of Conductive Filament Evolution in Denoising
Process

To investigate the mechanism underlying the improved
fluctuation reduction in current levels of SPS memristors, we
examined the evolution of conductive filaments (CFs) during the
denoising process. As SPS memristors operate via an ECM
mechanism, CFs play a key role in resistive switching. Analysing
their evolution under different voltage stimuli provides insights
into how denoising influences switching stability.1% 32-34
Conductive Atomic Force Microscopy (C-AFM) was employed
for this analysis. To facilitate C-AFM measurements, a
customized structure was fabricated to replicate the electrical
behaviour of the memristor while ensuring optimal imaging
conditions (Fig. S27(a), ESIT). This structure consists of an Au-
coated C-AFM probe tip as the top electrode, an SPS nanosheet
as the RS medium, and a Ti layer deposited on a silicon substrate
as the bottom electrode. While this configuration is a reversed
version of the original device, it maintains identical electrical
functionality when the probe tip is grounded, and voltage is
applied via the Ti bottom layer.

Initially, the selected area of the pristine SPS nanosheet
sample was scanned using the read voltage of 0.1 V to check any
existing conductive pathways. As shown in Fig. 3(a), the pristine
SPS sample area shows no CF, and it serves as the reference to
compare after CF formation. The sample area was then scanned
with a higher voltage of 3 V to induce CF formation. The
subsequent read scan (Fig. 3(b)) reveals the emergence of
several small high-current regions, indicating CF formation.
After this, a denoising process was mimicked by scanning the
same area with sub-threshold positive and negative voltages,
replicating the denoising pulses used in the H3P scheme. A
follow-up read scan (Fig. 3(c)) showed notable morphological
changes: some smaller current regions disappeared while a few
more prominent regions became more conductive. These
observations suggest that sub-threshold denoising voltages
selectively modulate CF morphology, weakening or disrupting
unstable filaments.

To further investigate this effect, a more localized analysis
was conducted on individual CFs. After forming, the current of
a selected CF was monitored for 10 s prior to applying denoising
pulses (Fig. 3(d), red line), during which significant current
fluctuations were observed. A corresponding C-AFM scan
captured the filament structure in this state (Fig. 3(e)).
Subsequent application of sub-threshold negative voltage scans

6 | J. Name., 2012, 00, 1-3
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led to a gradual stabilization of the current within an acceptable
fluctuation range (Fig. 3(d), black line). The corresponding C-
AFM image (Fig. 3(f)) revealed a modified filament structure,
showing diminished peripheral branches while the core
remained intact. These results suggest that weaker or
incomplete filaments are preferentially suppressed, thereby
reducing noise sources. A similar trend was observed when sub-
threshold positive voltage biases were applied to another
selected CF. Please note that the selected CF was re-formed to
isolate the effect of positive biases. A clear improvement in
current stability was observed (Fig. 3(g)), and the corresponding
before-and-after C-AFM images (Fig. 3(h) and 3(i)) shows that a
few more prominent regions became more conductive. This
again confirmed the selective modulation of unstable CF
branches. Together, these results support the hypothesis that
paired positive-negative denoising pulses reinforce stable
filaments while selectively eliminating transient, noise-prone
conductive paths. This selective refinement of the conductive
network facilitates more precise conductance tuning and
effectively expands the number of distinguishable conductance
states within a fixed ON/OFF ratio. The observed behaviour is
consistent with previous studies on denoising in ECM-based
memristors using HfO,/Al,03; and HfO, systems.14

Artificial Synaptic Plasticity and Image Recognition Simulation using
a Synaptic Plasticity based Artificial Neural Network

In addition to their capability to achieve multiple conductance
states, SPS memristors can function as electronic synapses,
mimicking key properties of biological synapses, which serve as
the fundamental units of brain-inspired computing.
Structurally, an SPS memristor closely resembles a biological
synapse, where the two electrodes act as the pre- and post-
synapses, while the SPS switching layer facilitates Ti ion
migration, forming CFs analogous to synaptic connections (Fig.
4(a)). For neuromorphic computing applications, long-term
potentiation (LTP) and long-term depression (LTD) are essential
synaptic functions required for ANNs.3> 3¢ These properties
were demonstrated in SPS memristors, where positive voltage
pulses induced LTP by increasing post-synaptic currents, while
negative pulses induced LTD, reducing the current (Fig. 4(b)).
Additionally, the dependence of excitatory post-synaptic
current (EPSC) on pulse amplitude was observed, with larger
positive voltage amplitudes resulting in greater EPSC responses,
demonstrating synaptic amplitude-dependent plasticity (SADP)
(Fig. 4(c)). Similarly, inhibitory post-synaptic currents (IPSC)
were induced by applying negative pulses of varying
amplitudes, where higher-amplitude negative pulses resulted in
a lower final post-synaptic current, starting from a nearly
identical initial state (Fig. 4(d) and 4(e)).

Furthermore, the SPS memristors exhibited “learning-
forgetting-relearning” behaviour, a characteristic of biological
synapses. When voltage pulses of alternating polarity were
applied, the post-synaptic current initially increased due to
positive pulses and subsequently decreased with negative
pulses. However, the current did not return to its original state,
indicating memory retention effects. With repeated learning-

This journal is © The Royal Society of Chemistry 20xx
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Fig. 4 (a) Schematic illustration of the structural similarity between a biological synapse and a Ti/SnP,S¢/Au memristor. (b) Tunable LTP and
LTD processes by applying pulses with different amplitudes. (c) EPSC of the synaptic memristor, with current values extracted from (b) after
100 positive pulses for each amplitude. (d) Tunable LTD process by applying negative pulses with different amplitudes, while the positive
pulse amplitude is fixed at 1.1 V. (e) IPSC of the synaptic memristor, with current values extracted from (d) after 100 negative pulses for
each amplitude. (f) Repeated LTP-LTD characteristics, with potentiation and depression pulse amplitudes fixed at 0.8 V and -0.9 V,
respectively, resembling learning-forgetting-relearning behaviour. (g) Ten-cycle LTP-LTD characteristics under identical pulses, with
potentiation and depression pulse amplitudes fixed at 0.8 V and -1 V, respectively. (h) Ten-cycle LTP-LTD characteristics under non-identical
pulses. In both (g) and (h), each box represents the distribution of 10 repeated current measurements acquired at each pulse number. The
box edges indicate the IQR, and the whiskers extend to values within 1.5xIQR. The dot inside each box denotes the mean current, and the
black solid line connects these mean values across pulses. &, and aq represent the linearity of potentiation and depression, respectively. For
all measurements, the pulse width and period were fixed at 50 us and 500 us, respectively. (i) Pattern classification accuracy for online
learning simulated using MLP+NeuroSim V3.0, based on experimental LTP and LTD characteristics under two distinct pulse schemes: non-

identical and identical.

forgetting-relearning cycles, the post-synaptic current

progressively increased, resembling biological memory
reinforcement (Fig. 4(f)). By adjusting voltage pulse amplitudes,
it was also possible to simulate synaptic and neural dynamics
relevant to brain-inspired computing. Distinct LTP and LTD
responses were observed under both identical and non-
identical pulse amplitude schemes. To assess the C2C variability
of the memristor, each scheme was tested over 10 repeated

cycles, showing consistent performance with minimal variation

This journal is © The Royal Society of Chemistry 20xx

(Fig. 4(g) and 4(h)). To evaluate the linearity of LTP and LTD

events, we normalized the measured conductance values using:
G— Guin
- —{1)

where Gmax and Gmin represent the maximum and minimum
conductance values, respectively. The linearity of potentiation
() and depression {(ag) was then analysed using the following

equatio '(370‘ a a (1 ;
& E(Grrs — GHRS)WX w+ Gygs)e if a #0
" (Gurs % (—GLRS) ifa =0

Gugrs

(2)
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The results showed that the non-identical pulse scheme
exhibited the best linearity, with = 1.32 and a4 =0.91. Ideally,
a perfectly linear response corresponds to = 1. These findings
suggest that conductance modulation via non-identical pulse
schemes enhances synaptic behaviour. In addition, D2D
variability was also assessed by repeating the same process on
two other devices randomly selected from the SPS CBA. The
results (Fig. S31 and S32, ESIT) show low variation in weight
update and similar linearity responses of the devices for the two
respective schemes.

To further evaluate the synaptic properties of SPS
memristors, we simulated a fully connected perceptron neural
network using MLP+NeuroSim V3.0.3% 3° The measured LTP and
LTD values from both identical and non-identical pulse schemes,
including the respective C2C, D2D, and conductance range
variations, were incorporated into the simulation to compare
their effects on classification accuracy. It is important to note
that the o, and oy values calculated served as relative
evaluation indices for evaluating non-linearity and were not
directly implemented in NeuroSim. The simulated neural
network comprised 20 x 20 input neurons, 100 hidden neurons,
and 10 output neurons, designed for classifying the 10-digit
classes of the Modified National Institute of Standards and
Technology (MNIST) dataset. The network was trained over 24
epochs, and the resulting classification accuracy was recorded.
The results (Fig. 4(i)) indicate that the neural network trained
with the non-identical pulse scheme achieved higher accuracy
of ~85%, likely due to good linearity in conductance modulation.
In contrast, the identical-pulse scheme exhibited faster
accuracy improvement during the initial epochs, which can be
attributed to its larger effective weight-update step arising from
steeper this
aggressive early learning led to less stable convergence and a

conductance-pulse characteristics. However,
lower final accuracy, consistent with an effect widely observed
in neural network optimizations, where an excessively large
learning rate may accelerate early learning but impede
convergence to the optimal solution.® While this is the most
likely explanation, other factors such as stochastic weight
initialization and device-level variation may also play a role.
Taken together, these findings highlight the potential of SPS
memristors for brain-inspired computing applications,
demonstrating effective conductance modulation through
pulse parameter tuning.

Building on these promising results, future work may
explore integrating SPS memristors into larger CBAs for
advanced in-memory computing. As array size increases, factors
such as device variability, IR drop, and cross-talk can introduce
computational inaccuracies.® 4! Cross-talk, arising from parasitic
currents, capacitive coupling, or voltage sharing, can lead to
read/write disturbances, signal attenuation, or erroneous
current summation during MAC operations, particularly when
many low-resistance cells exist in parallel paths.? 43 These
effects become increasingly significant with higher array
density. Addressing these challenges will require wafer-scale
SPS growth to minimize variation, along with access
mechanisms to suppress sneak currents and ensure cell
isolation. Strategies include one-transistor-one-resistor (1T1R)

8 | J. Name., 2012, 00, 1-3
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architectures, one-selector-one-resistor (1S1R) configurations,
and self-rectifying memristor arrays.'% 4446 Since SPS devices
exhibit abrupt SET transitions and rely on external compliance,
selector-free integration is not feasible. While 1T1R or 1S1R
integration may be promising, realizing such architectures with
SPS memristors will require co-design and fabrication of
dedicated access elements, which lie beyond the present scope.
Future efforts should explore these directions to unlock full-
array integration and broaden the applicability of SPS
memristors in neuromorphic and analog computing systems.

Conclusions

In conclusion, SPS memristors demonstrated repeatable bipolar
RS behavior with minimal spatial and temporal variations in
switching voltages. Through the H3P scheme combined with a
denoising process, up to 325 stable conductance states were
reliably achieved. C-AFM investigations revealed that carefully
designed denoising pulses effectively minimize incomplete
filament formation and suppress current fluctuations, thereby
enhancing the stability of the conductance states. Beyond their
potential for multi-bit memory storage, SPS memristors also
demonstrated the ability to emulate synaptic plasticity
behaviors, supporting their applicability in brain-inspired
computing. Collectively, these findings highlight the potential of
SPS memristors to serve as a high-resolution platform for analog
memory and neuromorphic computing, with promising
relevance for edge-inference applications.

Experimental
Device Fabrication

Two-terminal crossbar memristor devices were fabricated on a
silicon/silicon dioxide (Si/SiO3) substrate. The bottom electrode,
consisting of a 5 nm Ti adhesion layer and a 20 nm Au layer, was
deposited onto the Si/SiO, substrate via e-beam evaporation. A
mechanically exfoliated SPS nanosheet was then transferred
onto the bottom electrode. The fabrication was completed by
depositing a 30 nm Ti layer and a 20 nm protective Au layer as
the top electrode. The top and bottom electrodes were
patterned using electron beam lithography (EBL, JBX-6300FS)
with poly (methyl methacrylate) (PMMA) as the photoresist and
isopropyl alcohol/methyl isobutyl ketone (IPA/MIBK, 1:3) as the
developer.

Device Measurement

All electrical characterizations, including DC measurements and
pulse-based measurements, were conducted using a Keysight
B1500A semiconductor analyser. During electrical testing, the Ti
top electrode was biased, while the Au bottom electrode was
grounded. All measurements were performed under ambient
conditions at room temperature.

Material Characterization

The Raman and PL spectra of exfoliated SPS nanosheets were
acquired using a Renishaw Raman microscope, equipped with a

This journal is © The Royal Society of Chemistry 20xx
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532 nm excitation laser and a 50x objective lens, under ambient
conditions. The laser power was limited using a 5% filter. The Si
peak at 520 cm™ was used as a reference for calibration. Cross-
sectional TEM and EDS were performed using a Talos F200X
TEM. Thin lamellae for TEM characterization were prepared
using a focused ion beam (FIB, FEI Helios NanolLab). C-AFM
scans were conducted using a Park NX20 atomic force
microscope.

Statistical Analysis

In Fig. 1(e) and 1(f), the sample size is 100 data points. In Fig.
1(h) and 1(i), the sample size is 216 data points, from six cycles
across 36 devices. For each current level in Fig. 2(f), the sample
size of the current deviation distribution is 1001 data points.
The overall mean and standard deviation of the current
deviation are -0.02 nA and 33.58 nA, respectively. For Fig. 4(g)
and 4(h), statistical analyses are provided in Tables S2 and S3
(ESIT).

Simulations

Details of the simulated TCN are shown in Fig. S15 (ESIT), and
the NeuroSim setup parameters are summarized in Table S4
(ESIT).
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