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New Concepts

This work demonstrates finely tunable multilevel conductance states in tin hexathiophosphate 
(SnP2S6 or SPS) memristors, a material where systematic analog switching studies remain limited. 
By achieving up to 325 stable conductance states, this study highlights the capability of SPS to 
support high-resolution analog memory and neuromorphic computing. The ability to reliably 
access a large number of states within a fixed ON/OFF ratio provides additional insight into how 
conductance modulation can be extended in emerging 2D materials. Alongside conductance 
tuning, device-level synaptic behaviors such as long-term potentiation and depression were also 
explored, with their implications assessed through artificial neural network simulations. 
Together, these results establish SPS as an exploratory platform for investigating multilevel 
switching in 2D memristors, broadening the range of materials available for in-memory and 
brain-inspired computing research.
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High-Density Conductance States and Synaptic Plasticity in SnP2S6 

Memristors for Neuromorphic Computing†  

Thaw Tint Te Tun, Jiali Huo and Kah-Wee Ang* 

Memristors with programmable conductance are considered 

promising for energy-efficient analog memory and neuromorphic 

computing in edge AI systems. To improve memory density and 

computational efficiency, achieving multiple stable conductance 

states within a single device is particularly important. In this work, 

we demonstrate multilevel conductance tuning in few-layer tin 

hexathiophosphate (SnP2S6, SPS) memristors, achieving 325 stable 

states through a pulse-based programming scheme. By analyzing 

conductive filament evolution, we devised a voltage-pulse 

approach that effectively suppresses current noise, thereby 

maximizing the number of distinguishable states within the device 

ON/OFF ratio. Furthermore, we experimentally emulated synaptic 

plasticity behaviors including long-term potentiation and 

depression, and validated their performance through artificial 

neural network simulations on digit classification. These results 

highlight the potential of SPS memristors as high-resolution analog 

memory and as building blocks for neuromorphic computing, 

offering a pathway toward compact and efficient architectures for 

next-generation edge intelligence.

Introduction 

The growing integration of artificial intelligence (AI) in edge 

devices has accelerated the development of embedded AI and 

ambient intelligence (AmI) systems, where real-time, low-

power, and efficient computing is essential.1 Conventional von 

Neumann architectures, limited by the separation of memory 

and processing units, suffer from high latency, energy 

inefficiency, and restricted throughput, making them less 

suitable for always-on applications.2, 3 To address these 

challenges, non-von Neumann paradigms such as in-memory 

computing have been proposed. Memristors are promising 

candidates owing to their simple two-terminal structure, 

scalability, and low power operation.4-6 Their ability to 

modulate conductance in response to voltage enables analog 

memory functions and synaptic plasticity behaviors relevant for 

neuromorphic computing.7, 8 Depending on their operating 

mechanisms, memristive devices can be broadly categorized 

into electrical, optoelectronic, and ionic types. Electrical 

memristors, such as those based on filamentary or interfacial 

resistive switching, have been extensively studied for their 

scalability and CMOS compatibility.9, 10 Optoelectronic 

memristors combine optical and electrical stimuli to achieve 

light-assisted programming and enhanced control over 

conductance states.11, 12 Ionic memristors, in which ion 

migration directly modulates channel conductivity, offer high 

analog tunability and potential for bioinspired signal 

processing.13 

Among these various device types, memristors with 

multiple stable conductance states are particularly attractive 

for neural network applications, especially at the edge, where 

they allow direct mapping of pretrained weights, reduce 

retraining overhead, and support adaptive tuning during 

deployment. Such high-resolution control also promotes 

consistent synaptic behavior across devices, improving learning 

accuracy and inference stability. Beyond neuromorphic 

computing, analog programmability in memristors offers 

opportunities for broader applications, including scientific and 

mortal computing.14, 15 Nonetheless, achieving precise and 

reliable analog tuning over a wide dynamic range remains a key 

challenge, particularly in two-dimensional (2D) material-based 

devices.

2D materials have recently attracted attention for resistive 

switching (RS) devices due to their atomic thickness, low 

switching voltages,16, 17 reduced device variability,18 and ability 

to exhibit both threshold and bipolar RS behaviors.16, 19 Among 

them, nanoporous metal chalcogenophosphates (MP2X6; M = 

Sn, Ge, Pb; X = S, Se, Te) show potential for electronic 

applications.20-25 Within this family, tin hexathiophosphate 
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neural network (ANN) simulations using MLP+NeuroSim V3.0. 

The simulations indicate that improved linearity in LTP/LTD 

responses correlates with higher classification accuracy, 

underscoring the importance of pulse scheme design when 

linking device behavior to system performance. This work thus 

provides an exploratory demonstration of finely tunable analog 

states and neuromorphic functions in SPS memristors.

Results and discussion

Device Structure and the Switching Performance in SPS memristors

The cross-sectional structure of the fabricated SPS memristor 

was examined using bright-field transmission electron 

microscopy (BF-TEM), which confirmed the Ti/Au/SnP2S6/Ti/Au 

layer sequence (Fig. 1(a)). Elemental mapping via energy-

dispersive spectroscopy (EDS) further verified the presence of 

Sn, P, and S in the switching layer and indicated an SPS thickness 

of approximately 8 nm (Fig. 1(b)). A schematic illustration of the 

effective device architecture is provided in Fig. 1(c), showing the 

exfoliated SPS flake sandwiched between the top Ti active 

electrode and the bottom Au electrode. Spectroscopic 

characterization was also performed on the exfoliated SPS 

flakes. The Raman spectrum (Fig. S2(a), ESI†) shows three peaks 

at ~142, ~169, and ~265 cm-1, consistent with previous 

reports.26, 27 The photoluminescence spectrum (Fig. S2(b), ESI†) 

also matches earlier results,27, 28 further confirming the 

material’s properties.

Electrical characterization of the SPS memristor 

demonstrated reproducible bipolar RS behaviour (Fig. 1(d)). 

During a positive voltage sweep from 0 to 2 V with a compliance 

current (ICC) of 1 mA, the device transitions from a high-

resistance state (HRS) to a low-resistance state (LRS). 

Conversely, under a negative voltage sweep from 0 to -2 V, the 

device resets to the HRS without requiring an ICC. All pristine 

devices undergo an initial forming process, with a mean forming 

voltage of ~3 V (Fig. S3, ESI†). To assess temporal variations in 

switching voltages, the device was subjected to 100 direct 

current (DC) cycles. The results show a switching memory 

window exceeding 102 (Fig. 1(e)), with minimal variations in SET 

and RESET voltages (VSET and VRESET). Statistical analysis (Fig. 1(f)) 

indicates mean VSET and VRESET of 1.14 V and -0.94 V, with 

standard deviations of 0.0758 V and 0.0832 V, respectively. 

These variations are comparable to those reported for high-

performance memristors (Table S1, ESI†). To elucidate the RS 

mechanism, EDS scans were performed on SPS memristors in 

both HRS and LRS states. The line scans (Fig. S4, ESI†) reveal a 

higher Ti concentration in the SPS switching layer in the LRS 

compared to the HRS, while the Au concentration remains 

unchanged in both states. This suggests that Ti ions are actively 

involved in the switching process, classifying the device as an 

electrochemical metallization (ECM)-type memristor. To further 

verify this conclusion, an SPS-based memristor with Au 

electrodes on both sides was fabricated. When subjected to 

voltage sweeps up to ±6 V, the device did not exhibit any RS 

behaviour (Fig. S5, ESI†), confirming that Au ions do not 

contribute to the switching process.

In addition to evaluating temporal or cycle-to-cycle (C2C) 

variations, spatial or device-to-device (D2D) variations were 

analysed through electrical measurements on a 6 × 6 CBA of SPS 

memristors fabricated on a uniformly thick SPS nanosheet (Fig. 

1(g) and S6, ESI†). DC sweep cycles were recorded for all 36 

devices, each undergoing six switching cycles (Fig. S7, ESI†). 

Both I-V characteristics and statistical analyses of the HRS and 

LRS currents confirm consistent switching behaviour, with a 

switching memory window comparable to that observed in C2C 

measurements (>102) (Fig. 1(h) and S7, ESI†). Furthermore, 

across all 36 devices, statistical analysis yields mean VSET and 

VRESET of 1.08 V and -0.79 V, with standard deviations of 0.0994 

V and 0.0968 V, respectively (Fig. 1(i) and S8, ESI†), indicating 

minimal D2D variations in switching voltage. Retention 

measurements on a representative device confirm stable LRS 

and HRS levels for 104 s without degradation (Fig. S9(a), ESI†), 

while endurance tests on the same device show reproducible 

switching up to 104 cycles (Fig. S9(b), ESI†), suggesting the 

potential for stable non-volatile memory operation.

Multiple Conductance States using a High-Precision Pulse 

Programming Scheme with Denoising Process

In the context of in-memory computing, the number of 

distinguishable current levels plays a key role in determining a 

memristor’s information storage capacity. In this study, we 

employed the H3P scheme to achieve 325 distinct conductance 

states in SPS memristors, providing a demonstration of 

multilevel tuning in a 2D material system. Table S1 (ESI†) 

provides representative reports of multilevel tuning in other 2D 

memristor systems. Our H3P scheme utilizes ramped stair 

pulses with positive or negative biases to induce SET or RESET 

transitions, respectively. For example, when tuning the device 

conductance from a higher LRS current of 130 µA to a lower LRS 

current of 72 µA, negatively ramped stair pulses ranging from -

0.2 V to -4.5 V are applied. If the conductance falls below the 

target of 72 µA, positively ramped stair pulses (0.2 V to 4 V) are 

subsequently applied. This process is iterated until the 

conductance stabilizes within an acceptable range around the 

target value (72 ± 0.2 µA). An illustration of this process is shown 

in Fig. 2(a) and 2(b).

However, without an effective denoising strategy, the 

programmed current levels exhibit noticeable fluctuations (Fig. 

2(c)), reducing the minimum distinguishable range between 

adjacent conductance states. In ECM-based memristors, such as 

the SPS memristor studied here, such fluctuations can be 

mitigated by disrupting weak filaments while preserving 

stronger ones, a process referred to as the denoising 

mechanism.14 In our scheme, after reaching the target range, 

we applied a sequence of positive-negative denoising pulse 

pairs that effectively suppressed current fluctuations within an 

acceptable precision margin (target current ± 0.15 µA), which 

was empirically determined as the minimum stable margin 

during the denoising process. The full details of the H3P scheme 

and its denoising procedure are shown in Fig. S10 (ESI†). This 

approach enabled the generation of 325 distinct current levels 

in SPS memristors (Fig. 2(d)), suggesting their suitability for 
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operation. For applications such as edge inference, where 

trained neural networks are downloaded from cloud servers to 

local devices for real-time recognition or decision-making and 

only infrequently updated, the additional energy involved in this 

scheme is expected to remain moderate.14

To explore the applicability of the proposed H3P scheme in 

SPS memristors for edge-inference computing, we 

implemented a proof-of-concept temporal convolutional 

network (TCN) classifier using a 6 × 6 SPS memristor CBA, where 

multiply-and-accumulate (MAC) operations were executed 

based on conductance states programmed via H3P (Fig. S15, 

ESI†). This demonstration illustrates how high-resolution 

conductance tuning can be applied to a representative edge-

inference task. Using accelerometer features from the HAR70+ 

dataset,31 the TCN model was trained in software and the six 3 

× 3 convolutional kernels were quantized to 8-bit precision. 

These values were then programmed into the memristor array 

using the H3P and denoising process. A pre-characterized MAC 

dataset was generated by measuring column-wise current 

outputs for all input voltage combinations, which were 
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Fig. 3 (a) Current map obtained from C-AFM scanning on the pristine area of the SnP2S6 surface. (b) Current map obtained from the same 
area after applying electrical stress of 3 V. (c) Current map obtained from the same area after the application of sub-threshold positive and 
negative voltages, following the 3 V stress in (b). (d) Currents measured before and after denoising using a sub-threshold negative voltage, 
read at a constant voltage of 0.1 V during C-AFM measurements. (e) Current map obtained from C-AFM scanning, corresponding to the 
before denoising state in (d). (f) Current map corresponding to the after denoising state in (d). (g) Currents measured before and after 
denoising using a sub-threshold positive voltage, read at a constant voltage of 0.1 V during C-AFM measurements. (h) Current map obtained 
from C-AFM scanning, corresponding to the before denoising state in (g). (i) Current map corresponding to the after denoising state in (g). 
All C-AFM scans were acquired using a read voltage of �'&SF'
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subsequently retrieved during inference to execute convolution 

steps, with remaining layers processed in software. The 

hardware-assisted TCN achieved a classification accuracy of 

82.81%, which, although lower than the 90.96% obtained from 

the fully software implementation (Fig. S25, ESI†), indicates that 

SPS-based hardware can reproduce inference results with 

reasonable accuracy relative to software baselines. This 

hardware-assisted inference provides an exploratory validation 

that H3P-tuned multilevel states in SPS memristors can support 

convolution operations, while highlighting opportunities for 

further optimization toward closing the performance gap. 

Investigation of Conductive Filament Evolution in Denoising 

Process

To investigate the mechanism underlying the improved 

fluctuation reduction in current levels of SPS memristors, we 

examined the evolution of conductive filaments (CFs) during the 

denoising process. As SPS memristors operate via an ECM 

mechanism, CFs play a key role in resistive switching. Analysing 

their evolution under different voltage stimuli provides insights 

into how denoising influences switching stability.14, 32-34 

Conductive Atomic Force Microscopy (C-AFM) was employed 

for this analysis. To facilitate C-AFM measurements, a 

customized structure was fabricated to replicate the electrical 

behaviour of the memristor while ensuring optimal imaging 

conditions (Fig. S27(a), ESI†). This structure consists of an Au-

coated C-AFM probe tip as the top electrode, an SPS nanosheet 

as the RS medium, and a Ti layer deposited on a silicon substrate 

as the bottom electrode. While this configuration is a reversed 

version of the original device, it maintains identical electrical 

functionality when the probe tip is grounded, and voltage is 

applied via the Ti bottom layer.

Initially, the selected area of the pristine SPS nanosheet 

sample was scanned using the read voltage of 0.1 V to check any 

existing conductive pathways. As shown in Fig. 3(a), the pristine 

SPS sample area shows no CF, and it serves as the reference to 

compare after CF formation. The sample area was then scanned 

with a higher voltage of 3 V to induce CF formation. The 

subsequent read scan (Fig. 3(b)) reveals the emergence of 

several small high-current regions, indicating CF formation. 

After this, a denoising process was mimicked by scanning the 

same area with sub-threshold positive and negative voltages, 

replicating the denoising pulses used in the H3P scheme. A 

follow-up read scan (Fig. 3(c)) showed notable morphological 

changes: some smaller current regions disappeared while a few 

more prominent regions became more conductive. These 

observations suggest that sub-threshold denoising voltages 

selectively modulate CF morphology, weakening or disrupting 

unstable filaments.

To further investigate this effect, a more localized analysis 

was conducted on individual CFs. After forming, the current of 

a selected CF was monitored for 10 s prior to applying denoising 

pulses (Fig. 3(d), red line), during which significant current 

fluctuations were observed. A corresponding C-AFM scan 

captured the filament structure in this state (Fig. 3(e)). 

Subsequent application of sub-threshold negative voltage scans 

led to a gradual stabilization of the current within an acceptable 

fluctuation range (Fig. 3(d), black line). The corresponding C-

AFM image (Fig. 3(f)) revealed a modified filament structure, 

showing diminished peripheral branches while the core 

remained intact. These results suggest that weaker or 

incomplete filaments are preferentially suppressed, thereby 

reducing noise sources. A similar trend was observed when sub-

threshold positive voltage biases were applied to another 

selected CF. Please note that the selected CF was re-formed to 

isolate the effect of positive biases. A clear improvement in 

current stability was observed (Fig. 3(g)), and the corresponding 

before-and-after C-AFM images (Fig. 3(h) and 3(i)) shows that a 

few more prominent regions became more conductive. This 

again confirmed the selective modulation of unstable CF 

branches. Together, these results support the hypothesis that 

paired positive-negative denoising pulses reinforce stable 

filaments while selectively eliminating transient, noise-prone 

conductive paths. This selective refinement of the conductive 

network facilitates more precise conductance tuning and 

effectively expands the number of distinguishable conductance 

states within a fixed ON/OFF ratio. The observed behaviour is 

consistent with previous studies on denoising in ECM-based 

memristors using HfO2/Al2O3 and HfO2 systems.14 

Artificial Synaptic Plasticity and Image Recognition Simulation using 

a Synaptic Plasticity based Artificial Neural Network

In addition to their capability to achieve multiple conductance 

states, SPS memristors can function as electronic synapses, 

mimicking key properties of biological synapses, which serve as 

the fundamental units of brain-inspired computing. 

Structurally, an SPS memristor closely resembles a biological 

synapse, where the two electrodes act as the pre- and post-

synapses, while the SPS switching layer facilitates Ti ion 

migration, forming CFs analogous to synaptic connections (Fig. 

4(a)). For neuromorphic computing applications, long-term 

potentiation (LTP) and long-term depression (LTD) are essential 

synaptic functions required for ANNs.35, 36 These properties 

were demonstrated in SPS memristors, where positive voltage 

pulses induced LTP by increasing post-synaptic currents, while 

negative pulses induced LTD, reducing the current (Fig. 4(b)). 

Additionally, the dependence of excitatory post-synaptic 

current (EPSC) on pulse amplitude was observed, with larger 

positive voltage amplitudes resulting in greater EPSC responses, 

demonstrating synaptic amplitude-dependent plasticity (SADP) 

(Fig. 4(c)). Similarly, inhibitory post-synaptic currents (IPSC) 

were induced by applying negative pulses of varying 

amplitudes, where higher-amplitude negative pulses resulted in 

a lower final post-synaptic current, starting from a nearly 

identical initial state (Fig. 4(d) and 4(e)).

Furthermore, the SPS memristors exhibited “learning-

forgetting-relearning” behaviour, a characteristic of biological 

synapses. When voltage pulses of alternating polarity were 

applied, the post-synaptic current initially increased due to 

positive pulses and subsequently decreased with negative 

pulses. However, the current did not return to its original state, 

indicating memory retention effects. With repeated learning-
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The results showed that the non-identical pulse scheme 

exhibited the best linearity, with �p = 1.32 and �d = 0.91. Ideally, 

a perfectly linear response corresponds to � = 1. These findings 

suggest that conductance modulation via non-identical pulse 

schemes enhances synaptic behaviour. In addition, D2D 

variability was also assessed by repeating the same process on 

two other devices randomly selected from the SPS CBA. The 

results (Fig. S31 and S32, ESI†) show low variation in weight 

update and similar linearity responses of the devices for the two 

respective schemes.

To further evaluate the synaptic properties of SPS 

memristors, we simulated a fully connected perceptron neural 

network using MLP+NeuroSim V3.0.38, 39 The measured LTP and 

LTD values from both identical and non-identical pulse schemes, 

including the respective C2C, D2D, and conductance range 

variations, were incorporated into the simulation to compare 

their effects on classification accuracy. It is important to note 

that the �p and �d values calculated served as relative 

evaluation indices for evaluating non-linearity and were not 

directly implemented in NeuroSim. The simulated neural 

network comprised 20 × 20 input neurons, 100 hidden neurons, 

and 10 output neurons, designed for classifying the 10-digit 

classes of the Modified National Institute of Standards and 

Technology (MNIST) dataset. The network was trained over 24 

epochs, and the resulting classification accuracy was recorded. 

The results (Fig. 4(i)) indicate that the neural network trained 

with the non-identical pulse scheme achieved higher accuracy 

of ~85%, likely due to good linearity in conductance modulation. 

In contrast, the identical-pulse scheme exhibited faster 

accuracy improvement during the initial epochs, which can be 

attributed to its larger effective weight-update step arising from 

steeper conductance-pulse characteristics. However, this 

aggressive early learning led to less stable convergence and a 

lower final accuracy, consistent with an effect widely observed 

in neural network optimizations, where an excessively large 

learning rate may accelerate early learning but impede 

convergence to the optimal solution.40 While this is the most 

likely explanation, other factors such as stochastic weight 

initialization and device-level variation may also play a role. 

Taken together, these findings highlight the potential of SPS 

memristors for brain-inspired computing applications, 

demonstrating effective conductance modulation through 

pulse parameter tuning.

Building on these promising results, future work may 

explore integrating SPS memristors into larger CBAs for 

advanced in-memory computing. As array size increases, factors 

such as device variability, IR drop, and cross-talk can introduce 

computational inaccuracies.8, 41 Cross-talk, arising from parasitic 

currents, capacitive coupling, or voltage sharing, can lead to 

read/write disturbances, signal attenuation, or erroneous 

current summation during MAC operations, particularly when 

many low-resistance cells exist in parallel paths.42, 43 These 

effects become increasingly significant with higher array 

density. Addressing these challenges will require wafer-scale 

SPS growth to minimize variation, along with access 

mechanisms to suppress sneak currents and ensure cell 

isolation. Strategies include one-transistor-one-resistor (1T1R) 

architectures, one-selector-one-resistor (1S1R) configurations, 

and self-rectifying memristor arrays.10, 44-46 Since SPS devices 

exhibit abrupt SET transitions and rely on external compliance, 

selector-free integration is not feasible. While 1T1R or 1S1R 

integration may be promising, realizing such architectures with 

SPS memristors will require co-design and fabrication of 

dedicated access elements, which lie beyond the present scope. 

Future efforts should explore these directions to unlock full-

array integration and broaden the applicability of SPS 

memristors in neuromorphic and analog computing systems.

Conclusions

In conclusion, SPS memristors demonstrated repeatable bipolar 

RS behavior with minimal spatial and temporal variations in 

switching voltages. Through the H3P scheme combined with a 

denoising process, up to 325 stable conductance states were 

reliably achieved. C-AFM investigations revealed that carefully 

designed denoising pulses effectively minimize incomplete 

filament formation and suppress current fluctuations, thereby 

enhancing the stability of the conductance states. Beyond their 

potential for multi-bit memory storage, SPS memristors also 

demonstrated the ability to emulate synaptic plasticity 

behaviors, supporting their applicability in brain-inspired 

computing. Collectively, these findings highlight the potential of 

SPS memristors to serve as a high-resolution platform for analog 

memory and neuromorphic computing, with promising 

relevance for edge-inference applications.

Experimental

Device Fabrication

Two-terminal crossbar memristor devices were fabricated on a 

silicon/silicon dioxide (Si/SiO2) substrate. The bottom electrode, 

consisting of a 5 nm Ti adhesion layer and a 20 nm Au layer, was 

deposited onto the Si/SiO2 substrate via e-beam evaporation. A 

mechanically exfoliated SPS nanosheet was then transferred 

onto the bottom electrode. The fabrication was completed by 

depositing a 30 nm Ti layer and a 20 nm protective Au layer as 

the top electrode. The top and bottom electrodes were 

patterned using electron beam lithography (EBL, JBX-6300FS) 

with poly (methyl methacrylate) (PMMA) as the photoresist and 

isopropyl alcohol/methyl isobutyl ketone (IPA/MIBK, 1:3) as the 

developer.

Device Measurement

All electrical characterizations, including DC measurements and 

pulse-based measurements, were conducted using a Keysight 

B1500A semiconductor analyser. During electrical testing, the Ti 

top electrode was biased, while the Au bottom electrode was 

grounded. All measurements were performed under ambient 

conditions at room temperature.

Material Characterization

The Raman and PL spectra of exfoliated SPS nanosheets were 

acquired using a Renishaw Raman microscope, equipped with a 
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532 nm excitation laser and a 50x objective lens, under ambient 

conditions. The laser power was limited using a 5% filter. The Si 

peak at 520 cm-1 was used as a reference for calibration. Cross-

sectional TEM and EDS were performed using a Talos F200X 

TEM. Thin lamellae for TEM characterization were prepared 

using a focused ion beam (FIB, FEI Helios NanoLab). C-AFM 

scans were conducted using a Park NX20 atomic force 

microscope.

Statistical Analysis

In Fig. 1(e) and 1(f), the sample size is 100 data points. In Fig. 

1(h) and 1(i), the sample size is 216 data points, from six cycles 

across 36 devices. For each current level in Fig. 2(f), the sample 

size of the current deviation distribution is 1001 data points. 

The overall mean and standard deviation of the current 

deviation are .�'� S�� and (('>9S��" respectively. For Fig. 4(g) 

and 4(h), statistical analyses are provided in Tables S2 and S3 

(ESI†).

Simulations

Details of the simulated TCN are shown in Fig. S15 (ESI†), and 

the NeuroSim setup parameters are summarized in Table S4 

(ESI†).
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