Gene silencing regulated by aggregates of Corn aptamer at 3′ UTR of mRNA
Abstract
Gene therapy, as a cutting-edge approach for disease intervention, relies heavily on advancements in gene silencing techniques. For instance, CRISPR-Cas9 has emerged as a leading gene-editing tool due to its ability to introduce precise cuts at specific genomic loci, enabling targeted gene insertion, deletion, or modification. In this study, we developed a simple and effective gene silencing strategy by introducing a nucleic acid self-assembly module into the 3′ untranslated region (UTR) of mRNA. This module demonstrated significant gene silencing efficacy in eukaryotic cells through the formation of RNA aggregates. To systematically investigate its regulatory mechanism on translation efficiency through the formation of higher-order RNA structures, we quantitatively analyzed both mRNA and protein expression levels. Furthermore, our modular 3′ UTR sequences can be integrated with classical 5′ UTR elements (e.g., TOP sequences) to construct a multidimensional post-transcriptional regulatory network. This technology expands the diversity of existing UTR element libraries and offers a reservoir of programmable regulatory elements for applications in synthetic biology. It enables the construction of orthogonal combinations of multidimensional elements, tailored to specific gene expression regulation needs.
- This article is part of the themed collection: DNA Nanotechnology

Please wait while we load your content...