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Learning and spiking dynamics in brain-like
nanoscale networks†

B. L. Monaghan, a Z. E. Heywood, a S. J. Studholme, a F. Houard, b

J. Grisolia, b S. Tricard b and S. A. Brown *a

Neuromorphic approaches to computation are driven by both the

low-power operation of the biological brain and ever-increasing

energy consumption of modern computing systems. Percolating

networks of nanoparticles are promising candidates for self-

assembled neuromorphic hardware systems as they exhibit a range

of brain-like properties, including neuron-like spiking dynamics and

critical behaviour. Here we show that random placement of synap-

tic memristors within these neuron-like networks leads to changes

in the spiking dynamics and to learning behaviour. We consider two

models of the memristors and show that different types of mem-

ristive hysteresis lead to differing effects on the network-level

spiking dynamics. We then demonstrate that mixtures of neurons

and synapses exhibit potentiation and de-potentiation, i.e. learning

and forgetting. These results suggest that the addition of synaptic

‘memory’ to self-assembled networks provides functionality that

could enable new types of computation.

1 Introduction

As global demand for high-performance computing systems
increases, the scale and performance limits of conventional
transistor-based architectures have become increasingly apparent,
and concerns about the energy consumption of these systems
have grown. In response, alternative (‘neuromorphic’) approaches
to computation inspired by the human brain have been proposed
to mitigate and overcome these issues.1,2 The brain is a very high-
performance cognitive system that operates with remarkable
energy efficiency,3 and so the development of computers that take
inspiration from the brain could provide powerful and energy
efficient new information processing systems.

Self-assembled nanoscale systems such as networks of
nanowires and nanoparticles are promising for neuromorphic
computing due to their small scale, inherent brain-like proper-
ties, and low power consumption.4,5 In both nanowire networks
(NWNs)6–10 and percolating networks of nanoparticles
(PNNs)11–17 brain-like dynamics emerge from the complex
collective response of the junctions between the nanowires or
nanoparticles. We focus here on PNNs because – as will be
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New concepts
Percolating networks of nanoparticles exhibit brain-like properties and so
are promising candidates for fabrication of self-assembled nanoscale
hardware variants of neural networks. However, to date, the absence of
intrinsic memory has meant that learning must be performed outside the
networks. Here we replace a portion of the ‘‘spiking neurons’’ in the
networks with memristive ‘‘synapses’’, and demonstrate biologically
realistic potentiation behaviour i.e. learning. More specifically we show
that different memristor properties lead to learning behaviour on differ-
ent timescales and to different neural spiking dynamics in the networks.
This work therefore provides a key step towards building more realisti-
cally brain-like nanoscale networks, to incorporating synaptic function-
ality, and towards enabling new types of neuromorphic computation with
self-assembled networks.
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explained below – they are remarkably robust and can be
operated in a regime where information is processed through
neuron-like spikes, as in the brain. Spiking is believed to provide
significant computational advantages, such as low power con-
sumption and suitability for tasks that require processing of
temporal information, e.g. real-time decision-making.18

1.1 Percolating networks of nanoparticles

PNNs exhibit small-world and scale-free topologies, stochastic
spiking, and brain-like dynamics with long-range temporal
correlations.19–22 As shown schematically in Fig. 1, PNNs are
comprised of metallic nanoparticles deposited onto an atom-
ically smooth insulating substrate. Particles are deposited until
the surface coverage p reaches the percolation threshold (pc B
0.68 for 2D continuum percolation23). In this regime the
conductance of the PNNs is dominated by tunnel gaps between
highly conducting groups of nanoparticles (Fig. 1).

When a voltage Vapp is applied to the input electrodes,
electric field-driven surface diffusion processes11 cause atoms
to migrate within the tunnel gaps. Fig. 2a and b show the initial
growth at low voltages of a ‘hillock’ within a tunnel gap. The
hillock decreases the tunnelling distance and hence increases
the conductance of the gap (if Vapp is decreased surface energy
effects cause the decay of the hillock, decreasing the conduc-
tance). These dynamics have been shown to lead to memristive
behaviour24 (see discussion of synapses below) and allow
implementation of neuromorphic computational schemes such

as reservoir computing25–28 (note that related computations
have been performed with NWNs7–9), in addition to computa-
tion schemes based on neuron-like spiking.29,30

Fig. 2c shows that high voltages lead to formation of atomic-
scale filaments that bridge the tunnel gap, causing a sudden
increase in conductance. The filaments later break due to electro-
migration effects.11 The formation and destruction of these fila-
ments generates neuron-like spiking events,19 and it has been
shown that the atomic-scale dynamics resemble leaky integrate-
and-fire behaviour in biological neurons.20 Together with the scale-
free topology of the PNNs,12,21 these dynamics result in highly
correlated scale-invariant bursts of network activity – ‘avalanches’ –
that are quantitatively similar to those in the human brain. The
avalanches meet strict criteria for criticality19 which is associated
with optimum computation and is thought to be the operating
point of the brain.31,32 Several types of computation have been
successfully demonstrated that exploit this spiking,29,33 but exploi-
tation of criticality for specific tasks is a remaining challenge.30

Experimental fabrication of PNNs has been described in
detail in ref. 12. The physical devices are remarkably robust and
can be easily integrated with CMOS electronics, making them
attractive for real-world applications.26 Physically realistic
simulations of both the electrical and neuromorphic properties
of PNNs have previously been shown to be in excellent agree-
ment with experimental results,20 confirming that a model of
percolation with tunnelling34 provides an accurate description
of the real physical system. We highlight that simulations
include a model of neuron-like spiking based on the formation
and breaking of atomic-scale filaments (see Methods, eqn (2)
and (3)). Here we label this the ‘Type A’ model, in anticipation
of the models of memristive/synaptic behaviour that will be
introduced below.

1.2 The need for synaptic plasticity

A key feature of the biological brain is the connectivity between
neurons, which is provided by synapses. Modulation of synaptic
connections is a key mechanism for the formation and storage of
memory.35 In PNNs, the (volatile) memristive behaviour in the low
voltage regime provides short term memory but in the high voltage
spiking regime there is no synaptic/memory mechanism: the con-
nectivity of the network of neurons is fixed and learning must be
performed outside the network.29 Incorporation of synapses within
these spiking neural networks would be a significant step towards
the construction of more biologically-realistic self-assembled sys-
tems, as well as possibly allowing tuning of the networks between
critical and non-critical states and enabling a range of different
computational algorithms to be implemented. Learning is a key
kind of neuromorphic behaviour that is necessary for a range of
applications, including associative learning,36 unsupervised
learning,37 and reservoir computing,26–28 and has been especially
emphasised in the literature on related nanowire devices.7,38,39

Fig. 1 shows schematically the replacement of some spiking
tunnel gaps (red) with new memristive elements (orange). We
expect that such memristive synapses can be incorporated into
PNNs experimentally by methods such as deposition of inorganic
coating materials,40 by controlled sulphidisation of Ag or Cu

Fig. 1 Schematic of a PNN showing groups of nanoparticles (pale blue),
spiking tunnel gaps (red), and introduced memristors (orange). In this example
30% of the original tunnel gaps have been replaced by memristors.

Fig. 2 Hillock and filament formation in PNNs. (a) A schematic of a tunnel
gap that separates two nanoparticles prior to the formation of a hillock. (b)
In response to an applied network voltage, the electric field in the gap
forms a hillock which decreases the size of the tunnel gap and increases its
conductance. Hillock growth (relaxation) is driven by the electric field
(surface tension).24,25 (c) After a sufficiently long time, or at sufficiently
large applied voltages, an atomic-scale filament forms that fully bridges
the tunnel gap. Electromigration later leads to breaking of the filament.
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PNNs,6,41 or by the introduction of novel memristive
molecules.42–44 First steps in this direction were taken in ref. 45,
although we note the network architecture in that case is different
to that of the PNNs considered here.

Here we show, using physically realistic simulations, that
the addition of memristive synapses to PNNs controls the
connectivity between neuron-like tunnel gaps and significantly
modifies the network properties. We begin by considering two
different models of memristive synapses and show that differ-
ent parameterisations in the models lead to very different
hysteresis of the individual memristors, which in turn lead to
different hysteresis in the networks. We then show that when
the individual memristor characteristics are tuned appropri-
ately the inclusion of ‘synapses’ in the networks significantly
changes the spiking dynamics (e.g. patterns of long range
temporal correlations). We further demonstrate that the mixed
networks exhibit clear learning behaviour: in response to
sequences of voltage pulses the plasticity of the synapses leads
to increases in network conductance, increased connectivity
between neurons, and hence to increased neuronal spiking. In
the absence of stimulus the synapses de-potentiate, and the
network conductance and spike rate both decrease. Both learn-
ing and forgetting46 are essential for various types of brain-like
computation (see ref. 30, 37 and 47–49 and references therein).
We emphasise that the results presented here are from simula-
tions, but that they pave the way for new experiments which we
hope to report on in the near future.

2 Results

The focus of this paper is on the changes in network dynamics
that result from the introduction of memristive synapses. We
begin by discussing the dynamics of the individual memristors

and showing the effects of incorporating new memristors into
the networks in the low voltage regime (i.e. in the absence of
spiking). We then demonstrate their effects on the spiking
dynamics in the high-voltage regime, where the behaviour of
the memristors complements that of the spiking tunnel gaps.
Lastly, we demonstrate the network plasticity that results from
inclusion of memristors with appropriately chosen parameters.

2.1 Memristor models

Two memristor models were investigated to complement the
spiking tunnel gaps governed by the Type A model discussed
above. The first is a model that has previously been used to
simulate memristive tunnel gaps in PNNs (i.e. the formation of
hillocks, as in Fig. 2) in the low-voltage regime.24,25 It models
atomic-scale dynamics that are linear in response to the local
gap voltage Vg. We label this model ‘Type B’, and it is governed
by eqn (4) and (5) (see Section 5.3).

The second memristor model was developed to capture
electrochemical effects in memristive junctions between Ag
NWNs.8,39 This model is governed by eqn (7)–(10) (see Section
5.4). This ‘Type C’ model provides greater ability to precisely
tune the size and shape of memristive hysteresis loops due to
its large parameter space and its exponential dependence on
the local voltage.50 Note that both models describe volatile
memristors since this allows for ‘forgetting’ (see Section 2.6).
Both models are unipolar to maintain consistency with pre-
vious work.8,20

We emphasise that the Type B model is derived from the
Type A model, whilst the Type C model is an entirely separate
model that was developed as a way of modelling very different
memristive devices. The Type B model is similar to the Type A
model in the low voltage regime, where only continuous
changes of the gap resistance is allowed. The main difference
is that at high voltages the Type A model generates

Fig. 3 Hysteresis of single memristors and networks of memristors (dashed and solid lines respectively). Green and blue curves are for Type B and Type
C memristor cases. The hysteresis is shown in several forms: (a) and (e) G–V curves. (b) and (f) I–V curves. (c) and (g) G–t trace. (d) and (h) I–t trace. In
general, plotting conductance enhances the visibility of the hysteresis. The voltage ramps (grey dashed lines) have Vmax = 2 V for the network of 100%
memristors (panels (c), (d), (g) and (h)) and Vmax = 0.2 V for the single memristors. Vmin = 0 V, period = 200 timesteps. The conductance and current of the
single memristors are scaled such that the values at the peak voltage are equal to those of the 100% networks to clearly show the hysteresis (this results in
the dashed and solid lines being almost identical in panels (e)–(h)).
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discontinuous changes in resistance i.e. spikes. This spiking is
the result of filament formation and breaking in ‘‘virgin’’
nanogaps between nanoparticles whereas memristive beha-
viour is a property of additional memristors (e.g. molecules or
sulphides).

This paper discusses the effect of replacing (randomly cho-
sen) Type A tunnel gaps with Type B or C memristors. We label
the networks according to the type of memristor and the ratio:
for example, an ‘A : C = 75 : 25 network’ refers to one in which
25% of its tunnel gaps were replaced with Type C memristors.
Section S1 (ESI†) discusses the effects of different parameter
choices in each model. In particular, Section S1.4 (ESI†) shows
that the relative conductances of the gaps/memristors does not
have a significant impact on the observed network properties.

2.2 Hysteresis of single memristors and networks of
memristors

Memristors are typically characterised by performing current–
voltage (I–V) measurements, and the observed hysteresis loops
are signatures of both non-linear and memory effects. Plotting
the data as conductance–voltage (G–V) curves can be useful in
clarifying the amount of hysteresis in some cases.

Fig. 3 compares the hysteresis of single Type B and C memris-
tors (dashed lines) with the hysteresis of 100% memristor networks
(solid lines). G–V and I–V curves are shown in panels (a), (e) and (b),
(f) respectively. Note that the voltage applied to the individual
memristors V is 10 times lower, because in the networks the
applied voltage Vapp is dropped across approximately 10 gaps in
series. The conductance and current of the single memristors are
normalised to be equal to those of the 100% networks at Vmax.

Fig. 3a–d show that for the Type B memristors there is a
significant difference in the shape of the hysteresis for a single
memristor and a network of memristors. The difference is due
to the heterogeneity of the Type B memristors (the conductance
of each memristor depends on the length of the tunnel gap
within which it is located; see eqn (5)). In contrast, Fig. 3e–h
show that the hysteresis measured for a single Type C memris-
tor is very similar to that of the network (Type C memristors are
homogeneous, with identical parameters). Networks contain-
ing a mixture of Type A gaps and Type B/C memristors exhibit
hysteresis that is similar to that of the 100% memristor net-
works (Fig. S2 (ESI†)), as long as the applied voltage is small
enough to avoid spiking. Note that the network currents are
orders of magnitude higher than those measured in
experiments11 because the simulation parameters were chosen
for consistency with ref. 20 and 22. Simulated currents could be
scaled to be more realistic but we choose to maintain consis-
tency with previous work, as this scaling does not impact the
results. See Methods (Section 5.2) for more detail.

Section S2 (ESI†) discusses how the applied voltage is
distributed in the network. Since the network is complex,
scale-free and heterogeneous (comprising tunnel gaps, fila-
ments and memristors) there is a broad distribution of the
resultant voltages Vg measured across individual memristors.
This in turn leads to a wide range of hysteresis curves for

individual memristors, and contributes to the complex
dynamics that emerge within the networks.

2.3 Network topology, voltage and current distributions

Fig. 4 compares the network topology, voltage, and current
distributions for a 100% Type A gap network (left column), an
A : B = 75 : 25 network (middle column), and an A : C = 75 : 25
network (right column). Graph representations of each network
are shown in Fig. 4a–c. Each filled circle represents the geo-
metric centre of a group of particles and the links between the
nodes (called ‘edges’) represent the tunnel gaps between each
group. Note that the tunnel gaps into which new memristors
are inserted are the same in panels (b) and (c): the nodes and
edges are unchanged, but the type of edge changes.

Fig. 4d–f and g–i show the voltages at each group of
nanoparticles and the currents through each tunnel gap respec-
tively. In panels (d)–(f) the nanoparticle groups are coloured by
their potential to ground, and in panels (g)–(i) the tunnel gaps
(including both Type A gaps and memristors) are coloured by
the magnitude of their current flow. The maps of voltages and
currents are similar for all three cases showing that the inclu-
sion of memristors does not significantly alter the network
topology.

Section S3 (ESI†) discusses in detail the differences between
networks containing Type B and Type C memristors, and in
particular compares in detail the distributions of the voltages
across each memristor and their conductances. The voltage
distributions for networks with Type B memristors are shown
to more closely follow power law distributions, consistent with
critical dynamics. It is shown that this is at least partially
because the range of conductances of the Type B memristors
is larger than for the Type C memristors, and consequently that
the distributions of voltages and currents in the networks with
Type C memristors are more uniform.

2.4 Spiking dynamics

Fig. 5 compares the output currents for networks containing
Type B and C memristors with those for a 100% Type A gap
network. In Fig. 5a and b, the spiking in the network of Type A
gaps is characterised by avalanches of spiking events,19 with a
low baseline current. Each change in the current corresponds
to formation or breaking of an atomic scale filament. In Fig. 5c
and d, the spiking behaviour can still be observed in the A : B =
75 : 25 network but the inclusion of Type B memristors leads to
some continuous changes in current (panel (d)) and to subtle
differences in the spiking patterns (discussed in Section 2.5).
The baseline current is higher (when the voltage is applied the
conductance of the individual memristors increases, causing
an increase in the network conductance) and the sizes of the
spikes are generally smaller than those in panels (a) and (b). In
Fig. 5e and f the spiking activity of the A : C = 75 : 25 network is
again subtly different, and in panel (f) the continuous conduc-
tance changes of the Type C memristors are even more evident.
A further increase in the base conductance can also be
observed, and the size of the spikes is again smaller, as the
average conductance of the Type C memristors is higher.
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The key point is that avalanches of spikes are observed in
Fig. 5 in all cases, i.e. the spiking dynamics are not fundamentally
changed by replacing 25% of the tunnel gaps by memristors. The
next sections describe the changes in dynamics in more detail.

2.5 Temporal correlations

Temporal correlations in the measured spike trains are typically
characterised by examining distributions of inter-event intervals
(IEIs) and autocorrelation functions (ACFs).19,20 Fig. 6a–c compare
the IEI distributions for a 100% Type A gap network (red), an A : B =
75 : 25 network (green) and an A : C = 75 : 25 network (blue).
Fig. 6d–f show the corresponding ACFs.

In Fig. 6a and b, the power law fits to the tails of the IEI
distributions indicate that the critical dynamics previously
reported19,20 in networks of Type A gaps persist after the
addition of Type B memristors. However in Fig. 6c, the long-
range temporal correlations appear to be more strongly
impacted by the presence of Type C memristors, as the range
of IEIs is narrower than that in panel (b).

Fig. 6d–f show that long range temporal correlations persist
when memristive synapses are added to PNNs. The ACFs are
approximately power laws in all cases but the slopes depend on
details such as the homogeneity and relative conductances of
the memristors in each model – see Section S1 (ESI†). It is likely
that the memristive synapses tune the networks away from
criticality, but a detailed investigation would be required to
confirm this. Such an investigation would require very long
simulations and a careful consideration of the possibility of
emerging concepts such as quasi-criticality.51

2.6 Potentiation and de-potentiation

Persistent changes in synaptic strength that result from stimuli
(or absence thereof) are called potentiation and de-
potentiation, and are thought to help facilitate the formation
of memory in the brain.35,52 The insertion of memristors into
PNNs is intended to provide synaptic plasticity in the form of
continuous changes in the conductance of the connections
between groups of nanoparticles.

Fig. 4 Physical characteristics of simulated PNNs. 100% Type A gap network (left column), A : B = 75 : 25 network (middle column), A : C = 75 : 25
network (right column). (a)–(c) Graph representations. Nodes represent the geometric centres of the nanoparticle groups while edges represent the
tunnel gaps between groups. Type B (Type C) memristors are indicated by green (blue) edges; note that for clarity the coloured edges are slightly thicker
than the black edges, which may give the impression that there are more than 25% memristors. (d)–(f) Voltage distribution across the PNNs shown in (a)–
(c). A DC bias is applied to the left side of the networks while the right side is held at ground potential. Particles are represented by discs which overlap to
form groups, and the colours represent the potential on the groups (relative to ground). Groups that are connected to the electrodes are coloured black.
(g)–(i) Current maps for the networks shown in (a)–(c). Note that the pale blue lines represent tunnel gaps carrying no current. Here the input and output
electrodes are orange and pink respectively. (d)–(i) are representative snapshots of each network at timestep 500 000. Vapp = 2 V for all panels.
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The relatively small sizes of the networks (200 � 200)
discussed in the preceding sections lead to strong stochastic
effects (since in some cases there are just a few memristors on
the dominant current paths between the electrodes). Hence in
this section we focus on larger networks (i.e. 800 � 800) where

stochastic effects are less dominant. Results for 200 � 200
networks are provided in Sections S4.2 and S4.3 (ESI†) for
comparison. The Type A parameters were tuned for the larger
network size in order to facilitate comparison with smaller
networks (see Section 5.2 for detail).

Fig. 6 Inter-event intervals (IEIs) and autocorrelation functions (ACFs). (a)–(c) IEI distributions (PDFs) for a 100% Type A network, an A : B = 75 : 25
network and an A : C = 75 : 25 network. P(IEI) is the probability density for the distributions. (d)–(f) Corresponding ACFs. PDFs calculated with linear (log)
bin sizes are plotted as grey (coloured) points. Fits to the IEI distributions are shown as black dashed lines. The data in all panels are obtained from the final
400 000 timesteps of a 500 000 timestep simulation. Note that Vapp is higher in panels (b, c, e, f) (3 V compared to 2 V in panels (a) and (d)) to obtain
comparable spiking rates in the networks with included memristors.

Fig. 5 PNN spiking activity for DC applied voltages. (a) and (b) 100% Type A network. (c) and (d) A : B = 75 : 25 network. (e) and (f) A : C = 75 : 25 network.
The left column shows the final 100 000 timesteps of the simulation, while the right column shows the last 5000 timesteps of the same simulation to
better show the spiking. Clearly, the spiking dynamics differ significantly between each case. The 100% Type A network shown in (a) and (b) is dominated
by large spiking events that decay quickly, while the networks with included memristors shown in (c)–(f) have smaller spiking events that are
complemented by continuous changes in the current. Note that Vapp in panels (c)–(f) is higher (3 V compared to 2 V in panels (a) and (b)) to obtain
comparable spiking rates (this is required because some Type A gaps have been replaced by memristors). Note that the current scales observed in panels
(c)–(f) are much higher than those in panels (b) and (f) of Fig. 3. This is due to the presence of spiking Type A gaps in the networks depicted in this figure,
which yield very high conductances (B10 O�1) during a spike. We emphasise that the base currents seen in panels (c)–(f) correspond well to the current
values observed in Fig. 3.
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Fig. 7 shows the response of an A : C = 75 : 25 network to a
sequence of seven voltage pulses. Fig. 7a shows the total current
(blue curve) as well as the current measured at each electrode
(other colours): clearly with each subsequent pulse, the cur-
rents increase and there is more spiking activity (see Fig. 7b).
These effects are demonstrated even more clearly in Fig. 7c by
the moving averages of the conductance (hGi, purple) and event
rate (hERi, blue). The increasing network activity in response to
a series of voltage pulses is an example of potentiation, which
indicates that the Type C memristors perform a synaptic role
within the network and allow for the network to ‘learn’.

The volatility of the memristors (see Section 2.1) also allows
for the networks to ‘forget’. Fig. 7c shows a decay in both hGi
and hERi in the absence of stimulus, i.e. de-potentiation. Fig.
S18 (ESI†) shows that if the spacing between stimuli is larger,
the memristors de-potentiate further so that the response to
subsequent pulses is lowered (smaller increases in hGi and
hERi). Similar potentiation and de-potentiation is also observed
in PNNs with Type B memristors, as shown in Fig. S15 and S16
(ESI†). The details of the potentiation and de-potentiation
processes depend on specific attributes of the networks and
memristor models, but Section S4 (ESI†) shows that qualita-
tively similar behaviour is observed for a range of parameters.

A range of simulation parameters were tuned to provide the
memory observed in Fig. 7, including the size of the PNN, the
number and configuration of the input and output electrodes,
the ratio of Type A gaps to Type C memristors, and the distribu-
tion of the memristors in the network. The characteristics of the
applied voltage pulses – including the number, their size (i.e.

Vmin and Vmax), their length, and their separation – also play a
role, e.g. different learning responses are induced by small, rapid
voltage pulses compared to large, infrequent pulses. This tun-
ability provides flexibility to provide optimised memory effects
for different computational tasks.

3 Discussion
3.1 Memristor ratio

We have focused here on PNNs in which 25% of the Type A gaps
have been replaced with memristors. This allows us to focus on
the correlated spiking dynamics in observed output signals
(memristive hysteresis effects are present simultaneously, see
e.g. Fig. 5f). We have studied networks with higher proportions
of memristors and find similar hysteresis effects at low voltages
(Fig. S2 (ESI†)), however as the number of spiking gaps
decreases the number of observed spikes decreases. Thus the
complexity of the spiking patterns is also reduced, and in the
limit that all of the gaps are memristive (i.e. all the Type A gaps
are replaced) there is no spiking. In this limit the continuous
changes in outputs from the networks (see Fig. 3) are ideal for
implementation of brain inspired algorithms based on reser-
voir computing.25,26 Simulations of RC using networks of Type
B and Type C memristors will be presented elsewhere.

In the biological brain, the ratio of synapses to neurons is on
the order of 1000,53 whereas in the simulated PNNs the ratio of
Type B/C memristors (synapses) to Type A gaps (neurons) is
much lower. The synapse to neuron ratio that can be achieved

Fig. 7 Demonstration of potentiation effects for an A : C = 75 : 25 network. (a) The total output current (blue) and output currents from individual groups
(other colours) as a function of time. The applied voltage Vapp (Vmin = 1.25 V, Vmax = 6 V, pulse length = pulse spacing = 250 timesteps) is plotted in grey in
all panels. (b) The corresponding changes in conductance DG, showing that amplitude and frequency of spikes increases for successive input pulses. (c)
Moving averages (over 100 timesteps) of the network conductance (hGi, purple) and network event rate (hERi, blue).
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in PNNs is limited by the mean degree (i.e. mean number of
connections between nodes,54 which is B10). This is not
necessarily an issue for the use of PNNs for computation – in
fact, it is worth emphasising that the aim in the field of
neuromorphic computing is to investigate what can be
achieved with a limited number of brain-inspired elements
rather than attempting to faithfully replicate all the details of
the biological brain.

3.2 Experimental realisation

As mentioned in the introduction we believe that there are
several possible routes to the addition of memristive synapses
to spiking PNNs, including deposition of inorganic coating
materials,40 controlled sulphidisation of Ag or Cu PNNs,6,41

and the introduction of novel memristive molecules.42–44 We
believe that the latter method is particularly promising, espe-
cially as a range of new molecular synapses are becoming
available. Simple drop-casting methods should be sufficient
to achieve mixed memristive/spiking networks, as it is usually
straightforward to dilute the deposited solution in order to
achieve a sparse random placement of molecules. The choice of
molecule could also allow for precise selection of memristive
properties, analogous to tuning the memristor parameters in
the simulations described here. Of course it will be essential to
build PNNs from non-reactive materials that can survive expo-
sure to air, moisture and solvents.

4 Conclusion

We have shown that the addition of synapse-like memristive
elements to the neuron-like spiking gaps that are inherently
present in percolating networks of nanoparticles leads to sig-
nificant changes in network dynamics. We highlight that the
strengthening of Type B/C synaptic connections leads to
increases in the connectivity between Type A neurons and
consequently to increased neuronal spiking across the network.
This results in biologically-realistic potentiation and de-
potentiation of the networks in response to repeated input
pulses, i.e. in learning and forgetting, which could be valuable
for a variety of styles of neuromorphic computation.30,37,47–49

5 Methods

This section describes the basic features of the simulations.
Note that a detailed comparison of the Type B and Type C
memristor models is presented in Section S1 (ESI†).

5.1 Simulations

Results from experimental PNNs are well-described by conti-
nuum percolation models (see ref. 20 and references therein).
Deposited particles are represented by disks that overlap after
deposition, and overlapping disks form conducting nanoparti-
cle groups. Deposition is ceased just before the 2D continuum
percolation threshold (surface coverage p o pc B 0.68)23 is
reached so that no single group fully spans the network, and

thus the network conductance results from tunnelling through
gaps between the groups. We focus on networks with a surface
coverage of p = 0.65 since this value is close enough to pc to be
near criticality but far enough away to ensure that unrealistic
configurations (such as those dominated by very large groups)
are avoided.20 Similar results are obtained for 0.64 o p o pc.21

The conductance of each gap is determined by its length Li by

Gi = ae�bLi, (1)

where a = 1 O�1 and b = 200 pd�1 are constants.34 Note that the
parameter b is in units of inverse particle diameters (pd�1), and
so the value of b = 200 pd�1 corresponds well with typical
literature values34,55 of B10 nm�1 given experimental particle
diameters of B20 nm. The unit of length in the simulations is
particle diameters and is thus normalised to 1.

When an external voltage stimulus is applied to the nano-
particle groups chosen as the input electrodes, current flows
through the network tunnel gaps as determined by Kirchhoff’s
laws.20 The current that flows through the groups designated as
the output electrodes is recorded.

5.2 Type A model

The formation and destruction of the atomic-scale filaments in
individual Type A gaps is governed by a deterministic electric-
field driven model.20 The length of a growing filament di in gap
i changes as a result of the local electric field Ei according to

Ddi ¼
rd Ei � ETð Þ; Ei � ET

0; otherwise

(
(2)

and the width of each fully-formed filament wi (which is
initially w0) thins due to its current Ii according to

Dwi ¼
rw Ii � ITð Þ; Ii � IT

0; otherwise;

(
(3)

where ET and IT are the electric field and current thresholds
required for filament formation and destruction, respectively,
and rd and rw are the respective rates of formation and
destruction. In the simulations ET = 10 V pd�1 and IT = 0.01
A, which are consistent with experimental estimates.11 The
conductance of a Type A gap depends on whether a filament
had formed or not, i.e. it is either calculated based on its gap
length Li by eqn (1) if no filament is formed or it is set to Gi =
10 O�1 if a filament is formed. The values of conductance
parameters Gon = 10 O�1 and a = 1 O�1 and constants ET, IT,
rd, and rw could be scaled so that the magnitude of voltages,
electric fields, and currents match experimental values more
closely, but this does not change the overall results so we instead
retain values that are consistent with previous work.20,22

rd and rw were tuned slightly for the 800 � 800 networks so
that the spiking event rate match that of the 200 � 200
networks. The 800 � 800 networks were used to observe
synaptic memory effects; see Section 2.6 and Section S4 (ESI†).
This change increases the rate of Type A spiking which is
necessary to match the spiking rates of smaller networks.
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5.3 Type B model

The Type B model25 governs the height of the partial hillocks
that form in the tunnel gaps under an electric field. It is
governed by the equation

dz

dt
¼ 1

T

mV
D� z

� kz
� �

; (4)

where z is the hillock height, D is the total gap length, V is the
gap potential, T is the characteristic time scale, and m and k are
scaling parameters. This model has been shown to be equiva-
lent to existing models of voltage-driven memristance,24 and
PNNs with tunnel gaps governed by this model in a low-voltage
regime have been shown to perform well in RC tasks.24,25 The
characteristic time T = 20 s was chosen to tune the time scale of
the Type B memristors to be comparable with that of the Type C
memristors.

The conductance of memristor i is calculated by

Gi = ae�b(Di�zi), (5)

and so the current response to the gap voltage remains non-
linear, regardless of the linearity of the equation governing the
hillock height z. See Table 1 for the parameters of the Type B
model and Section S1.4 (ESI†) for detail on scaling the con-
ductance parameter a.

In order to prevent numerical instabilities and unwanted
spiking, the heights z were artificially limited to grow no larger
than half of the gap lengths such that

0 � zi �
Di

2
(6)

at all points of the simulation.

5.4 Type C model

The Type C model8,39 is based on the rate-balance equation

dg

dt
¼ kPðVÞð1� gÞ � kDðVÞg; (7)

where 0 r g r 1 is the normalised conductance of the
memristor. The parameters kP(V) and kD(V) are the potentiation
and depression rate coefficients, respectively, and are functions
of the local voltage such that

kP = kP0 exp(ZPV) & kD = kD0 exp(�ZDV), (8)

where kP0,D0 and ZP,D are sub-parameters. The model8 yields the
exponential behaviour seen in electrochemical memristors.50

gt ¼
kP

kP þ kD
1� 1� 1þ kD

kP

� �
gt�1

� �
e� kPþkDð Þt

� �
(9)

for t 4 0. The memristor conductance is then given by

G(t) = Gmin(1 � g(t)) + Gmaxg(t), (10)

where Gmin and Gmax are the minimum and maximum con-
ductances of the memristor, respectively. The parameters of
this model are listed in Table 1.

An advantage of the Type C model is its large number of
parameters which allows for very fine control over the shape of
the memristor hysteresis. Fig. S1 (ESI†) shows a range of
examples of Type C hysteresis afforded by this model.
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