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Synthesis planning for atomically precise
metal nanoclusters

Jingkuan Lyu, ab Jing Qian, ab Zhucheng Yang ab and Jianping Xie *ab

The rational design and synthesis of materials with tailored properties remains a long-standing goal in

advanced materials science. Metal nanoclusters (MNCs), distinguished by their atomic precision and

molecule-like properties—including discrete energy levels, strong photoluminescence, and high property

tunability—represent promising platforms for applications spanning catalysis to biomedicine. This

perspective presents a comprehensive synthesis planning framework comprising three critical stages, i.e.,

target design, route development, and condition optimization, systematically addressing MNC rational

design and synthesis with special emphasis on thiolate-protected gold nanoclusters as exemplary

systems. We first discuss design considerations for core and ligand shell engineering based on their

profound influence on overall material properties. Subsequently, we examine methods and synthetic

mechanisms for atomic-level tailoring of core and ligand shells to achieve target MNC synthesis. We

then elucidate condition parameter tuning considerations based on their deterministic roles in reaction

outcomes. While this structured approach provides a systematic methodology for MNC development,

significant challenges persist owing to the high structural and synthetic complexity of MNCs. We then

discuss the opportunities brought by recent advances in machine learning and high-throughput

experimentation, which have demonstrated potential in addressing these challenges based on their

superior computational and data analytical capabilities. We advocate for systematic adoption of this

synthesis planning approach enhanced by data-driven methods, addressing inherent limitations in future

development to better exploit these integrated approaches for accelerating rational MNC design and

synthesis.

1. Introduction

Rational design and synthesis represents the strategic process
by which scientists systematically design and execute the
efficient synthesis of desired compounds with specific proper-
ties. In contrast to traditional trial-and-error approaches that
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rely on serendipitous discovery, this methodology begins with
identifying target materials possessing specific desired charac-
teristics, guided by established structure–property relation-
ships. Synthetic mechanistic insights are then leveraged to
develop viable pathways between available precursors and the
target products—exemplified by retrosynthetic analysis in
organic chemistry. The field of drug discovery has adopted
the design-make-test-analyse (DMTA) framework to implement
this systematic approach, embracing the iterative nature of
rational design through continuous validation and refinement
of design decisions via experimental feedback.1 Crucially, data
generated throughout these cycles not only inform immediate
synthetic objectives but also enrich the broader knowledge
base, creating a cumulative foundation for increasingly sophis-
ticated materials development strategies.

Atomically precise metal nanoclusters (MNCs) represent a
unique class of nanomaterials distinguished by their mono-
dispersity and well-defined molecular structures. These ultra-
small entities consist of a metallic core, typically below 3 nm in
diameter, stabilized by a shell of metal–ligand motifs. Single-
crystal X-ray diffraction (SCXRD) and mass spectrometry char-
acterization enable precise determination of their structure and
composition, often expressed in the form [Mn(L)m]q, where n
and m denote the number of metal atoms (M) and ligands (L)
respectively, and q is the net charge. Owing to their quantum
confinement effects—arising when cluster dimensions become
comparable to the electron de Broglie wavelength—MNCs
exhibit molecule-like behaviours such as electron transition
between the highest occupied molecular orbital (HOMO) and
the lowest unoccupied molecular orbital (LUMO),2 strong
photoluminescence (PL),3–7 and intrinsic chirality,8,9 rendering
them promising in diverse applications including catalysis,10–12

biomedicine,13–15 and photosensitizers.16

The molecule-like character renders MNC properties highly
reliant on the cluster’s size, structure, and composition, all

engineerable via atomic-level manipulation of the metallic core
and ligand shell.17–22 For instance, the growth of the bi-
icosahedral metal core in [Au25(PR3)10(SR)10Cl2]+ to a tri-
icosahedral structure in [Au37(PR3)10(SR)10Cl2]+ (where PR3

represents phosphine ligands and SR represents thiolate
ligands) significantly reduces the optical energy gap from
1.73 eV to 0.83 eV.23 In another example, the peroxidase mimic
catalytic activity of Au15(SR)13 was enhanced by incorporating
ligands with higher electron-withdrawing capabilities.24 Such
tunability not only enables fundamental structure–property
relationship development,25–27 but also inspires advances in
synthetic methods and growth mechanisms toward stepwise
synthesis and control of MNCs,28,29 as exemplified by the
conceptualization of ‘‘total synthesis’’ of MNCs.30 Understand-
ing MNC formation processes has revealed opportunities for
customized MNC synthesis through adjusting synthetic condi-
tion parameters,31–33 such as pH tuning to promote less stable
species like highly luminescent Au22(SR)18,34 or exploiting
additive–ligand interactions to control reaction kinetics.35 How-
ever, the chemical complexity, coupled with intricate parameter
interdependencies, poses significant challenges to advancing
rational design and synthesis towards higher precision. The
limited availability of high-quality structural data further exacer-
bates these difficulties. Recent advances in data-driven methodo-
logies—integrating machine learning (ML) algorithms with high-
throughput experimentation (HTE)—have demonstrated promis-
ing capabilities in modelling complex relationships for rational
design and synthesis across diverse materials.36–43 Autonomous
laboratories exemplify fully integrated systems enabling data-
guided material discovery, as demonstrated by Ceder and co-
workers, who successfully identified 41 novel compounds.44 These
developments provide timely inspiration for adopting data-centric
strategies in MNC research.45–47

Targeting rational design and synthesis of MNC, this
perspective presents a comprehensive synthesis planning
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Fig. 1 Schematic overview of the synthesis planning framework of MNCs, including three main processes, namely, target design, route development
and condition optimization, and the opportunities endowed by data-driven approach adoption, in terms of structure prediction acceleration, global
condition optimization modelling, synthesis–property relationship modelling, and model generalization. Colour label: yellow, core Au or Au cation;
orange, motif Au; pink, S. The detailed flowchart below illustrates the individual steps during the three critical stages of synthesis planning for MNCs. After
each successful synthesis, all relevant data are updated to the data libraries for future MNC developments, forming an iterative cycle.
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framework, which comprises three critical stages: target design
(designing the MNC core and ligand shell for desired function-
ality), route development (mapping the synthetic route from
available precursors to targets), and condition optimization
(fine-tuning reaction condition parameters for precise synth-
esis control) (Fig. 1). We emphasize thiolate-protected Au
nanoclusters as exemplary systems given their extensive char-
acterization and established relevance. We highlight the chal-
lenges faced and discuss how emerging data-driven approaches
can address these barriers. Finally, we conclude with our
perspectives on how to better exploit this integrated approach
in future development. While existing reviews have focused on
individual aspects of MNC design and synthesis,7,19,30,48 no
comprehensive framework exists that systematically integrates
target design, route development, and condition optimization
into a unified synthesis planning approach. Although a recent
perspective presents opportunities in MNC synthesis enabled
by the integration of automation, data and advanced
algorithms,45 it lacks in-depth discussion of theoretical con-
siderations regarding the synthetic and structural complexities
of MNCs. Moreover, previous reviews on data-driven nanoma-
terial discovery, such as those focusing on nanoparticles, do
not address the atomic-precision considerations and
molecular-like property dependencies essential for MNCs.49,50

By establishing this integrated framework which systematically
decomposes MNC rational design and synthesis into tractable
relationship modelling problems amenable to data-driven
methodologies, this perspective aims to catalyse a paradigm
shift toward predictive MNC synthesis that bridges the gap
between the precision of molecular design and the complexity
of nanomaterial engineering, ultimately enabling more effi-
cient discovery of atomically precise MNCs with tailored
properties.

2. Target MNC design

Target design represents the critical first step in MNC synthesis
planning, wherein researchers define the structural features
needed to achieve specific functional properties prior to synth-
esis. Different from conventional trial-and-error approaches,
rational target design leverages established structure–property
relationships to anticipate how microscopic structural features
will determine macroscopic characteristics.

For atomically precise MNCs, design efforts focus on two
interdependent structural domains: the metallic core and the
surrounding ligand shell. Each component plays distinct yet
complementary roles in determining the MNC’s fundamental
properties. Understanding these relationships enables
researchers to design MNCs with tailored functionality for
specific applications.

The metallic core—defined by its size, structure, and com-
position—predominantly governs the electronic structure of
MNCs.2,51 Due to quantum confinement effects at the nano-
scale, MNCs exhibit discrete electronic energy levels rather than
continuous bands, resulting in molecule-like optical absorption

profiles which are strongly affected by the metallic core.52 For
instance, Au42(SCH2Ph)32 (SCH2Ph represents benzyl mercap-
tan) with its distinctive rod-like core structure demonstrates
strong near-infrared absorption at 808 nm, yielding superior
photothermal conversion efficiency compared to more spheri-
cal MNC species.53 The core can also significantly influence
catalytic activity via size effects, following predictable trends
that inform design strategies. Zheng et al. demonstrated that
catalytic performance in resazurin reduction systematically
increases as Au nanocluster size decreases from Au25 to Au18

to Au15.54 Similarly, Li et al. observed enhanced electrochemical
CO2 reduction activity with decreasing Au nanocluster
dimensions.55 Moreover, variations in core composition can
tune MNC properties by modulating the HOMO–LUMO gap,
further expanding the design landscape.56

While the core determines electronic structure, the protec-
tive ligand shell offers additional opportunities for property
modulation. In addition to stabilizing the metal core, ligands
influence solubility, aggregation behaviour, and interfacial
interactions, which can markedly affect properties such as PL,
particularly through solvent-mediated effects.4 Furthermore,
the ligand can also alter MNC properties by exerting electronic
effects. For example, replacing electron-donating 3-mercapto-2-
methylpropanoic acid (MMPA) with N-acetylcysteine (NAC) in
Au15(SR)13 nanoclusters enhances the peroxidase-like activity,
illustrating the potential for ligand-directed catalytic tuning.24

Thus, rational design of MNCs demands integrated consid-
eration of both core architecture and ligand shell composition
to achieve desired property profiles. In the following section, we
elaborate on specific principles for templated core design and
ligand shell engineering that enable predictive synthesis of
MNCs with targeted properties. We also address current chal-
lenges in translating these design principles into synthetic
strategies that reliably produce the intended structures.

2.1. Templated core design

Stability is one of the fundamental considerations in the design
of MNCs. From the valence electronic structure point of
view, most of the Au nanoclusters are found with even number
of valence electrons. The valence electron count can be calcu-
lated by N* = n � m � q (where n, m, and q share the same
meaning with those in [Mn(L)m]q). These valence electrons
can be considered to be contributed by stable basic building
blocks, including Au4 tetrahedra,57 Au3 triangles58 and Au13

icosahedra,23 which constitute the core structures of Au
nanoclusters. Both Au4 tetrahedra and Au4 triangles contribute
2 valence electrons (2e�) while the Au13 icosahedron contri-
butes 8 valence electrons (8e�). These building blocks can fuse
and stack with each other, resulting in numerous evolution
pathways. These pathways function as templates that guide the
prediction, design and synthesis of MNCs with desired sizes
and structures. Subsequent composition adjustments of these
cores allow further property tailoring for better PL or catalytic
performance.

2.1.1. Au4 and Au3 as basic building blocks. Au4 and Au3

building blocks play vital roles in constructing the MNC core.
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Xu et al. observed that all 71 liganded Au nanoclusters reported
till then can be decomposed into these two elementary units.59

Typically, Au nanocluster evolution involves the sequential
addition of Au4 or Au3 units to the existing core backbone,
increasing the valence electron number by two. The identifi-
cation of elementary blocks is evidenced by Au–Au bond length
differences.60,61 Many possible spatial arrangement patterns of
their stacking and packing have been observed. Fusion of
2 Au4 units by sharing a common vertex atom to form a
bitetrahedral Au7 is very common, like the Au7 core of
alkynyl-protected Au22(tBuPhCRC)18 (tBuPhCRC represents
4-(tert-butyl)phenylacetylene).62 These possible arrangements
result in numerous evolution pathways of MNCs.

A representative face-centred cubic (fcc) evolution pathway
begins with Au20(SR)16,63 progressing through Au21(SR)15 to
[Au23(SR)16]�,64,65 where the core expands via symmetric Au3

additions.60 As illustrated in Fig. 2a, the Au10 core in Au21(SR)15

and subsequently the Au13 core in [Au23(SR)16]� arise from
successive additions to a central Au7 bitetrahedral backbone.
A similar template exists featuring double Au7 in the backbone
which underlies Au28(SR)20 (8e�)66 and Au30(SR)18 (12e�)67

(Fig. 2b). Based on these priorly obtained structures, Xiong
et al. predicted that the 10e� species Au29(SR)19, which was
previously detected in mass spectroscopy (MS) experiments by
Dass and colleagues,68 would exhibit an intermediate core
structure comprising 2 Au7 and 1 additional Au3.69 Li et al.
later confirmed the hypothesis via SCXRD, which exemplifies
the predictive power of templated core design.58 Consistently,
the HOMO–LUMO gap narrows as the core size of the species in
the template increases (B1.7 eV in Au28(SR)20 to 1.25 eV in
Au30(SR)18).58,66 This evolution mode is further supplemented
by the discovery of Au36(SR)22, which features an additional Au3

unit.70 It would be delightful to see the discovery of more
species that behave according to this evolution template.

An alternative uniform anisotropic growth was discovered
starting from Au28(TBBT)20 (TBBT stands for 4-tert-butyl-
benzenethiolate),71 which grows in 4e� steps through the
addition of two Au4 units per stage. Unlike the parallel Au7

units in the earlier Au28(SR)20 isomer protected by S-c-C6H11

(cyclohexanethiolate), this isomer features crossed Au7 units
forming a distinct architecture. Following the successful synth-
esis of Au28(TBBT)20, Jin and colleagues extended this template
to Au36(TBBT)24,28 Au44(TBBT)28,57 Au52(TBBT)32,61 revealing a
uniform core expansion via stacking of 2 Au4 units into a
double-helix superstructure (Fig. 2c). Optical gaps decrease
progressively from Au28, Au36, Au44, to Au52 (Eg = 1.77, 1.76,
1.51, and 1.39 eV, respectively) as reflected in red-shifted UV-Vis
absorption peaks (absorption peaks at 702, 704, 820, and
890 nm, respectively) (Fig. 2e). Notably, all species in the
template exhibit chirality with quasi-D2 symmetry except Au36,
whose cubic geometry bestows it higher symmetry with quasi-
D2d Au–S framework with no chirality. This template inspired
theoretical design of new analogues, such as Au60(SR)36,
Au68(SR)40, and Au84(SR)48.72,73 Au76(SR)44 synthesized by
Takano et al.74 was proposed to follow the same trend, exhibit-
ing 9 Au4 layers.75 This evolution template also inspired Liu

et al., who demonstrated rational synthesis of a Au36(SR)24

isomer based on de novo design.76 The core structure features
a 2-dimensional growth pattern proposed based on theoretical
calculations. It would be valuable to observe further studies
that provide verification for this hypothesized template.

Other less-explored pathways include ring-like tetrahedral
growth around a Au7 backbone, observed in species like Au22(t-

BuPhCRC)18, Au34(S-c-C6H11)22,77 and Au40(o-MBT)24 (o-MBT
represents 2-methylbenzenethiolate).61 However, a structural gap
remains between Au22 and Au34—potentially bridged by a nanoclus-
ter comprising a Au7 backbone encircled by an incomplete ring of
two vertex-sharing tetrahedra—suggesting the possible existence of
a novel structural isomer within the Au28(SR)20 family.

2.1.2. Au13 as a building block. In addition to 2e� building
blocks, icosahedral Au13 units (8e�) are vital to the core
architecture of many Au nanoclusters, including the flagship
nanocluster [Au25(SR)18]�.2 Its superior stability can be
explained by the superatom model, attributing the closed 8e�

shell to a noble-gas-like electronic configuration.78 Au13 units
are observed to connect via vertex-sharing (sharing 1 vertex
atom)79,80 or face-sharing (sharing 3 atoms on a face of the
icosahedron)81 modes to form larger structures.

A vertex-sharing template is evident in mono-, bi-, and tri-
icosahedral species such as [Au13(dppe)5Cl2]3+,82 [Au25(PPh3)10-
(SR)5Cl2]2+,80 and [Au37(PPh3)10(SC2H4Ph)10Cl2]+ (where dppe =
1,2-bis(diphenylphosphino)ethane, PPh3 = triphenylphosphine,
and SC2H4Ph = phenylethylthiolate),23 respectively (Fig. 2d).
Interactions among Au13 units lead to distinct electronic transi-
tions while preserving the electronic features arising from a
single Au13 unit. This is exemplified by the UV-Vis absorption
peaks at 1230 and 795 nm resulting from the interacting tri-
icosahedron in Au37 and the 670 nm peak from bi-icosahedral
interaction in Au25 (Fig. 2f and g). As expected, the optical
energy gap decreases with increasing core size (Eg B 1.96 eV,
1.73 eV, and 0.83 eV respectively). As the core evolves further, a
pentameric Au60 ring is formed.83 However, variations in the
Au13 unit arrangement significantly alter the electronic transi-
tion behaviour. The absorption peak arising from the inter-
action within the pentamer structure is observed at 850 nm,
different from the double-peak behaviour in Au37. This suggests
that further studies—especially on tetra-icosahedral spe-
cies—could clarify the evolution of optical properties.
In thiolate-protected Au nanoclusters, while mono-icosa-
hedral [Au25(SR)18]� and bi-icosahedral Au38SR24 have been
discovered,2,81 larger analogues have not yet been reported.
Given the distinct chiral behaviours of [Au25(SR)18]� and
Au38(SR)24,9 uncovering structures of larger species in the
template could yield new insights into chirality trends.

In addition to the abovementioned templates, additional
pathways have been proposed but await verification from success-
ful synthesis. For example, a bi-tetrahedral growth template is
inferred from the evolution from Au20(SR)16 to the Au28(SR)20

isomer in the first template. Moreover, Au11 units are recurring in
species like Au11(PPh3)7Cl3 and [Au20(PPhpy2)10Cl4]2+ (PPhpy2 =
bis(2-pyridyl)-phenylphosphine) where 2 edge-sharing Au11 units
are observed.84,85
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2.1.3. Core composition modification for property adjust-
ment. Heteroatom doping of the metallic core allows fine-
tuning of MNC properties such as PL and catalytic performance
via electronic structure modulation.86,87 According to the two-
step spherical jellium model where background potentials
attributed to host (e.g. Au) and dopant atoms are different but

uniform,88 when a foreign atom of lower valency is doped into
the icosahedron Au13 core, the lower frontier orbitals (1P
orbitals) are destabilized and upshifted, while a dopant of
higher valency would induce a downshift (Fig. 3a). Elements
of larger period number in the same group or smaller group
number in the same period tend to expand the HOMO–LUMO

Fig. 2 Illustrations of various core growth templates of Au nanoclusters depicting the Au core structural evolution with stepwise addition of (a) the Au3

unit onto the Au7 backbone and (b) the Au3 unit onto the Au14 backbone. (c) Template with stepwise addition of 2 Au4 units forming a double-helix
superstructure, and (e) their respective UV-Vis spectra. The mass formula with Au core size and valence electron number N* is indicated below each
structure. Reprinted with permission from ref. 57. Copyright 2016, American Chemical Society. (d) Template with stepwise addition of Au13, and (f) UV-
Vis-NIR spectra of Au25(I) and Au13(II) nanoclusters. Insets: Spectra on the photon energy scale: Au25(III) and Au13(IV). The Au core sizes are indicated below
each structure. (g) UV-Vis-NIR spectra of the Au37 nanocluster. Inset: Spectrum on the photon energy scale. Reprinted with permission from ref. 23.
Copyright 2015, American Chemical Society.
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gap, which reduces nonradiative decay rates and improves PL
quantum yield (QY), consistent with the energy gap law.56 As
demonstrated by Hirai et al., doping-induced HOMO–LUMO
gap modulation leads to predictable monotonic PL peak shifts
and QY variation.89 Doping can also suppress core vibrations in
terms of electron–acoustic phonon interactions as shown by
Hg- or Cd-doped Au25, thereby enhancing PL intensity when
they are incorporated in thin films.90

Doping induced HOMO–LUMO gap variation also affects
catalytic performance. When a single Pt atom is doped at the
centre of the Au13 icosahedral core in [Au25(SC6H13)18]� (SC6H13

represents 1-hexanethiol), the 8e� core is changed to 6e�

causing a Jahn–Teller-like distortion of the PtAu12 core accom-
panied by 1P orbital splitting (Fig. 3b).87 The resultant
reduction potential matches well with the reduction potential
of a proton, significantly enhancing its electrocatalytic perfor-
mance in hydrogen evolution reaction. Moreover, due to the
difference in electronegativity, the dopant could change the
electron density of the MNC, thereby altering the adsorption
behaviour during catalysis. Ag25 centrally doped by Au in the
Ag13 icosahedral core exhibits significant electron donation
from Ag to Au which creates more positively charged surface

Ag facilitating the adsorption of electron-rich alkynes in the
carboxylation of CO2 with terminal alkynes.91

2.2. Functionalization via ligand shell design

Ligand shell design plays a pivotal role in MNC functionaliza-
tion for various applications including PL,92 catalysis,93 and
biomedicine.13 A wide range of ligand types—thiolates,2

phosphines,84 a-alkynyls,62 sulfido,94 halide,80 N-heterocyclic
carbene (NHC),95 multiple N donor ligand (MND),96 and
carboranes97—have been employed in MNC diversification.
The primary role of the ligand shell in MNCs is to stabilize
the metal core, preventing aggregation and further growth.
Taking the thiolate-protected Au nanocluster as an example,
the strong Au–SR covalent bonds confer greater stability than
the weaker Au–ligand interactions present in Au nano-
particles.98 Using ligands with distinct Au–ligand bonds99 or
various ligand–ligand interactions100,101 can effectively alter
MNC stability and enable the formation of different stable
sizes.102 While comprehensive reviews on ligand design
strategies exist,20,27 this section focuses on three key considera-
tions on target nanocluster design for desired properties

Fig. 3 (a) Illustrations of two-step spherical jellium potentials for dopant Au13 doped with an atom of lower (left) or higher (right) valent element.
Reprinted with permission from ref. 88. Copyright 2021, American Chemical Society. (b) Illustrations of the electronic energy levels of undoped [Au25]�

and doped [PtAu24]0. a, b and g denote different optical transitions which can be observed in their UV-Vis spectra. Reprinted with permission from ref. 87.
Copyright 2017, Springer Nature Limited.
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integrating recent developments: synergy with the metal core,
intra-shell interactions, and interactions with external
molecules.

2.2.1. Synergy with the metal core. Firstly, the choice of
ligand contributes to the electronic structure of MNCs. This is
reflected by the slight redshift of the primary absorption peak
of [Au25(SR)18]� (at B680 nm) when changing the ligand body
from non-aromatic to aromatic ones, and the more obvious
redshift after replacing thiolate with selenolate (Fig. 4a).17 A
drastic change is observed when using an a-alkynyl ligand, as
shown between Au44(PhCRC)28 (PhCRC represents ethynyl-
benzene) and Au44(TBBT)28 (Fig. 4b),103 due to the more active
participation of the PhCRC ligand in the frontier orbitals
endowed by its different binding mode, according to theoretical
studies.104 Furthermore, ligand’s contribution to the electronic
structure gives rise to ligand-to-metal charge transfer (LMCT)
through the Au–ligand bond, which influences MNC PL perfor-
mance. In [Au25(SR)18]�, replacing 1-hexanethiol with more
electron-donating ligands such as 1-dodecanethiol and
2-phenylethanethiol (PET) increases fluorescence QY by 2.5
and 5 times respectively.92 Besides, a delocalized electron from
the electron-rich ligand body of glutathione (GSH) can be

directly donated to the metal core of [Au25(SR)18]�, boosting
QY by B100 times relative to 1-hexanethiol.

Secondly, the choice of ligand determines the geometric
structure of the metal core. For example, Au24(SCH2Ph-tBu)20

possesses a bi-tetrahedral Au8 core with anti-prismatic face-
joint Au4 units,105 whereas Au24(SeC6H5)20 shares the same core
size but different geometry. Its 2 cross-joint tetrahedral Au4

units have the same orientation in space (Fig. 4c).106 The same
effects are observed in Au21 nanoclusters where the Au10 core
structure differs between S-Adm (adamantanethiolate) and StBu
(tert-butylthiol)-protected nanoclusters.107

2.2.2. Interactions within the ligand shell. Interactions
within the ligand shell critically shape the overall structure
and properties of MNCs. Rigid ligands such as alkynyls intro-
duce a strong steric hindrance effect that induces distinct
structural conformations in the ligand shell. This is exempli-
fied by [Au25(CRCAr)18]� (Ar = 3,5-bis(trifluoromethyl)phenyl)
whose 3 of the 12 Au atoms in staple motifs are twisted about
601 compared to its thiolate-protected counterpart, giving rise
to its intrinsic chirality with a D3 symmetry (Fig. 5a and b).108

Ligand rigidity can also influence the thermodynamically stable
surface structures of MNCs. In the case of Au28(SR)20, S-c-C6H11

Fig. 4 (a) UV-Vis absorption spectra of Au25 nanoclusters protected by various thiolates or selenolate. Reprinted with permission from ref. 17. Copyright
2021, Wiley-VCH. (b) UV-Vis spectra of Au44 nanoclusters in CH2Cl2. Reprinted with permission from ref. 103. Copyright 2017, Wiley-VCH. (c) Illustration
of the core structures of Au24 nanoclusters. The mass formula with Au core size and valence electron number N* is indicated below each structure.
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stabilizes more protruded staple motifs compared to TBBT,
which enhances carbon monoxide (CO) adsorption at the motif
Au atoms during catalytic CO oxidation reaction.66

Ligand–ligand interactions can also be utilized to rigidify
the ligand shell for PL enhancement effects. Stronger p–p
stacking interactions between the adjacent aromatic ligands,
in addition to the bulkier ligand body, contribute to the more
rigidified structure which suppresses the high-frequency opti-
cal phonons in [Au25(SR)18]� protected by aromatic ligands,
leading to enhanced PL compared to [Au25(SR)18]� protected by
non-aromatic ligands.109 Likewise, the rigid surface and
strong internal p–p stacking interactions in NHC-stabilized
Au13 result in superior QYs of 16%, much higher than those
of other nanoclusters with the same Au13 core.110 Ligand–
ligand hydrogen bonds can also provide surface structural
rigidity. The extensive intermolecular hydrogen bonds between
the H-donors (–OH and –NH) and the H-acceptor (CQO)

functional groups between adjacent ligands led to smaller
structural changes between the solid and solution phases
for glutathione-protected Au18(SR)14 as compared to the
S-c-C6H11-protected nanocluster (Fig. 5c), and superior PL
performance.100

2.2.3. Interactions with external molecules. The third key
consideration in ligand design is how the ligand shell interacts
with external molecules. These interactions—occurring
through both physical and chemical means—critically influ-
ence MNC properties.111,112 Strategic engineering of these
interactions allows researchers to expand MNC functional
capabilities beyond those achievable through the metal core
and intra-shell design alone.

MNC properties can be modulated through carefully
designed electrostatic interactions. For instance, ligand’s elec-
trostatic interactions with cationic surfactant CTA+ (cetyltri-
methylammonium) induced [Au25(p-MBA)18]� (p-MBA stands

Fig. 5 Illustration of the different arrangements of three V-shaped surface motif staples in (a) alkynyl-protected and (b) thiolate-protected Au25

nanoclusters. Colour label: orange, blue and green spheres, Au; yellow spheres, sulfur; grey spheres, carbon. (c). Reprinted with permission from ref. 108.
Copyright 2018, Wiley-VCH. Simulated structures of S-c-C6H11-protected and SG-protected Au18(SR)14 in the gas or solution phase. Reprinted with
permission from ref. 100. Copyright 2018, American Chemical Society.
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for para-mercaptobenzoic acid) isomerization.113 By means of
the synergistic effect of electrostatic interactions (between the
deprotonated carboxylic groups and the positively charged
ammonium headgroup) and CH� � �p interactions (between the
aromatic ring of p-MBA ligands and the small carbon tails at
the ammonium headgroup), the CTA+ ions adsorbed onto the
nanocluster surface, forming a double layer structure (Fig. 6a).
The resultant surface rigidification effect stretches and rotates
the inner metal core, forming a new isomer with distinct optical
properties (Fig. 6b). Likewise, multi-layer ligand engineering
was applied to ATT (6-Aza-2-thiothymine)-stabilized Au10

through hydrogen bonding with ARG (L-arginine), which is
further ion-paired with TOA+ (tetraoctylammonium), effectively
suppressing kernel vibrations.114

Intercluster interactions are pivotal to MNC self-assembly
behaviour and supercrystal formation.115 [Au25(p-MBA)18]�

crystallization was facilitated by combined CH� � �p and ion-
paring interactions between p-MBA ligands at the apex position
and tetraethylammonium cations (TEA+) (Fig. 6c).116 These
interactions achieved an intricate balance, detaching the SR–
[Au(I)–SR]2 motifs from the surface of [Au25(p-MBA)18]� to form
SR–[Au(I)–SR]4 linkers that connected adjacent distorted mono-
mers into an orderly three-dimensional architecture. Similarly,
controlled van der Waals interactions between the surface
ligands of Au29(S-Adm)19 enabled helical assembly of the MNC
monomers.58 These ordered superstructures serve dual func-
tions: facilitating structural determination for structure–prop-
erty relationship construction and inducing synergistic
properties distinct from those of individual MNC monomers.
The dual ligand system in Au4Ag13(dppm)3(SR)9 (dppm =
bis(diphenylphosphino)methane and SR specifically denotes
2,5-dimethylbenzenethiolate in this case) exemplifies this
principle, where six pairs of intercluster CH� � �p interactions
between dppm aromatic rings and SR aromatic hydrogens
promoted supercrystal formation while compact packing
significantly enhanced radiative transitions through intra-
molecular vibration/rotation restriction.117 Interestingly, the
supercrystal formed by CH� � �p and p� � �p interactions between
dppp (1,3-bis-diphenylphosphine propane) ligands in [Pt1Ag18-
(S-Adm)2(dppp)6Cl6]2+ not only exhibited crystallization-induced
PL enhancement but also demonstrated promising optical wave-
guide performance with low optical loss and polarized emission,
attributed to its distinct packing mode.118

Another crucial consideration is ligands’ interaction with
the solvent environment, especially for bio-related applications.
Ligands such as peptides, DNA, and proteins contribute to
biocompatibility necessary in applications such as biosensing,
bioimaging and photothermal therapy.119–122 For inherently
hydrophobic ligands such as NHC, biocompatibility can be
achieved through functionalization with polar water-soluble
functional groups such as triethylene glycol monomethyl
ether.123 Bioconjugation represents another effective strategy
to achieve biocompatibility. Zhang et al. demonstrated stoichio-
metric conjugation between [Au25(SR)18]� and BSA (bovine
serum albumin) via electrostatic interactions and hydrogen
bonds which simultaneously enhanced NIR-II emission and

potential theranostic applicability.124 Host–guest chemistry
offers additional opportunities, as demonstrated by complex
formation between b-cyclodextrin (CD) and the 4-(tert-butyl)-
benzyl mercaptan protected Au25 nanocluster.125

Exploiting the chemical reactivity of ligands also serves as a
powerful tool for property enhancement and functional diver-
sification. Deng et al. demonstrated that intracluster cross-
linking between GSH ligands in Au22(SG)18 via Bis-Schiff base
linkage formation enhanced the PL QY over 11-fold.126 Simi-
larly, [Au11(PNHP)4Br2]+ (PNHP stands for [PPh2(CH2)2]2NH
where PPh2 represents diphenylphosphine) was functionalized
through amidation with acyl chlorides to simultaneously intro-
duce chirality and desired functional groups.127

Recent advances include click chemistry-compatible MNCs,
such as [Au25(SR)18]� protected by azide-functionalized thiolate
(SCH2CH2-p-C6H4-N3).128 Its reactivity in strain-promoted
azido–alkyne cycloaddition (SPAAC) was found to be affected
by ligand regioisomerism with the para isomer exhibiting the
highest reaction rates while the ortho isomer failed to stabilize
the nanocluster during reaction.129 In a complementary
approach, reactivity in SPAAC is incorporated into the DNA–
Ag16 nanocluster by attaching ring-strained alkyne bicyclono-
nyne to the DNA ligands (Fig. 6d).130 When conjugated with
azido-modified human insulin, the nanocluster maintained its
original photophysical properties while enabling specific stain-
ing of the Chinese hamster ovary membranes with promising
stability.

Interactions in terms of molecular adsorption are crucial in
designing MNCs with desired catalytic performance. Liu et al.
reported enhanced OH� adsorption during oxygen evolution
reaction in alkaline medium by ligands with stronger electron-
withdrawing capability.131 Compared to [Au25(SR)18]� protected
by MHA (6-mercaptohexanoic acid) and H-cys (homocysteine)
(Fig. 6e), p-MBA in [Au25(p-MBA)18]� induced more positively
charged Au(I) active sites in the surface motifs (Fig. 6f), render-
ing nearly 4 times catalytic performance enhancement (Fig. 6g).
Through Tafel slope analysis and in situ Raman spectroscopy,
the authors determined that the difference in charge density
around the active site altered the rate determining step: decom-
position of Au–O–OH for [Au25(p-MBA)18]� versus deprotonation
of Au–OH for the other nanoclusters.

3. Route development

Route development, the second critical step in synthesis
planning, involves designing the reaction pathway from com-
mercially available starting materials to the desired target
material. In organic chemistry, this step typically employs
retrosynthetic analysis—working backward from the target
molecule to identify viable precursors based on established
reaction libraries. Multiple possible routes are then evaluated
using criteria such as cost-effectiveness, safety, and synthetic
feasibility.41,132 The synthesis of ketoprofen, a nonsteroidal
anti-inflammatory drug, illustrates this approach. To avoid
regulated substances, a viable retrosynthetic pathway
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begins with commercially available a,b-dibromopropanoate
and benzophenone. These precursors initially undergo

dehydrohalogenation and iodination, respectively, followed
by a coupling reaction. The synthesized intermediate is

Fig. 6 (a) Schematic illustration of the adsorption of CTA+ ions onto the [Au25(p-MBA)18]� nanocluster surface. (b) UV-Vis absorption spectra of [Au25(p-
MBA)18]� and [Au25(p-MBA)18]� after isomerization. Reprinted with permission from ref. 113. Copyright 2021, Elsevier. (c) Field-emission scanning electron
microscopy (FESEM) image of hexagonal rod-like supercrystals formed by [Au25(p-MBA)18]� and the schematic illustration of the surface rearrangement
and crystallization processes induced by CH� � �p and ion-paring interactions between the ligand at the apex position and TEA+. Reprinted with permission
from ref. 116. Copyright 2023, Springer Nature Limited. (d) Schematic illustration of the conjugation between human insulin and the bicyclononyne-
terminated DNA–Ag16 nanocluster. Reprinted with permission from ref. 130. Copyright 2023, American Chemical Society. (e) Schematic illustration of
[Au25(SR)18]� nanoclusters protected by various ligands, (f) their high-resolution Au 4f XPS (X-ray photoelectron spectroscopy) spectra, and (g) their turn-
over frequency values at 1.65 and 1.7 V. Reprinted with permission from ref. 131. Copyright 2023, Springer Nature Limited.
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subsequently hydrolysed and hydrogenated to yield the
desired pharmaceutical product.133

MNC synthesis planning adopts a similar conceptual frame-
work but requires specialized approaches due to fundamental
differences in reaction mechanisms. Unlike organic synthesis
with its discrete covalent bond transformations, MNC for-
mation involves complex formation processes with numerous
concurrent reactions and intermediates. While organic chem-
istry can draw upon extensive libraries of well-characterized
reactions, the high complexity and rapid kinetics of nanoclus-
ter formation have hindered the development of analogous
elementary reaction libraries for MNCs.

Despite these challenges, researchers have developed quali-
tative ‘‘reaction maps’’ that guide MNC synthesis by correlating
starting materials, intermediates, and conditions with struc-
tural outcomes. A typical MNC synthesis protocol adapted from
the Brust–Schiffrin method involves metal–ligand complex
formation through ligand exchange with metal salts (e.g.,
HAuCl4 with thiols), followed by reduction (often with NaBH4)
to generate core–shell nanoclusters.134

Several distinct synthetic strategies have emerged for
controlling specific MNC structural features. Direct synthesis
through one-step reduction produces numerous well-
defined nanoclusters like [Au25(SR)18]� and [Ag44(SR)30]4�

through reduction-growth processes.29,135,136 ‘‘Size-focusing’’
approaches convert polydisperse mixtures into monodisperse
products by leveraging thermodynamic stability differences.137

Seeded growth reactions use existing monodisperse MNCs as
templates for larger structures, while oxidative etching provides
routes to reduce core size.138 Surface-induced transformations
offer pathways to core structure modification through physical
means or chemical approaches like ligand exchange.113,139

Core composition can be manipulated via co-reduction,158

metal exchange with preformed MNCs,140 or intercluster
reactions,141 each offering specific advantages for dopant
control.

In this section, we systematically examine these synthetic
routes for controlling four critical aspects of MNC structure:
core size, core structure, core composition, and ligand shell
structure. For each approach, we discuss the mechanistic
principles and the criteria for selecting optimal routes based
on target design requirements.

3.1. Synthesizing the desired core size

MNC synthesis typically employs the reduction of metal–ligand
(M–L) complex precursors following adaptations of the Brust–
Schiffrin method. During this process, a rich library of species
is formed whose N*s are found to follow an evolution path of
0e� - 2e� - 4e� - 6e� - 8e� - 10e� via a stepwise 2e�

hopping mechanism based on electrospray ionization mass
spectrometry (ESI-MS) and UV-Vis absorption spectroscopy
results.29,142 While reduction-growth reactions promote for-
mation of larger species from smaller ones, concurrent reac-
tions like isoelectronic addition, disproportionation, and
comproportionation are also taking place (Fig. 7a and b). These
reactions drive the formation of the thermodynamically

favourable product in a ‘‘size-focusing’’ manner,137 as exempli-
fied by the synthesis of [Au25(m-MBA)18]� (m-MBA represents
meta-mercaptobenzoic acid) (Fig. 7c).29 Due to the complexity
of the reduction process, reaction intermediates can be stabi-
lized via kinetic control methods by carefully adjusting reaction
condition parameters (detailed in Section 4). Following
synthesis, various separation and purification techniques—
including solvent fractionation,143 solvent extraction,144 thin-
layer chromatography (TLC),145 high-performance liquid
chromatography (HPLC),146 and electrophoresis135—can be
applied to remove impurities and obtain product monodisper-
sity. This one-step direct reduction approach has success-
fully yielded MNCs of varied sizes, compositions, and ligands,
such as thiolate-stabilized Au15(SR)13,33 Au18(SR)14,33

Au20(SR)16,35 [Au27(SR)13]4+,35 [Au25(SR)18]�,29,135 Au36(SR)22,70

[Ag44(SR)30]4�,136 DNA-stabilized Ag16,147 Ag11,148 and amidinate-
protected Cu11,149 just to name a few.

As an alternative to direct synthesis, a two-step ‘‘size-
focusing’’ route can be employed.137 This approach begins with
generating a mixture of species through reduction-growth,
followed by an additional step that adjusts reaction kinetics
to favour more thermodynamically stable products.150 For
example, introduction of an excess ligand can accelerate the
etching reaction and promote the ‘‘size-focusing’’ process. Size-
mixed Aux(TBBT)y obtained from NaBH4 reduction of Au–TBBT
complexes can be reacted with excess TBBT thiol at elevated
temperature to form Au52(TBBT)32.61 Similar approaches have
enabled the synthesis of Au36(DMBT)24 (DMBT = 3,5-
dimethylbenzenethiol).76 Alternatively, introducing different
ligands can initiate simultaneous etching and ligand exchange,
as demonstrated by the formation of Au38(SC12H25)24

151 and
Au21(StBu)15.60

Monodisperse MNCs can serve as seeds for continued
reduction-growth reactions to yield larger core sizes. Yao et al.
successfully synthesized Au38(SR)24 and [Au44(SR)26]2� by add-
ing [Au25(SR)18]� as seed to the Au(I)–SR complex precursor
followed by CO-mediated reduction.138 [Au25(SR)18]� played a
duel role in this process—it reacts with the Au(I)–SR complexes
or nanocluster species while also adsorbing CO molecules,
making CO more susceptible to oxidation as evidenced by the
successful detection of [Au25(SR)18CO]� via ESI-MS. Monitoring
reaction intermediates revealed two parallel size growth pat-
terns: LaMer-like monotonic size growth and volcano-shaped
aggregative growth, both following the 2e� hopping mecha-
nism (Fig. 7d). Fine-tuning of the reaction kinetics allowed
optimization toward Au38(SR)24 as the major product. This
seeded growth approach has also been successfully applied to
silver nanoclusters, producing Ag50(dppm)6(SR)30 from
[Ag44(SR)30]4�.152

Conversely, oxidative etching provides an effective method
for reducing MNC core size, generating MNCs with higher
ligand-to-metal ratios. In thiol-mediated etching of larger Au
nanoparticles, oxygen molecules initiate the process by radica-
lizing thiol molecules to form thiyl and peroxy radicals. These
radicals cleave surface motifs and oxidize Au(0) to form surface-
exposed Au(I), creating new Au(I)–S bonds (Fig. 8a).153 A similar

Review Nanoscale Horizons

Pu
bl

is
he

d 
on

 0
3 

Ju
ly

 2
02

5.
 D

ow
nl

oa
de

d 
on

 1
/2

4/
20

26
 2

:5
3:

20
 P

M
. 

View Article Online

https://doi.org/10.1039/d5nh00353a


2316 |  Nanoscale Horiz., 2025, 10, 2304–2339 This journal is © The Royal Society of Chemistry 2025

radical-induced mechanism takes place during the oxidative
etching of [Au25(SR)18]� using excessive thiols.154 Mechanistic

investigations reveal that the reaction proceeds through two
reaction stages: decomposition and recombination (Fig. 8b).

Fig. 7 Proposed reaction schemes of (a) reduction-growth formation of Au11(SR)9 and (b) possible isoelectronic addition, disproportionation, and
comproportionation reactions that occur during the size-focusing stage. (c) ESI-MS spectral profiles with normalization of the intensity of the complex
precursors and nanocluster species throughout the synthesis (left) and the overall reaction scheme (right). Reprinted with permission from ref. 29.
Copyright 2014, American Chemical Society. (d) Schematic illustration of the growth pathways from [Au25(SR)18]� to [Au44(SR)26]2� featuring two growth
patterns. Reprinted with permission from ref. 138. Copyright 2017, Springer Nature Limited.
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The initial decomposition stage follows a reverse 2e� hopping
mechanism compared to the reduction-growth process. Subse-
quently, decomposition products recombine with Au(I)–SR
complexes to form isoelectronic Au nanoclusters with identical
N* values but higher SR : Au ratio—species not observed in
simple reduction-growth processes (Fig. 8c). This allows the
successful synthesis of Au25(SR)19 from [Au25(SR)18]�,155 which

is predicted to possess a smaller core, consisting of one Au4

unit alongside a bitetrahedral Au7.156

Intercluster reaction offers another approach to modulate
MNC core size. When [Au25(SR)18]� is oxidized to the neutrally
charged Au25(SR)18, it loses the stability endowed by the shell-
closing 8e� valence electron count.157 An elevation in tempera-
ture then initiates the intercluster fusion reaction forming

Fig. 8 (a) Proposed mechanism of Au nanoparticle etching by thiol. Reprinted with permission from ref. 153. Copyright 2015, Wiley-VCH. (b) Schematic
illustration of the etching process of [Au25(SR)18]� which depicts two reaction stages: decomposition and recombination. (c) Comparison of the distinct
nanocluster species formed during etching and reduction-growth processes of [Au25(SR)18]�. The black dashed line is a guideline for reference. Reprinted
with permission from ref. 154. Copyright 2021, Springer Nature Limited. (d) ESI-MS spectra (left) and the corresponding UV-Vis spectra (right)
characterized at various points of time during the transformation reaction. Three grey shadows highlight three groups of peaks: Au36(TBBT)m(PET)24�m,
Au38(TBBT)m(PET)24�m, and Au40(TBBT)m(PET)24�m, from left to right, respectively. The number of TBBT ligands exchanged onto the cluster (m) is
highlighted on top of the mass peaks. (e) Schematic reaction pathway showing conversion from Au38(PET)24 to Au36(TBBT)24 which exhibits four stages:
ligand exchange, structure distortion, disproportionation, and size-focusing. Reprinted with permission from ref. 139. Copyright 2013, American
Chemical Society.
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Au38(SR)24 from two Au25(SR)18 nanoclusters.158 Remarkably,
the Au13 icosahedral cores of individual Au25(SR)18 integrate to
form Au38(SR)24 with a face-fused Au23 biicosahedral core.

Beyond redox reactions and intercluster reactions, the
synergy between surface ligands and metal cores can induce
size modification during ligand exchange processes. For exam-
ple, treating Au38(PET)24 with TBBT in large excess results in
complete ligand exchange to produce Au36(TBBT)24.139 Time-
dependent ESI-MS and UV-Vis characterization revealed four
distinct reaction stages in this transformation (Fig. 8d and e):

(1) Initial ligand exchange forming Au38(TBBT)m(PET)24�m

(m o 12).
(2) Progressive structural distortion of Au38(TBBT)m-

(PET)24�m likely triggered by steric interactions from the bulky
TBBT ligands.

(3) Disproportionation of structurally distorted Au38*(SR)24

to form Au36(SR)24 and Au40(SR)26 through internal
reconstruction.

(4) Simultaneous ligand exchange and size-focusing, yield-
ing Au36(TBBT)24 with approximately 90% yield.

This methodology has been extended to synthesize
Au21(S-Adm)15 and Au16(S-Adm)12 from Au18(S-c-C6H11)14 and
Au15(SG)13, respectively, utilizing the bulky HS-Adm
ligand.107,159 Notably, unlike the Au36(TBBT)24 case, these pro-
ducts exhibit larger core sizes than their predecessors, indicat-
ing that the product core size is highly ligand-dependent.

3.2. Tuning for the desired core structure

Once the desired core size is achieved, further refinement of the
core structure—with minor core size adjustments that preserve
the valence electron count—can be accomplished through
various surface-induced transformation methods. These
approaches can be broadly categorized into physical measures
and chemical approaches.

Firstly, physical measures can effectively modify core struc-
tures without changing chemical composition. As discussed
previously, pairing anionic surface ligands with bulky cations
promotes electrostatic and CH� � �p interactions that rigidify the
nanocluster surface, inducing core rotation in [Au25(SR)18]�.113

Similarly, modulating solvent pH can regulate inter-ligand
hydrogen bonds to trigger isoelectronic transformations. For
example, by adjusting the solvent pH from 5.5 to either 2.5 or 8,
Au22(SG)18 is readily converted to isoelectronic Au24(SG)20

or Au18(SG)14 respectively.160 Although the exact structures
of these glutathione-protected species have not been fully
resolved, their UV-Vis absorption profiles—reliable indicators
of their core size and structure—closely resemble those of
structurally characterized analogues with different ligands.
This suggests that they likely possess similar core structures:
bitetrahedral Au8 in Au24, bitetrahedral Au7 in Au22, and
bioctahedral Au9 in Au18 (Fig. 9a).105,161–163

Surface dynamics can be strategically altered through
ligand exchange reactions to induce core structure modifica-
tions. Reacting Au30(StBu)18 with excessive HSPhX (X = –H
or –tBu) induces inter-template core structure conversion,
forming monodisperse Au36(SPhX)24.164 This transformation

fundamentally reconfigures the 12e� Au20 in Au30(StBu)18

(Fig. 2b)—which can be regarded as two Au3 units attached to
two bitetrahedral Au7 units—into 2 crossing vertex-fused trite-
trahedral Au10 in Au36(SPhX)24 (Fig. 2c). Notably, this process is
reversible—the original Au30(StBu)18 can be regenerated by
exchanging the surface ligand back to tert-butylthiol. Similarly,
the 8e� Au13 core in [Au23(S-c-C6H11)16]� can transform to the
double bitetrahedral Au14 core of Au28(TBBT)20 (Fig. 9b).165 The
authors propose that progressive replacement of S-c-C6H11 with
TBBT alters surface dynamics, inducing core distortion that
ultimately results in core transformation once a threshold
concentration of TBBT on the surface is reached.

In addition to ligand exchange, surface motif exchange
provides another effective approach for tuning the core struc-
ture through surface dynamics modification. Reacting Au(I)–SR
complexes with [Au23(SR)16]� can transform the cuboctahedral
Au13 core into an icosahedron, forming [Au25(SR)18]�.166

Through hetero-ligand experiments, the authors proposed that
the transformation process is initiated by the association of 2
SR–[Au(I)–SR]2 motifs. The process involves disruption of the
original longer SR–[Au(I)–SR]3 motifs and ejection of SR–Au(I)–
SR motifs, giving rise to an enhanced degree of freedom in the
metal core which facilitates the core conversion.

3.3. Synthesizing the desired core composition

Controlling core composition through heteroatom doping is
achievable via three primary routes: one-step co-reduction, two-
step metal exchange with monodisperse MNCs, and interclus-
ter reactions. These approaches have successfully incorporated
various heteroatoms—including Au,167 Ag,168 Cu,169 Pt,118

Pd,170 Cd,171 Hg,172 Ru,86 Rh,86 Ir,86 and H173,174—into MNCs.
Detailed structural analysis revealed that different dopants
have distinct preferential sites. In the case of [MAu24(SR)18]�

(where M represents a dopant), Pt and Pd preferentially replace
the central atom in the icosahedral core, Ag, Cd and Hg tend to
occupy positions on the icosahedral shell, and Cu typically
localizes in the staple motifs.171,175,176 Such site preference is
observed in Au16Cu6(tBuPhCRC)18, where all 6 Cu atoms are
located in the surface motifs as compared to its isostructural
counterpart Au22(tBuPhCRC)18.62

The one-step co-reduction approach involves mixing precur-
sors of both host and dopant metals—either as metal salts or as
metal–ligand complexes—to undergo simultaneous reduction.
This facile method enables single-atom doping in various
systems, including the Au13 icosahedral core of [Au25(SR)18]�

with Pt and Pd,51,177 and phosphine-protected Au13 MNCs with
Ru, Rh and Ir.86 If necessary, ligand shell modification can be
thereafter conducted.178 When doping heteroatoms that are
homologous to the host metal, such as Ag and Au, multi-doped
MNC mixtures often form, such as [AgxAu25�x(SR)18]� and
AgxAu38�x(SR)24.168,179 HPLC can then be employed to isolate
species with different dopant number from the mixture.180,181

Notably, heteroatom doping can lead to surface reconstruction
of the host MNC. Li et al. demonstrated that adding Cd(II)–(SR)2

to the Au precursors yields [Au23-xCdx(SR)16]� (x E 2) which
exhibits a structure similar to [Au23(SR)16]� but with 2 surface
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Au atoms replaced by Cd.171 Increasing the Cd(II)–(SR)2 pre-
cursor concentration results in [Au19Cd2(SR)16]�, where each
metallic Cd replaces 2 surface Au atoms—preserving the Au13

core while reconstructing the surface motif configurations
(Fig. 10a).

The second approach employs two-step metal exchange
with preformed monodisperse MNCs. After synthesizing
[Au24(PPh3)10(SC2H4Ph)5Cl2]+, addition of MCl salt (M = Ag/Cu)
gives rise to single-atom doping where the dopant occupies
the vertex position in the core, displacing one Au atom to the
centre (Fig. 10b).140 Likewise, CdAu24(SR)18 and HgAu24(SR)18

can be obtained by reacting Cd2+ and Hg2+ ions with
[Au25(SR)18]�.182 It is intriguing that the less noble Hg is
reduced by Au in Au25, seemingly contradicting the galvanic
sequence. This ‘‘anti-galvanic’’ behaviour is attributed to the
decreased oxidation potential of these MNCs falling below the
reduction potential of the dopant ions.183 Metal–ligand com-
plexes can also serve as effective dopant sources. Bakr and
colleagues demonstrated that reacting [Ag25(SR)18]� with Au
complexes replaces the central Ag yielding [Ag24Au(SR)18]� and

achieving single-atom doping in Au/Ag bimetallic nano-
clusters.167 Mechanistic studies by Zheng et al. using real-
time monitoring in hydrophilic systems suggest that the doped
Au atom initially replaces an atom in the surface motif; subse-
quently, it diffuses dynamically to the icosahedral shell, and
ultimately occupies the energetically favourable central
position.184 However, exchange with complexes can also lead
to surface motif replacement, as demonstrated when appro-
priate amounts of Au(I)–SR substitute all the surface motifs of
[Ag44(p-MBA)30]4� forming [Ag32Au12SR30]4�.185

Precursor concentration is critical in metal exchange reac-
tions. In the exchange reaction between [Au23(SR)16]� and
Ag(I)–SR, light doping allows the formation of [Au23�xAgx(SR)16]�

(x = 1 to 2) with Ag occupying core vertex positions, which can
subsequently form [Au21(SR)12(P–C–P)2]+ with Au2Cl2(P–C–P)
(P–C–P stands for bis(diphenylphosphino)methane). Conver-
sely, heavy doping leads to structural conversion, forming
[Au25�xAgx(SR)18]� (x ranging from B4 to B19).186,187 In this
process, Ag dopants preferentially occupy icosahedral core
vertices before filling surface motif positions (Fig. 10c). It

Fig. 9 (a) Illustration of the core structures of Au24(SR)20, Au22(CRCR)18, and Au18(SR)14. The mass formula with Au core size and valence electron
number N* is indicated below each structure. (b) Proposed reaction pathway of conversion of the Au core from [Au23(S-c-C6H11)16]� to Au28(TBBT)20.
Reprinted with permission from ref. 165. Copyright 2020, American Chemical Society.
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should also be noted that the choice of dopant precursor form
(ions versus complexes) can impact the synthesis outcome.
While CdAu24(SR)18 can be synthesized from both Cd2+ ion
and complex precursors,182,188 these precursors yield different
products when reacted with [Au23(SR)16]�.189 Such nanocluster
dependency was demonstrated by Zhu et al., who showed that
Cd2+ ions induce conversion from [Au23(SR)16]� to Au28(SR)20

while Cd(II)–(SR)2 results in Au20Cd4(SH)(SR)29.
Composition adjustment can also be realized via interclus-

ter reactions.141 By reacting [Au25(SR)18]� with [Ag25(SR)18]� in
different molar ratios, the entire range of alloy composition
[Ag25�xAux(SR)18]� (x = 1–24) becomes attainable.190 Research-
ers successfully captured the formation of [Ag25Au25(SR)36]2�

dianionic adducts using ESI-MS, suggesting a reaction mecha-
nism that begins with adduct formation, proceeds through
metal atom exchange in transient dimers, and concludes with
dimer dissociation into monomers.191 Of note, intercluster
reactions typically generate polydisperse product mixtures
requiring subsequent separation efforts.

3.4. Synthesizing the desired ligand shell

The most straightforward way to synthesize MNCs of desired
ligand shell—whether comprising single or multiple ligand-
s—is via one-step reduction-growth of the metal–ligand
complex containing the target ligand(s).192–194 When target

ligands are not commercially available, in-house synthesis
provides researchers greater flexibility in ligand design,
enabling the incorporation of specific functionalities or reactiv-
ities prior to complex formation with metal salts.123,127,130

For fine-tuning the ligand shell of monodisperse MNCs,
mild ligand exchange offers a versatile approach. Different
from excessive ligand change, adding controlled amounts of
foreign ligands can result in a multi-ligand surface with pre-
cisely regulated foreign ligand incorporation. SCXRD analysis
of [Au25(SR)18]� with two exchanged foreign ligands revealed
that these foreign ligands are symmetrically bonded to the
most solvent-exposed Au atoms on the surface, replacing the
host thiolate ligands at the core site (Fig. 11a).195 This observa-
tion is consistent with an associative mechanism where the
ligand exchange is initiated by the association of the foreign
ligand with the accessible Au atom. The site preference in
ligand exchange reactions is also supported by HPLC
results.196 Adopting this approach, Liu et al. successfully intro-
duced chirality to the ligand shell of [Au23(S-c-C6H11)16]� via
ligand exchange with chiral phosphoramidite ligands.8 To
accommodate these bulky ligands, two short SR–Au(I)–SR staple
motifs on the host nanocluster surface were replaced by one
long SR–[Au(I)–SR]3 motif while the Au13 core structure was
largely preserved despite slight twisting (Fig. 11b). In certain
cases, complete ligand exchange can alter the structure of the

Fig. 10 (a) Structures of [Au23�xCdx(SR)16]� and [Au19Cd2(SR)16]�. Colour label: magenta, Au; yellow, S; blue, Cd; light blue, partial occupancy of Cd/Au.
Reprinted with permission from ref. 171. Copyright 2017, American Chemical Society. (b) Reaction pathway showing core structures of Au24 and the
products of single-atom doping with Ag and Cu. Colour label: yellow, Au; blue, Ag; magenta, Cu. Reprinted with permission from ref. 140. Copyright
2017, Springer Nature Limited. (c) Reaction pathway of [Au23(SR)16]� with light doping forming [Au23�xAgx(SR)16]� (x = 1 to 2) and thereafter forming
[Au21(SR)12(P–C–P)2]+ and heavy doping forming [Au25�xAgx(SR)18]� upon exchange reaction with Ag(I)–SR. Reprinted with permission from ref. 186.
Copyright 2017, The American Association for the Advancement of Science.
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ligand shell while maintaining core integrity, as exemplified by
the reversible isomerism reactions between Au28(S-c-C6H11)20

and Au28(TBBT)20.66

Seeded growth provides another effective route for ligand
shell synthesis. Lei et al. developed a two-step measure for
high yield synthesis of [Au25(SR)18]� by first preparing
[Au13(dppp)4Cl4]+, which possesses an identical Au13 core struc-
ture and can be synthesized with high yield (Fig. 11c).197 In the
second step, this Au13 precursor is reacted with Au(I)–SR com-
plexes in the presence of NaBH4 as a reducing agent to form
[Au25(SR)18]� with yields approaching 100%. The authors
observed that the ligand body can significantly affect synthesis
results. When aromatic thiols are replaced with alkanethiols
such as PET and S-c-C6H11, [Au25(SR)18]� formation was pro-
hibited, instead producing a mixture of Au20(SR)13 and

Au33(SR)20. However, the detailed reaction mechanism and
the role played by the ligand during the process remain to be
fully elucidated.

After establishing the desired ligand shell architecture,
further functionalization of ligand bodies based on their phy-
sical or chemical reactivities can be performed. As these reac-
tions constitute crucial considerations during ligand shell
design, they have been discussed extensively in Section 2.2.3
and are not repeated here.

4. Condition optimization

Optimization of reaction conditions represents the third step in
synthesis planning, where parameters are systematically
adjusted to achieve optimal reaction objectives. Based on the

Fig. 11 (a) Structure of Au25(PET)18(p-BBT)2 (p-BBT = 4-bromobenzenethiol) resolved by SCXRD. Colour label: orange, Au; yellow, S; grey, C; red, Br.
Red arrows indicate the locations of exchanged p-BBT ligands and blue arrows indicate the Au atoms on the surface motif that bond to the exchanged
p-BBT ligands. Reprinted with permission from ref. 195. Copyright 2014, American Chemical Society. (b) The total structures of [Au23(S-c-C6H11)16]� after
(R configuration) and before the exchange reaction with phosphoramidite. Colour label: pint, core Au; blue, motif Au; yellow, S; green, P; orange, N; light
blue, O; grey, C. Reprinted with permission from ref. 8. Copyright 2023, Springer Nature Limited. (c) Schematic illustration of the reaction process of the
seeded growth of [Au25(SR)18]�. Reprinted with permission from ref. 197. Copyright 2021, Wiley-VCH.
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fundamental understanding of reaction mechanisms and
kinetics, scientists fine-tune influential factors that affect reac-
tion rates and product selectivity to determine the most effec-
tive parameter combinations. Common objectives in this
optimization process include maximizing reaction yield and
product purity. In many cases, scientists encounter multi-
objective optimization scenarios where all desired outcomes
cannot be simultaneously achieved, necessitating careful trade-
off decisions to balance competing priorities while maintaining
overall synthetic efficiency.

The synthesis of MNCs with well-designed core and ligand
shell architectures necessitates navigation through a complex
reaction landscape involving numerous intermediates and
competing pathways. The selection of specific ligand and metal
precursors not only determines the thermodynamically stable
structures achievable but also profoundly influences the reac-
tion kinetics through their inherent reactivity, binding affi-
nities, and steric properties as discussed in previous sections.
These precursor effects operate synergistically with other reac-
tion condition parameters,33,192,198 creating an optimization
space of high dimensionality where strategic manipulation of
conditions can control product yield and purity. This section
examines the critical condition parameters that significantly
impact synthesis outcomes, starting with physical parameters
including reaction time, temperature and stirring condition,
and thereafter focusing on chemical parameters: metal/ligand
(M/L) ratio, solvent, reducing agent, pH, and use of additives
(such as surfactant cations), elucidating how these factors
interact with precursor chemistry to collectively determine
synthesis outcomes and reviewing the optimization strategies
commonly employed by researchers throughout the field.

4.1. Condition parameters at play

The synthesis of MNCs involves numerous intermediates whose
evolution can be controlled through kinetic means. Condition
parameters, both physical and chemical, play crucial roles
during this process. In terms of physical parameters, reaction
time critically influences the composition of product mixtures,
thereby dictating outcomes in subsequent reaction steps. For
instance, under identical conditions, a 7-day metal–ligand
complex formation reaction time produced high-purity
[Au25(MHA)18]� upon subsequent NaBH4 reduction reaction,
while a 15-second reaction yielded the same product contami-
nated with larger nanoclusters as impurities.199 Similarly, in
the two-step synthesis of Au22(SG)18, a 20-minute CO incuba-
tion time was found to yield maximum purity.200

Temperature represents another fundamental physical para-
meter governing reaction kinetics. Through temperature varia-
tion analysis, Chen et al. revealed the endothermic nature of
the reductive formation of the thermodynamically favourable
[Au25(MHA)18]� using NaBH4, while noting that elevated tem-
perature accelerates its decomposition.201 The optimal condi-
tion was identified at 40 1C, which provided approximately 95%
yield with favourable kinetics. In another example, Zhu et al.
enhanced [Au25(PET)18]� synthesis yield by lowering the
solution temperature from room temperature to 0 1C before

thiol addition, thereby modulating the kinetics of the Au(I)–SR
complex formation.202 Temperature control in both complex
formation and ‘‘size-focusing’’ thiol etching reactions enabled
Zeng et al. to selectively obtain the smaller Au44(TBBT)28 rather
than Au52(TBBT)32.57,61

Moreover, stirring conditions, which regulate mass transfer
kinetics, can significantly influence synthesis outcomes. Redu-
cing the stirring speed during NaBH4 reduction of Au(I)–SR
complexes from 400 rpm to 100 rpm altered the reaction
kinetics sufficiently to shift the major product from a mixture
of 10e� Au39(SR)29 and Au40(SR)30 to 4e� Au24(SR)20.203 Further
modification combining lower stirring speed, reduced NaBH4
addition rate, and shortened reaction time yielded Au20(SR)16.
Beyond homogenization of the reaction mixture, stirring con-
ditions were shown to affect silver nanocluster synthesis by
influencing gas–liquid mass transfer rates, particularly oxygen
uptake which led to desired product formation.204

4.1.1. Metal/ligand (M/L) ratio. With regard to chemical
parameters, the metal/ligand (M/L) ratio critically determines
the composition of metal–ligand complexes during MNC synth-
esis. ESI-MS analysis by Chen et al. revealed that high Au/SR
ratios (8 : 1 to 3 : 1) produce predominantly Au chloride or
hydroxide complexes such as [AuCl2]� and [H4AuO4]� in the
NaBH4 reduction precursor solution, with thiols primarily
consumed in reducing Au(III) to Au(I) and forming disulfides
(Fig. 12a).205 This insufficient protection from thiolate ligands
results in the formation of larger Au nanoparticles which
exhibit surface plasmon resonance. Intermediate M/L ratios
(1 : 1 and 1 : 2) yield predominantly cyclic oligomeric and poly-
meric Au(I)–SR complexes like Au10(SR)10, alongside shorter
chain-like complexes such as [Au2(SR)3]�, which successfully
produce Au nanoclusters upon reduction. In low ratio scenarios
(1 : 3 to 1 : 8), cyclic complexes are replaced by shorter species
including [Au(SR)2]� and [Au2(SR)3]�, which provide enhanced
protection to Au atoms and consequently exhibit decreased
reactivity toward NaBH4 reduction. Despite the better protec-
tion, these short complexes arguably form short surface motifs
that can only stabilize larger nanoparticles with smaller surface
curvature compared to nanoclusters, ultimately leading to
nanoparticle formation after sufficient reaction time. Yao
et al. leveraged these smaller complexes formed at lower M/L
ratios to suppress parallel aggregative growth pathways during
the seeded growth of [Au44(SR)26]2�, facilitating the successful
synthesis of Au38(SR)24.138

Additionally, ligands such as thiols function as etchants, as
mentioned above, with their concentration significantly influ-
encing etching kinetics and playing a critical role in the ‘‘size-
focusing’’ process. Demonstrating this principle, Liao et al.
successfully synthesized the larger Au49(SR)27 species by intro-
ducing reduced thiol quantities to the Aux(SR)y etching pre-
cursor and employing shorter etching duration, in contrast to
the Au44(SR)26 nanocluster produced when following the origi-
nal protocol.206,207

4.1.2. Solvent. Solvent selection affects reaction kinetics
through multiple mechanisms, including regulating reagent
solubility. Lin et al. exploited solubility differences between
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MNCs by implementing a multi-solvent system comprising
acetonitrile, methanol, and dichloromethane that selectively
precipitated the target Cu13H10(SR)3(PPh3)7 nanocluster to yield
a highly pure product in solid form.208 In another approach,
Yao et al. established a toluene–water two-phase system
where the reducing agent borane tert-butylamine (TBAB) was

dissolved in toluene, allowing controlled release into the reac-
tion phase and slowing reaction kinetics to produce high-purity
Au15(SG)13 (Fig. 12b).209 Notably, the authors further tuned the
solubility of Au(I)–SG complex aggregates using pH to leverage
the aggregation–dissociation equilibrium, demonstrating that
increasing pH from 2 to 2.7 neutralized the positively charged

Fig. 12 (a) ESI-MS spectra of precursors formed with different SR : Au ratio and the corresponding UV-Vis absorption spectra. The species identified and
labelled in ESI-MS spectra are tabulated on the right. Reproduced with permission from ref. 205. Copyright 2016, Royal Society of Chemistry. (b)
Schematic illustration of the water–toluene two-phase synthesis method developed for the high-purity synthesis of Au15(SG)13 and Au18(SG)14. Reprinted
with permission from ref. 209. Copyright 2013, Wiley-VCH. (c) UV-Vis absorption spectra and ESI-MS mass spectra of Au nanoclusters synthesized with
different electron : Au ratios, where each mole of NaBH4 can supply 8 electrons to each mole of Au. Reprinted with permission from ref. 142. Copyright
2018, American Chemical Society. (d) The relative abundance of species possessing different N* identified by ESI-MS after each reduction step. (e) Time-
dependent ESI-MS spectra showing normalized abundance of the complex and nanocluster species detected during sub-stoichiometric reduction, with
the duration of each step being 30 minutes. Reprinted with permission from ref. 211. Copyright 2020, Elsevier.
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SG ligands, resulting in more aggregated Au(I)–SG complexes
and reducing the TBAB/complex concentration ratio to produce
Au18(SG)14.

Beyond solubility effects, the solvent environment deter-
mines the reactivity of reducing agents and the degree of thiol
deprotonation. In Au144(PET)60 synthesis, replacing toluene
with methanol precipitates Aux(SR)y intermediates, preventing
further growth and creating a mixture of nanoclusters with
relatively narrow size distribution amenable to ‘‘size-
focusing’’.32 Simultaneously, methanol promotes both NaBH4

reduction and thiolate etching, synergistically modifying
kinetics in both reduction-growth and ‘‘size-focusing’’ stages
to yield high-purity Au144(PET)60. Similar solvent-dependent
outcomes were observed with [Au37(PPh3)10(SC2H4Ph)10Cl2]+

formation in water, compared to [Au25(PPh3)10(SC2H4Ph)5Cl2]2+

in ethanol.23 Additionally, the use of THF as solvent signifi-
cantly improved the purity and yield of Au25(SG)18 compared to
the previously reported protocol using methanol.210

4.1.3. Reducing agent. Reduction reaction kinetics can be
precisely controlled through both reducing agent concentration
and reducing power selection. Chen et al. employed real-time
UV-Vis spectroscopy and ESI-MS characterization to identify the
stoichiometric amount of NaBH4 required for synthesizing
monodisperse [Au25(p-MBA)18]� with [Au(SR)2]� as the only
byproduct.142 Their investigation revealed that insufficient
NaBH4 resulted in under-reduction with unreacted Au8(SR)8,
while excess NaBH4 led to over-reduction and formation of
larger nanocluster impurities (Fig. 12c). Building on this stoi-
chiometric understanding, the authors further decelerated the
reaction by dividing the optimal NaBH4 amount into eight
identical portions added stepwise to the reaction solution.211

According to the evolution of intermediates with distinct
valence electron counts (Fig. 12d), this sub-stoichiometric
approach revealed a distinct growth pathway featuring
Au20(SR)16 as the primary 4e� intermediate—differing signifi-
cantly from previously reported stoichiometric NaBH4 synthesis
pathways (Fig. 12e). Moreover, this method facilitated the
capture of meta-stable intermediates including Au11(SR)9,
[Au15(SR)14]�, and Au23(SR)17, which were observable only dur-
ing individual reduction steps before transforming into other
stable intermediates, thereby enriching mechanistic under-
standing of the reduction process.

Beyond concentration manipulation, the selection of redu-
cing agents with different reduction potentials offers another
dimension for kinetic control that works synergistically with
metal and ligand precursor chemistry. Wu et al. substituted
NaBH4 with milder TBAB, observing a gradual colour evolution
from yellow to orange to black over approximately 15 min-
utes—a marked contrast to the rapid blackening within sec-
onds with NaBH4—resulting in the formation of 6e�

Au19(PET)13 rather than the thermodynamically favoured
[Au25(PET)18]�.212 Carbon monoxide represents another mild
reducing agent successfully implemented by Xie and collea-
gues, leading to the discovery of Au22(SG)18,34 and high-purity
synthesis of water-soluble nanoclusters of a wide size
range: Au15(SR)13,33 Au18(SR)14,33 Au20(SR)16,35 [Au25(SR)18]�,33

[Au27(SR)13]4+,35 upon synergistic tinkering of other condition
parameters such as solvent pH, solvent polarity, and use of
assistant additives. Other weak reducing agents including
trimethylamine borane ((CH3)3N�BH3) and sodium cyanoboro-
hydride (NaBH3CN) have been effectively employed in
nanocluster synthesis, each interacting uniquely with specific
metal–ligand precursor combinations.213,214

4.1.4. pH. pH adjustment through acid or base addition
impacts reaction kinetics through multiple synergistic mechan-
isms. Beyond its influence on solubility behaviours previously
discussed,209 pH critically affects the degree of ligand deproto-
nation and reduction rates. Higher pH conditions promote
thiol deprotonation to form thiolates that facilitate Au(III)
reduction to Au(I) during complex formation, an effect sup-
ported by theoretical calculations,198 and simultaneously accel-
erate thiolate-mediated etching processes. Elevated pH also
decreases proton concentration which retards NaBH4 hydro-
lysis and consequently modifies its reduction kinetics.

Yuan et al. leveraged these mechanistic insights by adding
NaOH prior to NaBH4 introduction, achieving high-purity
synthesis of mono- and multi-thiolate protected [Au25(SR)18]�

through precise balancing of reduction and etching kinetics.192

Conversely, Wu and colleagues employed acidic conditions, via
nitric acid addition, to promote reduction while retarding
thiolate etching, leading to successful synthesis of novel
Au52(PET)32 nanoclusters that are isomeric to previously dis-
covered Au52(TBBT)32.215 Notably, as acid introduction pre-
ceded thiol addition in their protocol, complex formation
kinetics were altered as well, contributing to the formation of
Au52(PET)32. Acid can be strategically introduced at different
stages of the synthesis process to modulate specific reaction
steps. Wu’s group demonstrated this versatility by adding acid
before NaBH4 during Au42(TBBT)26 synthesis,216 while Shichibu
et al. incorporated acid at the beginning of the ‘‘size-focusing’’
step when working with AuN(dppe)xCly precursors to produce
phosphine-protected [Au13(dppe)5Cl2]3+.82 When considering
CO as the reducing agent, reaction kinetics are promoted by
hydroxide ions, resulting in the formation of larger nanoclus-
ters at higher pH values (Fig. 13a).33 These observations collec-
tively demonstrate that pH serves as a powerful parameter for
tuning nanocluster synthesis through its multifaceted effects
on ligand behaviour and reducing agent performance, allowing
researchers to navigate complex reaction landscapes with
greater precision.

4.1.5. Use of additives. Additives that interact with ligands
via intermolecular interactions provide another powerful
approach for tuning reaction kinetics. Surfactant cations with
long hydrocarbon tails represent the most commonly employed
additives, primarily serving to transfer aqueous metal ion
precursors to organic phases where subsequent reactions
occur. However, Jin and colleagues discovered that TOA+ were
indispensable for successful one-phase synthesis of
Au144(SR)60, even when phase transfer was not required.32 This
likely stems from specific interactions between TOA+ and 1-
hexanethiolate ligands that influence the structures and com-
positions of initial Au(I)–SR polymers and mixed-size Aux(SR)y
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intermediates, thereby facilitating the formation of Au144(SR)60

after subsequent treatments—though detailed mechanistic
studies are still underway.

Extending this approach, Zhu et al. introduced ionic liquid
cations such as 1-octyl-3-methylimidazolium (OMIm+) to inter-
act with the deprotonated p-MBA ligands through duel electro-
static p–p stacking interactions (Fig. 13b).35 As a result,
Au20(SR)16 is stabilized by the altered reaction kinetics. By
systematically varying the side chain length of the cation while
simultaneously adjusting other parameters (cation concen-
tration, pH, and solvent relative permittivity), the researchers
demonstrated remarkable control over product selectivity: C12
chain length cation produced the smaller Au15(SR)13 nanoclus-
ter, C6 cation yielded [Au25(SR)18]�, and C4 cation generated

the larger [Au27(SR)13]4+. A similar reaction-directing effect can
be induced by metal ions, as demonstrated by the essential role
of Cd2+ in synthesizing the non-fcc-structured isomer of
Au42(TBBT)26.217

Small sodium metal salts have been found to accelerate
isoelectronic conversion between [Au23(p-MBA)16]� and [Au25(p-
MBA)18]�.166 The degree of kinetic enhancement correlates
positively with ionic strength (determined by concentration or
anion valency) but remains independent of anion identity. This
phenomenon is attributed to the weakening of electrostatic
repulsion between negatively charged Au(I)–SR complexes and
[Au23(p-MBA)16]� resulting from compression of the electric
double layer. This finding illustrates how even simple ionic
additives can significantly modulate reaction kinetics through

Fig. 13 (a) Schematic illustration of the facile synthesis of GSH-protected Au nanoclusters of various sizes by adjusting the pH value through the CO-
reduction approach. Reprinted with permission from ref. 33. Copyright 2013, American Chemical Society. (b) Schematic illustration of the tailoring of Au
nanocluster sizes via the introduction of duel electrostatic p–p stacking interactions between ionic liquid cations such as OMIm+ and deprotonated
p-MBA. Reprinted with permission from ref. 35. Copyright 2021, Wiley-VCH.
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electrostatic effects, providing researchers with additional tools
for navigating complex nanocluster synthesis landscapes.

4.2. Condition optimization strategies

The one-factor-at-a-time (OFAT) approach represents the most
commonly adopted optimization strategy in metal nanocluster
synthesis. This conventional method involves identifying all
relevant parameters and optimizing them sequentially, begin-
ning with a parameter selected by researcher’s decision.218 In
MNC synthesis, OFAT is the strategy of choice in the optimiza-
tion of various parameters discussed above, including ligand
choice,102 M/L ratio,32,205 solvent,31 reducing agent,142 pH,33

and use of additives.166 However, as these parameters exhibit
significant synergistic effects, achieving optimal synthesis pro-
tocols in terms of yield or purity typically requires fine-tuning of
multiple parameters simultaneously. Given OFAT’s inherent
limitations in efficiency and accuracy when navigating multi-
dimensional design spaces, researchers are turning to global
optimization strategies for MNC synthesis, which will be dis-
cussed in detail in Section 5.2.

5. Opportunities offered by data-
driven approaches

As discussed above, the synthesis planning of MNCs inherently
relies on complex structure–property (target design), precursor–
product (route development) and condition–objective/product
relationships (condition optimization). However, the construc-
tion of these crucial relationships is challenging. First, obtain-
ing precise structural information can be experimentally
difficult, particularly when the surface ligand is highly flexible

(like water-soluble ligand-capped MNCs), ideal product purity
for crystallization is difficult to achieve, and solvent-dissolved
MNCs exhibit unique surface dynamics. While computational
simulations provide theoretical evidence in these cases, the
structural complexity of MNCs demands substantial computa-
tional resources. Second, the multidimensional parameter
space created by interconnected reaction precursors and
various condition parameters complicates the study of
synthesis–product relationships using conventional methods.
Third, most established relationships—such as core growth
templates and condition parameter effects—remain largely
qualitative, derived from limited datasets and semi-analytical
theories with restricted applicability across the broader MNC
design space.

Data-driven methodologies offer promising solutions to
these challenges by providing a quantitative framework where
statistical models are constructed using carefully selected input
and output descriptors that capture essential information
about the chemical structure, properties, and reaction condi-
tions. In this approach, complex relationships are abstracted as
interactions among descriptor combinations. While property
characterization data and reaction condition parameters typi-
cally serve as quantitative descriptors, chemical species and
structural representations can be characterized through com-
positional, topological, structural, quantum-chemical, or math-
ematical descriptors. By integrating advanced algorithms with
high-throughput data generation, this approach enables robust
predictions based on high-dimensional relationship modelling
with reliable accuracy, while facilitating straightforward model
updates and adaptations.219,220

This section explores how data-driven methodologies can
advance MNC synthesis planning through structure prediction

Table 1 Summary of works adopting data-driven approaches for MNC rational design and synthesis

Objectives Methods adopted Examples

Structure prediction
acceleration

Random forest Prediction of CO adsorption on Ag-doped Au
nanoclusters221

Convolutional neural networks Hydride location prediction222,223

Feedforward neural networks with
simulated annealing

Prediction of Au25–protein interactions224

Distance-based ML Au38(SR)24 structure prediction at varied
temperatures225

Local search algorithm Structure prediction of metal–ligand interfaces of
Au/Ag based MNCs226

Recurrent neural networks PL property prediction of hairpin-DNA templated
Ag nanoclusters227

Global condition
optimization

Siamese neural networks with
graph convolutional neural
networks

Au25 synthesis outcome prediction46

Random forest with HTE Prediction of synthesis yield for Au–Cu bimetallic
nanoclusters228

Convolutional neural networks Composition prediction from UV-Vis absorption
data229

Synthesis–property
relationship modelling

Support vector machine with HTE Precursor design for desired DNA–Ag nanocluster
PL emission colour230,231

Variational autoencoder with HTE Precursor design for desired DNA–Ag nanocluster
PL colour and brightness47

Extreme gradient boosting
regressor

Synthesis of highly luminescent glutathione-
protected Au nanoclusters232
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acceleration, global condition optimization modelling, direct
synthesis–property relationship modelling, and systematic
model generalization and adaptation—facilitating more effi-
cient and precise design and synthesis strategies (Table 1).

5.1. Structure prediction acceleration

When experimental determination of precise structures proves
challenging, computational structure prediction provides the-
oretical insights that rationalize macroscopic properties of
MNCs and facilitate structure–property relationship develop-
ment. For example, combined molecular dynamics (MD) simu-
lations and density functional theory (DFT) calculations have
revealed dynamic interactions at the ligand–metal interface of
water-dissolved m-MBA-protected Au68, explaining its simulta-
neous high stability and reactivity in protein conjugation
reactions.233 Similarly, MD simulations identifying specific
binding sites mediated by electrostatic interactions and hydro-
gen bonds have provided microscopic elucidation of stoichio-
metric binding between bovine serum albumin (BSA) and
[Au25(SR)18]�, advancing the understanding of MNC–protein
interactions for bio-related applications.124 However, these
simulation processes typically require intensive computational
resources due to the structural complexity of MNCs.

ML approaches have demonstrated remarkable efficacy in
accelerating structure prediction processes. For example, a ML
model trained on descriptors derived from adsorbate-free and

nonrelaxed structures has enabled rapid filtering of potential
candidates based on predicted CO adsorption energy on Ag-
doped Au nanoclusters, significantly accelerating the research
process compared to exclusive reliance on time-consuming DFT
calculations.221 Notably, this model performed with good accu-
racy for larger Au nanoclusters absent from the training data,
demonstrating its generalizability. In another example, Wang
et al. employed CNNs trained on existing structure libraries
of hydride-doped Cu nanoclusters to model relationships
between local chemical environments and hydride occupancy
probability.222 Combining with symmetry constraint considera-
tions, the authors significantly reduced the number of potential
structural candidates requiring DFT optimization. However,
these prediction results still require experimental verification
to confirm the accuracy and validity of these ML models.

ML approaches have also advanced simulations of MNC–
protein interactions. Addressing challenges including the lack
of suitable force fields and the wide range of simulation time-
scales required for conventional modelling of dynamic MNC–
protein interactions, Pihlajamäki et al. developed a ML meth-
odology comprising a feedforward neural network (FNN) that
predicts Coulomb and van der Waals contributions to inter-
action energies in Au nanocluster–protein complexes at a
coarse-grained level.224 This prediction is followed by optimiza-
tion via Monte Carlo-based structure search and refinement to
atomic-scale structures. The researchers developed graph

Fig. 14 The schematic illustration of the ML integrated framework for nanocluster–protein interaction simulations. Reprinted with permission from
ref. 224. Copyright 2024, Wiley-VCH.
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theory-based representations of Au nanoclusters and protein struc-
tures as descriptors, effectively simplifying structural complexity
while preserving essential information (Fig. 14). The method was
validated through subsequent MD simulations, demonstrating
robust and accurate predictions of preferred binding sites between
proteins and MNCs—even for larger proteins and MNCs absent
from the training data. Analysis of predicted binding sites revealed
the significance of electrostatic interactions between positively
charged protein residues, particularly lysine (LYS) and ARG, and
negatively charged MNC ligands (such as p-MBA). These results
establish this method as a facile and reliable tool for studying
MNC–protein interactions and dynamic properties of nano-bio
interfaces at atomic scale, overcoming computational limitations
of traditional approaches. However, the model could be potentially
improved by incorporating hydrogen bonding when predicting
interaction energies between nanoclusters and proteins, as hydro-
gen bonds play crucial roles in the binding of the Au25(p-MBSA)18–
BSA (p-MBSA = para-mercaptobenzenesulfonic acid) complex along-
side electrostatic interactions.124 This may contribute to the mod-
el’s limited performance in predicting the binding behaviour of the
(Au25(p-MBSA)18)–HSA (HSA = human serum albumin) complex.

When high-quality datasets are already available, a statisti-
cal modelling-based approach enables rapid structure predic-
tions with accuracy close to the quantum mechanical level. For
instance, a model trained to correlate the local atomic environ-
ment of hydrogen in Cu- and Pd-doped [Au25(SR)18]� with the
hydrogen–nanocluster interaction energy for catalyst design in
electrocatalytic hydrogen evolution reactions achieved pre-
dicted energies within 0.1 eV difference compared to DFT
calculation results.234

5.2. Modelling for global condition optimization

The multidimensional nature of synthesis parameters poses sig-
nificant challenges for conventional optimization approaches in
MNC synthesis. Traditional OFAT methodologies, which optimize

condition parameters sequentially (Fig. 15a), demonstrate inher-
ent limitations in identifying global optima and elucidating
synergistic relationships among interdependent parameters.218

Furthermore, the expansive design space renders comprehensive
experimentation across all possible parameter combinations pro-
hibitively resource-intensive. Statistical modelling approaches,
therefore, offer a methodologically robust alternative that effec-
tively balances the critical trade-off between experimental effi-
ciency and optimization accuracy.

Li et al. pioneered the application of statistical modelling to
predict MNC synthesis outcomes (success or failure) based on
specific parameter sets.46 Their innovative approach employed
a Siamese neural network (SNN) stacked with a graph convolu-
tional neural network (GCNN) classification model, trained to
predict whether particular parameter combinations would yield
monodisperse [Au25(SR)18]� protected by thiols with diverse
ligand bodies. After training, the model was deployed to predict
synthesis outcomes for all parameter combinations within the
design space, enabling the construction of a decision tree to
provide simple guidance on subsequent nanocluster synthesis,
albeit with acknowledged precision limitations (Fig. 15b).
Extending this data-driven methodology to bimetallic systems,
Tang et al. developed a condition–yield relationship model
utilizing the random forest algorithm.228 The team constructed
a HTE platform capable of conducting up to 264 simultaneous
reactions to facilitate data collection. The model exhibits good
prediction accuracy for samples with o50% yield but low
accuracy in the 450% region. To further improve on such
models, additional data collection in less represented regions is
required through an iterative process of data collection, model
updating, and experiment suggestion—a methodology known
as active learning.

Active learning methodologies have demonstrated remark-
able success in organic synthesis optimization, notably through
Bayesian optimization algorithms.40 In a typical optimization

Fig. 15 (a) Schematic illustration of the OFAT optimization strategy for parameter space exploration, where each dot represents an experiment.
Reprinted with permission from ref. 218. Copyright 2023, American Chemical Society. (b) Decision tree generated by statistical modelling for the
prediction of [Au25(SR)18]� synthesis outcome in the aqueous phase, where ovals represent decision nodes and rectangles represent reaction-outcome
bins (where the reaction outcome is represented as 1 for success and 0 for failure and number of reaction examples correctly and incorrectly classified
are denoted in parentheses before and after the slash respectively). Triangles depict excised subtrees due to both extra small examples in that branch and
chemical intuition. Reprinted with permission from ref. 46. Copyright 2019, Wiley-VCH.
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process, a statistical surrogate model (e.g., Gaussian process) is
initially constructed using a set of preliminary experimental
data, mapping the design space with expected mean values and
variances. An acquisition function (e.g., expected improvement,
which typically prioritizes conditions with the highest expected
improvement compared to the current best) then guides the
selection of subsequent experiments for model refinement. To
avoid convergence on local optima, the algorithm strategically
balances between exploiting areas of high predicted perfor-
mance and exploring regions with high uncertainty. This
iterative process continues until identifying the globally opti-
mal parameter set. By modifying either the model output or the
acquisition function, optimization can address multiple objec-
tives simultaneously.219,235 HTE platforms can significantly
accelerate this data collection process, enhancing efficiency.
Upon successful optimization, the resulting surrogate model—
trained with comprehensive experimental data—provides
an accurate representation of condition–objective relation-
ships, enabling clear visualization of synergistic effects among
reaction parameters through response surface modelling and
facilitating reaction kinetics and mechanistic analysis
(Fig. 16a).

Exploration through the design space beyond single-product
regions enables the construction of comprehensive condition–
product relationships, providing deeper insights into the roles
of various synthesis parameters. Du et al. demonstrated this
approach in polyoxometalate synthesis, where phase diagrams
derived from design space exploration and condition optimiza-
tion revealed the complex interplay among reaction parameters
in crystal formation and intermediate linker length determina-
tion, ultimately dictating product identity.236 This methodology
is particularly relevant for MNC synthesis, where many
nanoclusters are produced through kinetically controlled pro-
cesses in which minor parameter adjustments can significantly
alter product outcomes. Well-constructed phase diagrams
reveal valuable kinetic and mechanistic information while
providing clear guidance for protocol optimization and rational
design strategies.

The overlapping regions in the phase diagram, where multi-
ple kinetically controlled species coexist, present opportunities
for advanced kinetic modelling approaches. Utilizing ML algo-
rithms, Li et al. demonstrated the possibility of predicting the
composition of a MNC mixture solution and the relative
abundance of the respective compositional species in the ESI-
MS spectrum from UV-Vis absorption results (Fig. 16b).229 As
such, once a model is well-trained with in situ UV-Vis absorp-
tion and real-time ESI-MS measurements, it is technically
possible to reduce the reliance on the labour-intensive
time-course ESI-MS measurements while still enabling
compositional evolution monitoring for kinetic model develop-
ment. Such models would allow prediction the relative abun-
dance of byproducts under similar reaction conditions,
enabling synthetic route ranking based on byproduct profiles
in optimized synthesis products. This information becomes
invaluable during the route development stage of the synthesis
planning process, facilitating more informed decision-making

based on quantitative predictions rather than qualitative
assessments.

5.3. Synthesis–property relationship modelling

When the product structural information is difficult to deter-
mine due to either polydispersity or difficulty in obtaining
single crystals, rational MNC target design can instead be
anchored to reaction precursors or synthetic condition para-
meters to construct direct synthesis–property (in terms of
precursor- or condition-property) relationship models. The
construction of these high-dimensional relationships has
become increasingly feasible through statistical modelling
approaches.

The precursor–property relationship modelling approach
has demonstrated notable success in designing DNA-
stabilized Ag nanoclusters with targeted fluorescence proper-
ties, even without precise structural characterization. Copp
et al. demonstrated this approach by training a classification
model using Ag nanocluster products synthesized with 1432
distinct DNA oligomers to predict product colour, categorized
by fluorescence spectra peak wavelength (Fig. 17a).230 In this
system, the DNA nucleobase sequence determines the cluster
size and, consequently, its photoluminescence characteristics.
The researchers parameterized DNA sequences as arrays of
approximately 120 binary descriptors, each representing the
presence or absence of specific base patterns in the DNA
oligomer. This model successfully generated DNA sequences
for synthesizing products in the desired ‘‘green’’ and ‘‘very red’’
colour classes with selectivity enhancements of 81% and 330%,
respectively, compared to the training data. The authors noted
that many products targeting green emission exhibited bright-
ness below the detection threshold, contributing to relatively
low selectivity in this category.

To enhance the precision and accuracy of this precursor–
property relationship model, the same research group incorpo-
rated chemical insights obtained from the recently resolved
crystal structure of DNA-stabilized Ag16.147 This advancement
enabled refinement of the feature engineering protocol to
include both adjacent and nonadjacent base patterns, account-
ing for the three-dimensional relationship between the Ag core
and the DNA ligand.231 Based on this improved methodology,
the authors increased the selectivity by 12.3 times targeting
bright near-infrared nanoclusters with promising deep tissue
bioimaging capabilities. Furthermore, to address the challenge
of insufficient brightness in some products, the team upgraded
their model to enable simultaneous colour and brightness
selection, which successfully reduced the occurrence of pro-
ducts with inadequate brightness while increasing the selectiv-
ity of those with both desired colour and brightness
characteristics.47 Through this stepwise approach, the precur-
sor–property relationship model was progressively refined to
guide target design with increasingly specific performance
requirements. While the current model successfully generates
DNAs for nanoclusters above a brightness threshold, future
enhancements could focus on ranking DNA candidates based
on predicted brightness values. This advancement would not
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only facilitate the identification of nanoclusters with the
highest emission intensity—desirable for bioimaging and

biosensing applications—but also reduce the candidate pool
size, thereby enhancing the efficiency of identifying suitable

Fig. 16 (a) Graphs depicting the objective values versus experiment number (top left), three-dimensional plots of objective values (top right) and
condition parameter values experimented (bottom left), and the response surface modelling the relationship between yield and condition parameters
generated by the Gaussian process models trained with experimental data (bottom right) after a multi-objective organic synthesis optimization campaign.
Reprinted with permission from ref. 219. Copyright 2022, American Chemical Society. (b) Predicted relative abundance (green bars) based on UV-Vis
absorption spectra (shown in insets) and actual relative abundance (orange bars) of the compositions in polydisperse Au nanocluster samples. Reprinted
with permission from ref. 229. Copyright 2023, Springer Nature Limited.
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DNA sequences for potential highly performing metal nano-
cluster candidates.

Similarly, condition–property relationship modelling has
proven valuable for designing photoluminescent glutathione-
stabilized Au nanoclusters. Due to the significant roles played
by the various condition parameters in the synthesis of photo-
luminescent glutathione-stabilized Au nanoclusters and the
unavailability of precise structural information, Jin et al. devel-
oped a condition–property relationship model for target design
to optimize QY (Fig. 17b).232 Their investigation focused on a
three-dimensional design space comprising M/L ratio, reaction
temperature and synthesis duration. The model’s accuracy was
validated by low error between the experimental and predicted
QY values at 10 randomly selected points in the design space.
Analysis of the trained model revealed complex parameter
interactions, with high QY products obtained under specific
conditions: low M/L ratio (0.5–0.63), short reaction time

(3.3–10.2 h) and high temperatures (85–95 1C). These insights
enabled the researchers to successfully reverse-engineer highly
photoluminescent glutathione-stabilized Au nanoclusters with
optimized properties. However, the model can be further
enhanced by incorporating additional condition parameters
such as the solvent used and the pH of the solution to cover
a higher proportion of the entire synthesis design space.

These direct modelling approaches significantly facilitate
the design of target MNCs whose structural information is
difficult to obtain or whose monodispersity is challenging to
achieve, thereby circumventing the labour-intensive process of
structural determination for numerous less qualified MNC
candidates. By establishing quantitative relationships between
readily controllable synthesis parameters and desired func-
tional properties, these methodologies provide an efficient
pathway for rational MNC design in cases where traditional
structure-guided approaches are not readily available.

Fig. 17 (a) Schematic illustration of the methodology for designing DNA-stabilized Ag nanoclusters with specific colour classes via DNA sequence
design using ML algorithms. Reprinted with permission from ref. 230. Copyright 2018, American Chemical Society. (b) Schematic illustration of the
synthesis of GSH-protected photoluminescent Au nanoclusters (top) and the workflow for the construction of the synthetic phase diagram by ML
algorithms. Reproduced with permission from ref. 232. Copyright 2023, Royal Society of Chemistry.
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5.4. Model generalization and adaptation

Current principles and models in metal nanocluster (MNC)
synthesis planning are typically restricted to specific MNC
subgroups due to limited dataset sizes, constraining predict-
ability for new systems.57,232 This reflects a fundamental trade-
off between model complexity and generalizability: while
complex models can capture intricate synthesis relationships
essential for accurate MNC prediction, they require extensive
data to generalize effectively and risk overfitting in new
chemical spaces with limited training examples. Conversely,
simpler models may generalize more readily but may miss
critical nonlinear relationships governing synthesis outcomes.

Data-driven approaches strategically navigate this trade-off
through generalization techniques that enable the deployment
of appropriate complex models while maintaining broad
applicability.46,225,226,231 The effectiveness of model adaptation
depends primarily on the chemical similarity between source
and target domains. When similarity is high, transfer learning
provides a powerful framework for leveraging knowledge from
data-rich domains to guide synthesis in related but data-limited
domains.237,238 This transfer can be implemented through
several complementary approaches: instance-based methods
reweight samples (such as species or ligand molecules) to
account for domain differences; feature-based approaches uti-
lize descriptors exhibiting minimal numeric variations between
domains; parameter-based approaches directly transfer model
parameters (such as regression model coefficients) or chemical
insights; and relational-based methods map connections
between different chemical spaces to apply prior knowledge.

For example, models initially developed for condition–purity
relationships of a specific MNC species can be systematically
expanded along precursor dimensions through feature-based
transfer learning. This expansion enables researchers to probe
the complex roles of different precursor types (such as ligand)
in synergism with the condition parameters during synthesis
while preserving established relationships. Furthermore, by
establishing correlations between synthesis condition para-
meters, reaction precursors, and product identity and purity,
researchers can elucidate the complex synthesis design space of
MNCs (e.g., MNC size and structural dependencies on ligand
and metal precursors) and develop comprehensive synthesis
protocols with systematic understanding of parameter
interactions.

For systems characterized by low domain similarity, combin-
ing transfer learning with active learning offers iterative perfor-
mance refinement through strategic data incorporation.220,239

These updates can integrate both literature-derived information
and in-house experimental results, though data quality remains
critical—requiring representative sampling and consistent
descriptor usage across datasets. While literature data integration
faces challenges including publication bias toward successful
reactions and inconsistent descriptors, HTE platforms provide
an effective solution by efficiently generating systematic, unbiased
datasets in-house, specifically designed to improve model adapt-
ability across diverse MNC systems. These datasets can be
deliberately structured to address the gaps in existing knowledge

bases, enhancing the robustness of predictive models across
chemical space.

The continued development of these modelling efforts,
coupled with coordinated data collection strategies, will pro-
gressively build a comprehensive MNC data library shared
throughout the research community. This collaborative
approach facilitates the development of increasingly general
and reliable predictive models for precise MNC design, ulti-
mately bridging the gaps between targeted properties, MNC
structures and optimal synthesis conditions. As these models
evolve to incorporate a broader range of MNC systems, they will
enable more rapid adaptation to emerging research directions
and accelerate the discovery of novel MNCs with tailored
functionalities.

6. Conclusion and outlook

In summary, this perspective has examined the fundamental
considerations in the rational design and synthesis of MNCs
within a comprehensive synthesis planning framework. We
have systematically explored the design principles governing
target core and ligand shell composition and architectures,
critical factors in synthetic route selection, and the profound
effects of various condition parameters on successful MNC
synthesis outcomes. Data-driven approaches offer transforma-
tive opportunities to enhance both efficiency and precision
throughout the synthesis planning process and have demon-
strated capabilities in accelerating structure prediction to dee-
pen our understanding of complex MNC structures and
establishing quantitative relationship models that provide pre-
dictive capabilities beyond traditional qualitative approaches.
Moreover, model generalization and adaptation through trans-
fer learning and active learning methodologies enables knowl-
edge transfer from priorly studied domains to new target
problems. However, several challenges must be addressed for
effective data-driven approach adoption in MNC synthesis
planning.

Firstly, the existence of uncertainties arising from both noisy
training data and model ignorance can affect model perfor-
mance. Noisy data pose difficulties in model training that result
in low accuracy and unreliable predictions. Effective data
preprocessing—including smoothing for spectral data,240 and
feature engineering techniques such as normalization and
dimensionality reduction—can mitigate aleatoric uncertainty
effects. Algorithm selection critically impacts uncertainty hand-
ling. While Gaussian-based models intrinsically account for
uncertainties, approaches like autoencoders provide dimen-
sionality reduction benefits. Besides, uncertainty quantifica-
tion techniques such as ensemble-based methods which
involve training multiple model replicates and calculating
predictions as arithmetic means,241 and mean-variance estima-
tion (MVE) incorporating additional variance prediction neu-
rons can be incorporated for more robust and reliable
predictions.242 However, further research is needed to identify
optimal approaches for specific problems. These techniques
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enhance prediction confidence and enable informed decision-
making while providing foundations for active learning-based
model refinement.

Secondly, beyond relationship modelling and prediction,
model explainability should be addressed to reveal underlying
prediction mechanisms. Post-hoc explanation methods such as
local interpretable model-agnostic explanations (LIME) and
shapley additive explanations (SHAP) provide model-agnostic
tools.243,244 For example, SHAP analysis identified gas hourly
space velocity and temperature as critical features for higher
alcohol synthesis catalyst development.245 However, SHAP
treats features independently, ignoring causal relationships.
Partial dependence plots can probe synergistic feature interac-
tions when informative descriptors are employed.246 For deep
learning models, attention mechanisms highlight crucial input
data regions affecting predictions.247 The incorporation of
these techniques can not only enhance prediction reliability,
but also reveal synthetic and mechanistic insights that guide
future research directions.

The foundation of successful modelling approaches relies
on high-quality data collection. It is crucial to develop unbiased
datasets with descriptors carefully designed not only for the
specific relationships under investigation but also selected with
foresight toward their utility in future model generalization and
cross-domain adaptability. HTE significantly enhances effi-
ciency by enabling systematic exploration of parameter
spaces that would be prohibitively time-consuming through
traditional methods—a capability particularly valuable
when confronting the vast synthetic design space inherent in
MNC systems.248 Standardized reporting protocols for experi-
mental design, characterization, data collection, featurization,
and model training should be promoted to facilitate data
sharing, enhance reproducibility, and establish collective
databases.249–251 Such practices alleviate data preprocessing
workloads, enhance efficiency through facilitating automated
literature data mining using ML tools including large language
models (LLM),252–254 and provide high-quality data for robust
model training.

Looking forward, the continued expansion of the MNC
library, accompanied by robust property characterization data,
will progressively enrich comprehensive MNC databases,
enabling adoption of powerful yet data-demanding tools such
as generative models for inverse design of novel materials with
desired properties.255,256 These approaches have demonstrated
promising capabilities across diverse fields, from crystalline
inorganic materials generation under chemistry or property
constraints,257 to applications in organic molecules,258 drug
discovery,259 metal–organic frameworks (MOFs),36 and plasmo-
nic nanoparticles.260 However, ensuring synthesizability of
computationally predicted materials remains a critical chal-
lenge requiring substantial research effort. This growing knowl-
edge repository allows for increasingly sophisticated structure–
property relationship modelling, advancing the field toward the
ambitious goal of ‘‘dial-a-MNC’’ capabilities where on-demand
MNCs can be synthesized with precisely tailored properties.
Through strategic integration of computational approaches

with experimental advances, the rational design and predictive
synthesis of metal nanoclusters with tailored properties for
specific applications becomes increasingly achievable, opening
new frontiers in nanomaterial science and technology.
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