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Gas sensors are essential tools for safeguarding public health and safety because they allow the
detection of hazardous gases. To advance gas-sensing technologies, novel sensing materials with
distinct properties are needed. Metal—organic frameworks (MOFs) hold great potential because of their
extensive surface areas, high porosity, unique chemical properties, and capabilities for preconcentration
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and molecular sieving. These attributes make MOFs highly suitable for designing and creating innovative
resistive gas sensors. This review article examines resistive gas sensors made from pristine, doped, deco-
DOI: 10.1039/d4nh00662¢ rated, and composite MOFs. The first part of the review focuses on the synthesis strategies of MOFs,

while the second part discusses MOF-based resistive gas sensors that operate based on changes in

Published on 20 March 2025. Downloaded on 2/16/2026 6:16:32 PM.

rsc.li/nanoscale-horizons resistance.

1. Introduction to metal—organic
frameworks (MOFs)

MOFs are defined by their three-dimensional porous networks,
in which inorganic clusters are linked to organic linkers via
coordination bonds. The flexibility and diversity in the design
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of these metal clusters and linkers enable the formation of
a wide range of frameworks with varying structures, stability,
properties, surface areas, and pore sizes (Fig. 1)." These
exceptional properties of MOFs have enabled their use in a
wide range of applications, including clean energy develop-
ment, greenhouse gas capture (e.g., CO,), selective molecular
separation from contaminated mixtures, and heterogeneous
catalysis in gas or liquid phases.*” Additionally, MOFs with
pre-designed structures provide advantages over traditional
porous materials and have been assessed for gas-sensing
applications in environmental fields.* " MOFs exhibit a range
of intriguing properties due to their unique structure and
composition.""? Their porous structures have large surface
areas, which makes them ideal for gas adsorption,'* storage,"’
and sensing applications.'®'” MOFs can be designed with
tuneable properties by adjusting their pore sizes, surface func-
tionalities, and chemical reactivity through the selection of
specific precursors during synthesis. This tunability also
extends to their stability, which provides versatility for applica-
tions ranging from catalysis to gas separation.'®>*
Furthermore, the modular nature of MOFs facilitates the
incorporation of various functional groups, which allows for
customization for specific applications such as drug delivery in
biomedical fields.>>>® Due to their high porosity and capacity
for reversible structural changes, MOFs are promising candi-
dates for sensing and controlled release systems.””>° Their
unique electronic and magnetic properties further extend their
utility to fields such as electronics and magnetism.**?
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Consequently, the diverse and tunable properties of MOFs drive
extensive research and innovation, establishing them as a
cornerstone in materials science and engineering.

Gas sensors are essential for enhancing safety and awareness
by detecting toxic and dangerous gases.>”> While traditional gas
sensing technologies are effective, there is an ongoing need
for novel sensing materials that offer improved performance.
Due to their porosity and distinctive chemical features, MOFs
hold great promise for gas-sensing applications.>*** MOFs’
high surface areas and significant porosity enhance gas adsorp-
tion, which leads to measurable changes in electrical resis-
tance. These sensors also benefit from the chemical tunability
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of MOFs, which allows for customization to detect specific
gases by modification of their metal nodes and linkers.
Advances in synthesis methods, such as solvothermal, micro-
wave irradiation, and mechanochemical methods, have
enabled the creation of MOFs with tailored properties for
enhanced gas-sensing performance.’® The integration of
MOFs into resistive sensors has expanded their applications
to fields including industrial safety, environmental monitor-
ing, and healthcare diagnostics.>® This review explores
advancements in MOF-based resistive gas sensors, focussing
on synthesis strategies and their performance in detecting
various gases.
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2. Synthesis of MOFs

MOF synthesis involves combining inorganic ions or clusters
with organic bridges under controlled conditions to form
a three-dimensional porous network. This process requires
meticulous control over several critical parameters to tailor
the structural and functional properties of the resulting
MOFs.**”*® The choice of the metal precursor and organic
ligand is fundamental, as it dictates the composition and pro-
perties of the MOF.**"*! The solvent and solvothermal conditions,
including temperature and pressure, affect the thermodynamics
and kinetics of the reaction, which alters crystal growth and
morphology.**** Furthermore, maintaining optimal pH levels
is essential to control the stability of metal ions and ligand
deprotonation.*® The reaction temperature, duration, and
concentration of reactants are crucial in determining the rate
of MOF formation and the properties of the final product.*”*®
Templates or modulator agents can influence crystal growth,
while mechanochemical synthesis parameters, such as milling
time and speed, affect energy input and MOF formation.**™"
Careful consideration and control of these parameters enable
the fine-tuning of MOF synthesis, ensuring reproducibility and
customization of diverse applications. Moreover, various synth-
esis methods offer distinct advantages and disadvantages,
influencing the final properties of the material (Table 1).
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Commonly used synthesis techniques include hydrother-
mal, solvothermal, microwave, ionothermal, pyrolysis, mechan-
ochemical, electrochemical, and template-directed synthesis
(Fig. 2). Solvothermal and mechanochemical synthesis meth-
ods are among the most promising routes for industrial-scale
production of MOFs. Solvothermal synthesis offers tunable
reaction conditions and is already used for large-scale applica-
tions, while mechanochemical synthesis is a green, solvent-free
approach with excellent scalability and energy efficiency.
Microwave-assisted synthesis also shows potential due to its
rapid reaction times and reproducibility, though the equipment
limitations may affect large-scale implementation. The selection of
a synthesis technique depends on the desired MOF features,
scalability, and the intended application.***> Researchers are
continually exploring innovative approaches to enhance the
efficiency, reproducibility, and sustainability of MOF synthesis
techniques.>>*

2.1. Hydrothermal synthesis

Hydrothermal synthesis is widely used for preparing MOFs,
providing precise control over the formation of well-defined
crystalline structures. In this method, metal salts and organic
linkers are combined in a high-temperature/high-pressure aqu-
eous solution, typically within an autoclave. The hydrothermal
environment promotes the dissolution of reactants, accelerates
their interaction, and fosters the nucleation and growth of
MOFs.>® Controlled conditions, including temperature, pres-
sure, and synthesis time, play important roles in determining
the final size, morphology, and properties of the resulting
MOFs.>® In addition, hydrothermal synthesis is advantageous
for producing MOFs with enhanced crystallinity and purity,
which improves structural integrity and performance in various
applications. This method is also valuable for generating MOFs
with tailored functionalities, making it a versatile tool for MOF
synthesis for gas sorption,’” catalysis,”® and drug delivery.**

2.2. Solvothermal synthesis

Solvothermal synthesis is a prominent technique for MOF
fabrication and it utilizes organic solvents under controlled
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Fig. 1 Schematic representation of the synthesis of various metal—organic frameworks (MOFs) through the self-assembly of metal clusters with organic
linkers, resulting in distinct structural and functional properties. MOF-5 (Zn,O(BDC)3) and UiO-66 (ZrgO4(OH)4(BDC)g) utilize 1,4-benzenedicarboxylate
(BDC?) ligands. HKUST-1 (Cus(BTC),) and VNU-11 (HfgO4(OH)4(BTC)s(HCOO)g) incorporate 1,3,5-benzenetricarboxylate (BTC"). ZIF-67 (Co(2-mim),)
features Co?* nodes and 2-methylimidazolate (2-mIm™) linkers, forming a stable zeolitic framework.

Table 1 Comparison of general advantages and limitations of MOF synthesis techniques

Synthesis technique Advantages

Disadvantages

- Controlled conditions result in well-defined MOFs
- Enhanced crystallinity and purity

- Versatile for various MOF compositions

- Tunable synthesis conditions in organic solvents
- Flexible reaction parameters

- Suitable for scalable production

- Rapid heating reduces reaction times

- Improved reproducibility

- Energy-efficient compared to conventional methods
- Enhanced stability of MOFs

- Unique properties due to ionic liquid medium

- Potential for direct integration in devices

- Simple and energy-efficient

- No need for solvents

- Applicable under harsh conditions
Mechanochemical synthesis - Green, solvent-free synthesis

- Short reaction times

- Scalable and energy-efficient

- Direct integration onto conductive substrates

- Accurate control over MOF properties

- Applicable in electrocatalysis and energy storage
- Controlled morphology and properties

- Tailored MOFs for specific applications

- Enhanced reproducibility

Hydrothermal synthesis
Solvothermal synthesis
Microwave synthesis
Ionothermal synthesis

Pyrolysis synthesis

Electrochemical synthesis

Template-directed synthesis

temperature and pressure conditions. In this method, organic
ligands and metal salts react within closed systems filled with
an organic solvent rather than water.>® Moreover, the choice
of solvent is vital as it affects the solubility of the reactants and
the resulting MOF characteristics. The solvothermal conditions
enable fine-tuning of the reaction kinetics, which allows the

1028 | Nanoscale Horiz., 2025, 10, 1025-1053

- Requires high-temperature and pressure equipment
- Limited scalability

- Solvent dependence and potential toxicity
- Longer reaction times compared to hydrothermal

- Equipment limitations for large-scale production
- Limited control over local temperature variations

- Limited availability and cost of ionic liquids
- Limited scalability

- Potential for MOF decomposition at high temperatures
- Limited control over morphology

- Limited control over reaction selectivity
- Potential for contamination from milling equipment

- Limited control over MOF size and morphology
- Requires specific electrode materials and setups

- Template removal can be challenging
- Limited versatility with some template systems

production of MOFs with tailored structures, sizes, and func-
tionalities.®® In addition, using organic solvents for solvo-
thermal synthesis offers flexibility, which enables researchers
to manipulate the reaction parameters and obtain the desired
properties.®* This method is valuable for developing MOFs with
enhanced porosity, surface area, and stability, making them

This journal is © The Royal Society of Chemistry 2025
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well-suited for gas storage and sensing, catalysis, and
separation processes.®®®’The versatility and controllability
of solvothermal synthesis contribute to its widespread adop-
tion for synthesizing MOFs with diverse compositions and
properties.

2.3. Microwave synthesis

Microwave synthesis is an efficient and fast method for produ-
cing MOFs. This technique involves exposing the precursors
to microwave radiation, which rapidly heats the reaction
mixture.®® The localized and uniform heating provided by
microwaves accelerates the reaction kinetics, which results
in shorter synthesis times compared to conventional methods.
Microwave synthesis offers several advantages, including
improved reproducibility, enhanced purity, and high yields.*’
The controlled heating also minimizes side reactions, which
leads to MOFs with well-defined structures.”®”" This method is
advantageous due to its energy efficiency and scalability, which
makes it an attractive option for MOF production.”” In addition,
microwave synthesis is effective in tailoring the size, morphology,
and porosity of MOFs, which enhances their versatility for applica-
tions such as gas adsorption,”*”* drug delivery,”® and sensing.”®””
Microwave synthesis of MOFs offers rapid crystallization and
energy efficiency, often yielding materials with comparable or
even enhanced crystallinity compared to that achieved with
conventional methods. However, the resulting morphology can
be varied and sometimes finer or irregular particles form due to
rapid nucleation and growth. While there may be trade-offs in
porosity or defect formation, careful optimization of reaction
parameters can mitigate these issues, ensuring high-quality MOFs
within a significantly reduced synthesis time.”® The combination

This journal is © The Royal Society of Chemistry 2025

of speed, efficiency, and tunability makes microwave synthesis a
valuable tool for the production of advanced MOF materials.

2.4. Ionothermal synthesis

Ionothermal synthesis is a distinctive method for producing
MOFs utilizing ionic liquids as reaction solvents and templating
agents. Metal salts and organic ligands react within the ionic
liquid medium, where the exceptional properties of ionic
liquids—such as low volatility and high thermal stability—are
important in defining the characteristics of the resulting
MOFs.”® The ionothermal conditions provide an alternative to
conventional solvents, which results in MOFs with enhanced
stability and unique structural features. Ionic liquids serve as
both the reaction medium and template, which affect crystal
growth and morphology.**~**> Moreover, the tailored properties
of MOFs synthesized via ionothermal routes make them attrac-
tive for gas adsorption, catalysis, and environmental appli-
cations.®®®* This synthesis technique highlights the signifi-
cance of the reaction environment in shaping the final char-
acteristics of MOFs, providing a valuable route for the synthesis
of advanced MOFs with tailored features.

2.5. Pyrolysis synthesis

Pyrolysis synthesis offers a distinctive and unconventional
route for producing MOFs, where metal-organic complexes
are subjected to high temperatures in the absence of oxygen,
which leads to the thermal decomposition of the precursors
and the subsequent formation of MOFs.®* Pyrolysis induces
a controlled and rapid thermal transformation that forms
MOFs with unique structures and properties. The absence of
oxygen prevents both oxidation and combustion reactions and

Nanoscale Horiz., 2025, 10, 1025-1053 | 1029
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preserves the MOF framework. Pyrolysis synthesis is advanta-
geous due to its simplicity and efficiency, often producing
MOFs with enhanced thermal stability and well-defined crystalline
structures.®® This method is particularly useful in applications
where traditional solution-based approaches may be proble-
matic.®”®® Pyrolysis is an efficient strategy for the scalable or
controlled synthesis of MOFs, as it can leverage high tempera-
tures without compromising the integrity of the MOF structure.

2.6. Mechanochemical synthesis

Mechanochemical synthesis is an innovative and sustainable
method for producing MOFs. This technique uses mechanical
energy, usually generated by ball milling, to induce chemical
reactions between solid-state reactants, including metal salts
and organic linkers. The grinding action in mechanochemical
synthesis helps break chemical bonds and promotes the intimate
mixing of precursors, which leads to the formation of MOFs. This
method offers several advantages, including reduced reaction
times, increased yields, and the elimination of solvents, which
makes it environmentally friendly.®°° The simplicity of this
approach enables straightforward scalability and enhances
energy efficiency. In addition, mechanochemical synthesis
allows for control over particle size and morphology, which
can help tailor the characteristics of the MOFs. The green and
sustainable attributes of this method, coupled with its ability
to produce MOFs with unique features, position it as a promis-
ing method for efficient and environmentally friendly MOF
fabrication.”*

2.7. Electrochemical synthesis

Electrochemical synthesis is a powerful and versatile approach
to synthesize MOFs. Metal ions and organic linkers undergo
electrochemical reactions within a conductive solution or on an
electrode surface. Metal ions are reduced at the cathode and
subsequently react with organic linkers to form MOFs.?* The
applied electrochemical potential serves as a driving force for
the formation of MOFs, which enables control over the growth
and deposition of the framework. Furthermore, this method
offers advantages, such as tunable synthesis conditions, which
facilitate the manipulation of MOF properties such as size,
morphology, and crystallinity.”*** In addition, electrochemical
synthesis allows for the direct integration of MOFs onto conduc-
tive substrates, which enables their use in electrocatalysis,” *”
sensing,”® gas and liquid separation,”® and energy storage
devices.’® The ability to tailor the MOF properties through
electrochemical control, combined with its eco-friendly charac-
teristics and potential for direct integration into electronic
devices, makes electrochemical synthesis a promising approach
for advancing MOF applications in various technological fields.

2.8. Template-directed synthesis

Template-directed synthesis is a strategic and controlled
method that can be used for producing MOFs, where pre-existing
templates or sacrificial agents guide the formation of the desired
crystalline structures. This innovative approach allows researchers
to manipulate the nucleation and growth of MOFs and target

1030 | Nanoscale Horiz., 2025, 10, 1025-1053
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specific morphologies and properties. The chosen template (often
an auxiliary molecule or framework) serves as a mold that imparts
its characteristics onto the growing MOF structure.'®® The template
is removed after synthesis, leaving behind a thoroughly tailored
MOF. This technique is especially valuable for applications that
demand exact control of MOF features such as pore size and
functionality."®* "% Furthermore, template-directed synthesis
enables the engineering of MOFs with targeted properties and
enhances their utility in various areas, including gas separa-
tion, catalysis, and drug delivery. This is done by ensuring the
reproducibility and customization of these materials for speci-
fic applications."***°

The synthesis of MOFs for resistive gas sensors is a critical
process that impacts the performance of the sensors directly.
Several advanced synthesis techniques have been developed to
create MOFs with tailored properties, increasing their suitabil-
ity for gas sensing applications."'® In addition, each method
can be fine-tuned to produce MOFs with specific surface areas,
porosity, and chemical functionalities, which are essential
for achieving high sensitivity and selectivity in resistive gas
sensors.''! These tailored MOFs are subsequently incorporated
into sensor devices, where their ability to adsorb gas mole-
cules alters the electrical resistance and enables effective gas
detection.'"?

3. Functionalization of MOFs

The functionalization of MOFs is a vital aspect that enhances
their versatility and tailors their properties for certain applica-
tions. MOF functionalization involves the introduction of addi-
tional chemical groups or functionalities to the MOFs, affecting
surface chemistry, porosity, and reactivity. The MOF functiona-
lization can introduce minor structural changes, but well-
controlled approaches such as post-synthetic modification
(PSM), metal site functionalization, and surface grafting help
preserve their integrity and porosity. PSM allows the incorpora-
tion of functional groups without disrupting the framework,
while metal site functionalization enhances reactivity, and
surface grafting prevents pore blockage while maintaining a
high surface area. Careful selection of functional groups and
optimization of synthesis conditions minimize any reduction in
porosity, ensuring MOFs remain effective for gas detection
applications."**'"* The following section reviews several com-
mon strategies that are used for functionalizing MOFs.

3.1. Post-synthetic modification (PSM)

PSM involves introducing functional groups or ligands into
existing MOFs after their synthesis. Nguyen et al. reported a
novel Zr-MOF, MOF-700, for methane storage.''® The group
employed post-synthesis metalation with various copper salts
to produce an isoreticular series of MOFs with enhanced
volumetric methane storage capacities. As a result, MOF-701
showed a 50% enhancement compared to the parent MOF-700
(Fig. 3)."'° Moreover, amine-functionalization on ZIF-11 could
be performed after the synthesis using 2-aminobenzimidazole,

This journal is © The Royal Society of Chemistry 2025
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Fig. 3 The enhancement of methane uptake in MOFs through PSM. The graph presents CH, adsorption capacities at 80 bar and 298 K, comparing the
initial MOF-700 structure with its modified derivatives MOF-701, MOF-702, and MOF-703. The structural representations show the transformation of
MOF-700, where PSM introduces additional functional groups (highlighted in orange), potentially enhancing gas adsorption properties.!*> Reproduced
from ref. 115 with permission from The American Chemical Society, copyright 2022.

which improved the stability in aqueous media and generated
fluorescent nanoparticles, highlighting its possible application
as a marker material for detecting copper ions.'’” In other
words, PSM allows precise control of the type and amount of
functionalization while minimizing the impact on the overall
structure and improving the MOF activity."®

3.2. Functionalization of metal sites

Tailoring the metal sites within an MOF structure by replacing
or modifying metal ions can endow the material with unique
reactivity or selectivity. This strategy is particularly advanta-
geous for catalytic applications."'®"'** Moreover, through the
sulfation of an Hf-MOF, sulfate groups were attached to an Hf-
oxo cluster, which then acted as an effective heterogeneous
catalyst for heterocyclization in benzoxazole preparation
(Fig. 4)."*° In addition, modulator-mediated functionalization
on the metal cluster can provide a versatile platform to improve
the separation capability of MOF membranes, which is exem-
plified by producing mixed-matrix membranes with high CO,
separation yields."*® Also, Eu** ions were introduced to produce
a luminescent Eu**@Ni-MOF composite with high sensitivity
and selectivity to aspartic acid, highlighting its potential as a
sensitive luminescent probe for detecting aspartic acid."**

3.3. Incorporation of functional linkers

During MOF synthesis, selecting specific linkers with desired
functionalities allows for the creation of a functionalized MOF
from the outset. This approach integrates functional groups
into the framework during its formation.">*™>*> An examination of
the adsorption mechanism of indole on Zr-MOFs (specifically
Zr-BDC-NH, and Zr-BDC-NO,) showed that linker-functionalized
Zr-MOFs exhibit enhanced indole adsorption capacities via their
hydrogen and n-hydrogen bonds (Fig. 5).'** The presence of
functional groups can induce splitting of the m orbital of the
linker. In addition, the specific functional groups can cause a

This journal is © The Royal Society of Chemistry 2025

half-metal-to-insulator transition in the ferromagnetic configu-
ration of the host material.'*®

3.4. Coordinative unsaturation

Certain MOFs feature unsaturated metal sites, which enable
the addition of ligands and functional groups. This method
can also enhance the binding affinity for specific molecules
or facilitate catalytic processes."”® *® Furthermore, defect-engi-
neered MOFs (called UiO-66-NH,-X) were synthesized with
controlled structural defects induced by an acetic acid modu-
lator. This revealed a switch-on effect for photocatalysis with a
volcano-type trend in the H, generation rate, where Pt@UiO-66-
NH,-100 showed the highest activity (Fig. 6)."*®

3.5. Surface functionalization

Modifying the external surface of MOFs can improve their
interaction with specific molecules. Common surface functio-
nalization methods include grafting, chemical derivatization,
or the introduction of reactive groups.'”'*"**! The tobacco
mosaic virus (TMV) has been utilized as a robust protein
template to control the morphology of MOFs. This approach
resulted in rod-like TMV@MOF core-shell structures (C-S) with
tunable diameters (Fig. 7). The synthetic conditions affected its
stability and allowed the chemical modification of the virus
particle beneath the MOF shell, which indicated mass trans-
portation inside the MOF shell."’” Moreover, a fluorescent
organosilica coating named ZIF-8@BPMO was applied to nano
ZIF-8 to enhance bio-interactions and reduce flocculation.'®!

3.6. Encapsulation of functional molecules

Incorporating functional molecules or nanoparticles into the
pores of MOFs can provide additional functionalities, such as
guest molecule adsorption or controlled release."**'** Homo-

geneous porous ZIFs, with particle sizes below 100 nm, serve as
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Fig. 5 The adsorption of indole on functionalized Zr-MOFs. The top left diagram: The porous structure of Zr-MOF, emphasizing its capacity to
accommodate indole molecules. The bar chart on the top right: The indole loading capacities of amino-functionalized (Zr-BDC-NH,) and nitro-
functionalized (Zr-BDC-NO,) MOFs across various concentrations, showing a consistent increase in adsorption with higher indole concentrations and
slight performance differences between the two functional groups. The bottom panels: molecular-level visualization of the adsorption process,
highlighting the interactions and distribution of indole within the framework pores, demonstrating the critical role of functional groups in optimizing
adsorption efficiency. Reproduced with permission.>* Reproduced from ref. 123 with permission from Elsevier, copyright 2017.
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Fig. 6 The photocatalytic water splitting mechanism using a defect-engineered Zr-based Zr-MOF. The left diagram: The role of defect sites in the
MOF structure, which enhance light absorption and facilitate the separation of water molecules (H,O) into hydrogen gas (H,) under sunlight irradiation.
The right schematic: The atomic-level configuration of the defect sites, showcasing their contribution to the improved catalytic activity and hydrogen
production efficiency.’?® Reproduced from ref. 128 with permission from Wiley, copyright 2019.

TMV@MOF

Fig. 7 The synthesis of a composite material combining TMV with ZIF-8.
The process involves using TMV as a biological template, where Zn?* ions
and 2-methylimidazole (HMIM) coordinate to form the ZIF-8 shell around
the TMV core. The resulting TMV@MOF structure integrates the biological
features of TMV with the porous and protective properties of ZIF-8,
offering potential applications in catalysis, biosensing, and drug delivery.
Reproduced from ref. 132 with permission from Wiley, copyright 2016.

effective platforms for chemosensors for fluorine ion detection
(Fig. 8)."**

Owing to the fascinating nature and properties of MOFs,
they are widely used in different applications such as storage
and conversion applications,”® water oxidation,*® electrocata-
lysis,"”” solar energy,"*> photocalatysts,'*® and bio applications."*”
However, the main focus of this review paper is application of
MOFs in gas sensing devices and so in the next parts we have
delved more into this application.

4. Toxic gases and resistive gas sensors

Air pollution is a significant issue in most countries which is
caused by the rapid growth of different industries, transport

This journal is © The Royal Society of Chemistry 2025

sections, mineral extraction, and more. Air pollution results
from the existence of toxic gases, heavy metals, and particulate
matter (PM) in the air. The main toxic gases in the air are CO,
NO,, SO,, O3, and volatile organic compounds (VOCs)."**'3°
On the other hand, other toxic gases (e.g., NH; and H,S),
explosive gases (e.g., H, and CH,), and greenhouse gases (e.g.,
CO,) may also exist in the surrounding environment, agricul-
tural areas, and mines."*° It is well known that air pollution has
significant adverse effects on human health.** Specifically, it
may cause cough, headache, asthma, cardiovascular diseases,
diabetes, and high rates of hospitalization. In addition, air
pollution can negatively affect early human life via cardiovas-
cular, respiratory, mental, and other perinatal disorders and
increase infant mortality."**'** Furthermore, air pollution was
reported to cause cognitive dysfunction and the development of
neurodegenerative phenomena underlying both Alzheimer’s
and Parkinson’s disease.'** Besides, it tends to affect happiness
and life satisfaction.'*> Today, most people breathe polluted air
with high concentrations of pollutants,"*® and more than
4.2 million premature deaths have been attributed to air
pollution in 2016 alone."*’

The olfactory system is very sensitive and complex (Fig. 9).
It comprises receptor cells with ~ 900 olfactory receptor genes.'*®
On the other hand, with such a complex system, many toxic gases
are only sensible at high concentrations. In addition, some gases
are odorless, colorless, and tasteless, making them undetectable.
Some diseases, such as Alzheimer’s disease, can lead to olfactory
dysfunction."*

Standardized techniques for gas monitoring, such as gas
and ion chromatography, enable high sensitivity to trace
amounts of gases. Unfortunately, they tend to be complicated,
expensive, bulky, and off-line.*® A sensor is a sensitive device
that generates an electrical signal from a physical or chemical
input stimulus. Gas sensors are chemical sensors where a
specific property, such as electrical resistance, optical proper-
ties, or capacitance, changes upon exposure to target gases."”'
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Fig. 9 Schematic illustration of the human olfactory system.'* Reproduced from ref. 149 with permission from MDPI, copyright 2018.

Gas sensors come in various types, including catalytic,'”?
gasochromic,"* optical,"™* electrochemical,"® capacitive,"**">”
transistor-type,'*® mass sensitive,"® and resistive.'®® Resistive
gas sensors are the simplest and cheapest sensing devices. In
addition, they are most widely applied for the detection of gases
due to their simple operation, small size, real-time operability,
fast dynamics, and high stability.*>'®"'%> Resistive gas sensors
are manufactured by depositing a sensing layer on insulating
substrates, like Al,O;, equipped with interdigitated electrodes
and micro-heated at the back of the substrate (Fig. 10(a)-(c))."®*

These gas sensors are primarily constructed using semi-
conductor metal oxides such as Sn0,'** and ZnO.'®®> However,
despite their many advantages, they have significant limitations,
such as high sensing temperatures, humidity interference,
and poor selectivity.'®® Therefore, novel sensing materials or a

1034 | Nanoscale Horiz., 2025, 10, 1025-1053

combination of novel and traditional sensing materials are needed
to develop improved resistive sensors with superior capabilities
such as better selectivity. MOFs, with their porous structures,
provide highly specific surface areas (SSAs) and abundant
functional sites like unsaturated metal sites, which are favor-
able for selective binding and sensing of gases. Accordingly,
they are promising gas-sensing materials'®” for resistive gas
sensors as well as for quartz crystal microbalances,"®® capaci-
tive,"® and other gas sensors. The following sections discuss
MOF-based resistive gas sensors.

4.1. MOFs as resistive gas sensors: an introduction

MOFs with unique features, such as very high SSA, abundant
porosity, exceptional adsorption affinity, and outstanding sur-
face chemistry, are promising materials for gas sensors,'”**72

This journal is © The Royal Society of Chemistry 2025
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Fig. 10 Schematic of the (a) front side and (b) backside of a resistive gas sensor and (c) optical photograph of the final sensor.

supercapacitors, batteries, water purification, and catalysts.'”?

For gas-sensing applications, their excellent tunability and
chemical selectivity make them ideal for selective sensors.'”
One of the mechanisms contributing to their selectivity is mole-
cular sieving, where smaller molecules can be adsorbed through
the MOF apertures, while larger molecules are excluded and
cannot pass through.'”*™® Furthermore, they can be used as a
template to synthesize metal oxides, where the final product after
annealing features a morphology and structure similar to that of
the parent MOF, porous and with a high SSA."7"7°

More specifically, MOF-based gas sensors offer several
advantages for sensing applications: (i) the highly porous MOFs
provide a large specific surface area (SSA) and numerous gas
adsorption sites. Additionally, they contain unsaturated metal
sites and functional groups that enhance gas adsorption.
(if) The porosity, geometry, and physicochemical features of
MOFs can be tailored to improve selectivity for targeting gases.'”®
In particular, in MOF-based gas sensors, achieving high selectivity
often involves tailoring the material’s properties to preferentially
adsorb or interact with a desired gas, which can lead to a trade-off
in which the sensitivity to other gases is reduced. In this regard,
by altering the pore size structure or surface chemistry of a MOF,
the selectivity to a particular gas may be enhanced, while its
sensitivity to other gases may be decreased. For example, H, gas
has a small kinetic diameter; by tailoring the pore size of the MOF
in the range comparable with the kinetic diameter of H, gas, the
resultant MOF gas sensor can not only show high response to H,
gas, but at the same time can also show reduced response to other
gases, leading to enhanced selectivity to H, gas.'**'®!

In resistive MOFs, resistance changes occur because of the
adsorption of and interaction with the target gas. Furthermore,
the redox reactions between gases and active metal sites in
MOFs modulate the resistance. Moreover, the resistance of
MOFs is influenced by structural changes resulting from gas
adsorption. However, the limited electrical conductivity of most
MOFs and their relatively low chemical stability impede their

This journal is © The Royal Society of Chemistry 2025

application in pristine form.'®>'® In fact, MOFs often show
poor conductivity because the metal cations in MOFs cannot
migrate, and inert organic ligands attached to metal cations do
not facilitate good electron flow.'8""%

4.2. MOF-based resistive gas sensors

4.2.1. Pristine MOF gas sensors. One of the features of
MOF-based gas sensors is their good selectivity, which can
be tuned via delicate control over their structure, porosity,
chemical composition, and annealing temperature. Hence,
Cu-MOFs were produced through a hydrothermal route at
120 °C/24 h. They were then annealed at 250 and 400 °C,
labeled as Cu-MOF-250 and Cu-MOF-400, respectively. Based
on thermal studies, the samples are stable at up to 250 °C in air.
On the other hand, at higher temperatures, they decompose,
and Cu oxidation occurs. At 250 °C, the Cu-MOF-400 sensor
exhibited a stronger response to acetone (~2.5 to 40 ppm
acetone) than the Cu-MOF-250 sensor. In addition, at 40 °C,
it exhibited a stronger response to NO, (1.35 to 2 ppm)
compared to the interfering gases. Therefore, the selectivity
could be easily tuned by changing the sensing temperature.'®®

Nguyen et al. synthesized a novel Fe-MOF or VNU-15 with a
high SSA (735 m? g ') and a pore size of 10 A to detect acetone
(Fig. 11(a)).”” At 50 °C, it exhibited a response of 1.7 to 10 ppm
acetone (Fig. 11(b)-(d)). Based on the gas chromatography
analysis, the appearance of CO, peaks upon exposure to acet-
one confirmed the oxidation of acetone at the sensing tem-
perature. Acetone oxidation was facilitated at 50 °C by metal
cations in VNU-15. In addition, Fe**/Fe** ions acted as catalytic
sites to generate oxygen species, which accelerated the oxida-
tion of -CH; in acetone. Because the formation energy of
acetone (366 k] mol ') was lower than that of CO, C¢Hg, and
C,H; gases (all >370 k] mol %), it was readily dissociated at the
sensor surface and generated a higher signal than other gases.

In another study, Co-MOF-I and II were prepared for H, gas
sensing with a very high SSA of 2100 and 2420 m? g™, respectively.
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Fig. 12 (a) Comparison of the H, gas responses of Co-MOF-I and Il sensors. (b) Selectivity histograms of Co-MOF-I and Il sensors at 200 °C.%®
Reproduced from ref. 16 with permission from Elsevier, copyright 2020.

The response of the Co-MOF-1I sensor was higher than that of the In addition to a higher SSA, the Co-MOF-II sensor featured a larger
other sensor at all temperatures (Fig. 12(a)). In addition, it exhibited ~ pore volume (1.27 cm?® g~*) and smaller pore size (23.2 A) than the
higher selectivity to CO than to the interfering gases (Fig. 12(b)).  other sensor (1.10 cm® g~ and 27.6 A, respectively). In particular,
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smaller pores led to easier interaction between the open Co
sites and small H, molecules. Moreover, the size of H, gas
molecules was smaller than that of other gases, which led to a
better response and selectivity to H, gas. Furthermore, the
excellent response was related to the higher Co(u)/Co concen-
tration in the sensor, where the higher amount of the open Co
sites in the Co-MOF-II sensor increased the probability of
attaching the H, molecules at the sensor surface.®

CO is a particularly hazardous gas because it is also color-
less, odorless, and tasteless. Inhalation of CO primarily affects
the cardiovascular and nervous systems.'®” When CO enters
the body, it attaches to hemoglobin (Hb), generating COHb
that considerably decreases the oxygen-carrying ability of
blood. Hence, death is likely even upon exposure to relatively
small amounts of CO gas.'® To address this problem, Ni-
MOFs (Ni-VNU-74-I and II) were synthesized for CO sensing.
At 200 °C, the Ni-VNU-74-II sensor showed a response of
~1.65 to CO gas (50 ppm) (Fig. 13(a)-(d)). The better perfor-
mance is mainly due to a higher SSA (2350 m* g~ ') and smaller
pore size (23.6 A) of the Ni-VNU-74-1I sensor compared to the
other sensor (2020 m? g~' and 27.3 A). The interaction
between CO and Ni** ions resulted in the effective adsorption
of CO at the sensor surface. In addition, FTIR spectroscopy
revealed signals at ~2200 and 2085 cm ', which were
assigned to the Ni**~CO bonds and the sub-carbonyls of Ni,
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respectively. These findings confirm the strong interaction
between CO gas and Ni** ions.*’

4.2.2. MOF composite-based gas sensors

4.2.2.1. MOF/carbon-based composite gas sensors. Due to the
low conductivity of MOFs, composites with materials of higher
conductivity, such as graphene, conducting polymers (CPs),
and metal oxides, are used to enhance MOF performance."®®
Graphene, which consists of a single layer of carbon atoms
arranged in a nanosheet-like morphology, is one such material.
It has a high SSA, high stability, mechanical flexibility, and high
conductivity owing to the high carrier mobility and low elec-
trical noise."®®'*" However, it has no bandgap and is hydro-
phobic, which makes it challenging to use for gas sensing.
Reduced graphene oxide (rGO) has many defects, high con-
ductivity, and high hydrophilicity, and it can be used in place of
graphene for sensing studies.’®>'%® Therefore, a combination
of rGO with high conductivity and MOFs can enhance the
sensing properties of the resulting nanocomposite. In one
study, the NiO-MOF and NiO-MOF/rGO nanocomposites were
hydrothermally prepared at 120 °C. The SSA of NiO-MOF was
810 m* g~ ', and it increased to 872 m® g~ ' after incorporating
rGO due to the 2D morphology and high SSA of rGO. The
composite sensor responded more strongly to CO than to NH;
and SO, gases. In addition, the response was higher than that
of the pristine NiO-MOF sensor—mainly because of a higher
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Fig. 13 (a) Sensing graphs of the Ni-MOF sensor to CO gas at various temperatures. (b) Response vs. temperature. (c) Sensing graphs of the Ni-MOF
sensor to different gases at 200 °C. (d) Response to different gases at 200 °C.2° Reproduced from ref. 29 with permission from Elsevier, copyright 2020.
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SSA and the formation of Ni-MOF/rGO heterojunctions. The
comparable kinetic diameter of CO to the aperture size of
NiO-MOF, the high conductivity of rGO, the porous nature of
Ni-MOF, and the formation of Ni-MOF/rGO heterojunctions all
contribute to the enhanced sensing capabilities.'® Another
study developed a flexible Cu(INA),/rGO composite for NH;
gas sensing at room temperature, using a combination of MOF
and reduced graphene oxide. NH; gas readily diffused into and
adsorbed on Cu(INA), due to the porous nature of the sensing
material. In addition, the sensor’s high SSA provided adsorp-
tion sites for NH; gas. The adsorption ability of Cu(INA),
and the high conductance of rGO improved the response to
NH;, gas.'”®

In another study involving MOF composites with graphene
derivatives, a graphene acid (GA)/UiO-66-NH, composite was
synthesized by covalently bonding GA with the UiO-66-NH,
MOF through amide bonds. With the hierarchical pores, the
composite showed a high SSA of 598 m* g™, a pore volume of
1.09 cm® g%, and good conductivity because of the presence of
GA and good stability. Both GA and UiO-66-NH, sensors
showed low responses to CO, gas. Although pristine GA is very
conductive due to delocalized m-electrons, it did not have any
favorable sites for CO, adsorption. Pristine UiO-66-NH,, how-
ever, has sufficient interaction sites for CO, gas adsorption, but
its resistance is very high. However, the GA/UiO-66-NH, com-
posite offered a good and rapid response to CO, gas at 200 °C
due to synergistic effects between the two materials. Raman
analysis indicates that CO, only weakly interacts with CO-NH
above 200 °C. In composite sensors, the MOF controlled the
space between the GA layers and led to the creation of adsorp-
tion sites at the functional groups at the GA-MOF interface."*®

An interesting application of gas sensors is the monitoring
of the freshness of fruit,'®” where the emission of certain gases
is used as an indicator of fruit quality.’*® On the other hand, for
these applications, flexible gas sensors, which retain their
performance upon stretching, tilting, and bending,'®® are pre-
ferred over rigid sensors because they can be easily attached to
fruit skin. Ethylene is a hormone that facilitates the growth and
maturation of plants. It is released during the growth and decay
of fruit. Generally, fruit rapidly ripens and decays because of
the autocatalytic action of the accumulated ethylene.”***" For
these reasons, an ethylene sensor was fabricated to detect fruit
freshness and spoilage of kiwi that uses a single-walled carbon
nanotube (SWCNT)/Pd NPs/Cu-MOF-74 (SPM) nanocomposite.
The nanocomposite was prepared using a self-assembly tech-
nique. Flexibility was achieved by depositing the sensor onto a
flexible PET substrate. The SSA (13 m* g ') of the SWCNTs
increased to 92 m> g~ ' for the composite sensor. In other
words, the composite sensor provided many adsorption sites
for ethylene gas. Moreover, the water contact angle (WCA) of
the SPM composite was 34.87°, significantly higher than that
of Cu-MOF-74 (24.30°), which confirms the effectiveness of
SWCNTs in enhancing the hydrophobicity of the sensor. In
addition, the SPM sensor was highly resistant to humidity
above 40-70%. The sensor exhibited a response of 34.2% to
100 ppb C,H,. C,H, was easily oxidized on Pd NPs because of
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Jahn-Teller distortion.?°2 Reproduced from ref. 202 with permission from
Elsevier, copyright 2024.

the catalytic effect of Pd. The released electrons migrated to the
sensor surface, which decreased resistance. Cu-MOF-74 con-
tained Cu®" ions, which formed a covalent bond with C,H, via
n-1 stacking interactions. In addition, the bonds between Cu-
MOF-74 and C,H, expanded, and the MOF was distorted into a
stable pseudo-octahedral shape because of the Jahn-Teller
effect (Fig. 14).

The sensor performance to monitor the ripeness and decom-
position of kiwi was assessed by attaching the sensor to a kiwi
at room temperature and 75% relative humidity (Fig. 15a). The
sensor generated various signals that could be related to the
ripeness and decomposition of kiwi (Fig. 15(a)-(c)).***

SO, is a significant factor in air pollution, which can
adversely affect human health and lead to respiratory issues
and mortality.”>® Hence, flexible SO, gas sensors were manu-
factured based on Ni-MOF/-OH-SWCNTs and Ni-MOF/-OH-
MWCNTs. The sensor with SWNTs performed better for SO,
gas and could detect 0.5 ppm SO,. The sensing signal was
attributed to a high SSA, good conductivity, and the formation
of heterojunctions between Ni-MOF and SWCNTs.>**

4.2.2.2. MOF/CP-based composite gas sensors. Conducting
polymers (CPs) have electrical conductivity, and therefore, can
be used for sensing applications. Polyaniline (PANI) is a CP
with unusually high electrical conductance,”® and like rGO, it
can be composited with MOFs to further increase the electrical
conductivity and the overall sensing performance of the MOF-
PANI composite.>*® Hence, a composite sensor consisting of
SiO,-coated Cu-MOF, graphene and PANI was prepared. Cu-
MOF and graphene in the composite were connected via PANI.
The sensor showed a high SSA of 760 m* g~ " and a micropore
volume of 0.35 cm® g~ In other words, it could offer a high SSA
to gas molecules. The NH; gas could diffuse into the deeper
regions of the sensor because of the many pores in the sensing
material. As a result, NH; gas was detected at levels as low as
0.6 ppm with relatively fast dynamics. The enhanced response
to NH; gas was due to the high sensitivity of PANI to NH;. PANI

This journal is © The Royal Society of Chemistry 2025
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Fig. 15 (a) Flexible sensors attached to a kiwi fruit. (b) Response and change in resistance of the sensor during 13 days. (c) Optical images of the kiwi after
various time intervals.?? Reproduced from ref. 202 with permission from Elsevier, copyright 2024.

donates one proton to NHj;, forming NH," ions, which increase
the sensor resistance. In addition, significant resistance modu-
lation occurred because of the creation of heterojunctions
between Cu-MOF/PANI and rGO, which contributes to the
sensing signal.?”

Like most MOFs, the UiO-66-NH, MOF has high resistance,
which hinders its usage in sensing studies and hence conductive
polymers such as poly(3,4-ethylenedioxythiophene):poly(styrene
sulfonate) (PEDOT:PSS), which features high conductivity,**® can
be added to address this problem. Therefore, a UiO-66-NH,/
PEDOT:PSS composite was synthesized for toluene sensing using
a hydrothermal reaction. It exhibited a response of 1.42 to toluene
(10 ppm) at room temperature. Operation at room temperature
can significantly lower the energy consumption of the sensing
device.

However, the response time of the sensor was long (340 s)
due to low kinetics at room temperature. Furthermore, the high
SSA of the UiO-66-NH, MOF and the conductivity of the
PEDOT:PSS polymer affected the output of the sensor. More-
over, at the contact areas, electrons migrated from PEDOT:PSS
to UiO-66-NH, to equilibrate the Fermi levels, which resulted in
the generation of potential barriers. In the presence of toluene,
electrons were released to the sensor surface through a reaction
with chemisorbed oxygen species, which lowered both the
potential barrier height and electrical resistance.>*’

In another study on CP/MOF composite sensors, a
Cu3(HHTP), MOF/PVA composite mixed with an ionic liquid
(IL) was synthesized to enhance conductivity for H,S sensing.
The composite was hydrophilic due to the presence of -OH
groups in each ionic liquid molecule. In an acidic H,S gas

This journal is © The Royal Society of Chemistry 2025

atmosphere, the molecules of H,S reacted with oxygen ions
on the PVA, ionic liquid, and Cu-MOF, which led to the release
of electrons. Hence, a flow of charged ions and protons
became possible. In addition, the highly conjugated linker also
improved the conductivity of the composite sensor. Moreover,
Cu-MOF had 1.55 nm pores, which exceeded the size of the H,S
molecule (0.36 nm). Therefore, H,S gas easily diffused within
the MOF, resulting in high sensitivity and selectivity to this
gaS.21o

A composite gas sensor using MOF-5 microparticles/chito-
san (CS) was fabricated for H,S gas sensing, and a glycerol ionic
liquid was added to enhance the conductivity of the sensor.
MOF-5 nanoparticles dispersed within the CS-IL matrix
enhanced the transport of H,S through the membrane because
of the porosity of MOF-5. The sensor exhibited a 91% response
to H,S gas (100 ppm) in just 8 seconds. The enhanced capability
was attributed to the high SSA and the porous MOF, along with
the excellent conductivity of the sensor as a result of the CS-IL
matrix.>*

4.2.2.3. MOF/metal oxide-based composite gas sensors. ZIFs
are MOFs with a 3D mesh structure consisting of tetrahedral
MN, (M = metal cation) and tetrahedral clusters, which are
connected via imidazolate linkers with high porosity and a high
internal SSA. Both ZIF-8 and ZIF-71 are widely used for sensing
applications. These materials have pore sizes of 3.4 A and 4.8 A,
respectively. Accordingly, ZIF-8 is typically used to detect
small molecules, such as H,, while ZIF-71 is employed to sense
large molecules, such as ethanol.>'* Drobeck et al.'®® coated
ZnO nanowires (NWs) with a thin layer of ZIF-8 using a
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hydrothermal route at 100 °C/24 hours for selective H, sensing.
At 300 °C, the ZIF-8-coated sensor showed a stronger response
to H, gas than to C;Hg and C¢Hg gases because of its molecular
sieving effect. In fact, these gases were unable to pass this
layer and reach the ZnO surface because the average pore size
of ZIF-8 (3.4 A) was below that of C,Hg (5.92 A) and C¢Hg
(5.27 A) gases.

On the other hand, H, gas with a smaller molecular size
(2.89 A) than the aperture size of ZIF-8 easily diffused through
and reached the surface of ZnO. The response of the ZIF-8
coated sensor was slightly lower than that of the pristine ZnO
because of the presence of ZIF-8 (with lower conductivity) and
the prevention of adsorption of all H, gas molecules on the ZnO
NWs. In other words, ZIF-based gas sensors can be tuned to
respond to a specific gas.

Since the stability of MOFs is generally low, a composite of
MOFs with metal oxides may increase the overall stability of the
resulting sensor and increase the gas-sensitive output. For this
reason, an In,O;@MIL-68(In) composite was synthesized
hydrothermally at 80, 100, and 120 °C (Fig. 16). A sensor
prepared hydrothermally at 100 °C showed a response of
18 to 100 ppm HCHO gas, which was six times higher than
that of pristine In,O;. The excellent formaldehyde sensing
performance was attributed to the low bond-dissociation
energy. The bond energy of formaldehyde is 368 k] mol *,
whereas the bond energies of ethanol, methanol, methane, and
acetone are all higher than 400 k] mol™*. Therefore, formalde-
hyde decomposed quickly at the sensing temperature and
released more electrons than other gases. Furthermore, the
sea urchin shape morphology and the presence of MIL-68(In)
on In,0; enhanced the sensor’s response.*'* The detection of
formaldehyde is essential as exposure to it can cause allergies,
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asthma, pulmonary damage, and cancer from contaminated
foods, water, and air.>*?

NO, is a hazardous gas emitted mainly from the combustion
of fossil fuels. Exposure to this gas causes coughing and
respiratory problems, such as asthma.*'* In addition, the
intensity of a COVID-19 infection is increased in the presence
of NO, gas.”®”*" shin et al.>"° coated a titanium-based MOF on
SnO, NWs to enable the selective detection of NO,. In a dry
atmosphere at 200 °C, the responses of the pristine and Ti-
MOF-coated SnO, sensors to 2 ppm NO, were 5.4 and 4.3,
respectively. Under humid conditions, however, the response of
the coated sensor was higher (Fig. 17(a)-(d)). The water contact
angles (WCAs) of the pristine and Ti-MOF-coated sensors were
10° and 123°, respectively (Fig. 17(e)), indicating the hydropho-
bicity of the Ti-MOF coating, which is highly beneficial for gas-
sensing in a humid atmosphere.

4.2.3. Functionalized MOF composite-based gas sensors.
H, is highly explosive in air (4-75 vol%) and has a low ignition
energy as well as a high flame propagation rate.>*”*!® On the
other hand, it is very small and can easily diffuse and leak
through storage containers.”’® A novel amine-functionalized
Zn-BDC-NH, MOF was synthesized hydrothermally for H, gas
sensing. It had a high SSA of 890 m* g~" with a pore size of
~13 A. At 50 °C, it showed a response to 3 to 10 ppm H,.
Fig. 18(a)-(c) shows a scheme of the sensing mechanism, where
the width of the EDL decreases in the H, gas atmosphere. The
high SSA and high porosity offer many gas-adsorption sites.

The presence of open metal sites of Zn provided additional
adsorption sites for H, gas. H, gas with a small molecular size
of 0.289 nm could quickly diffuse into all regions of the sensing
layer, which resulted in better sensor response to H, relative to
interfering gases. The functionalization of -NH, enhanced the

Fig. 16 (a) and (b) TEM and (c) HRTEM views of In,Os@MIL-68 (In) prepared at 100 °C under hydrothermal conditions. (d)-(g) TEM-EDS elemental
mapping analysis.?*? Reproduced from ref. 212 with permission from Elsevier, copyright 2023.
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number of active sites for H,, which improved the adsorption
capability of H,.

Moreover, the reaction of H, gas with Zn,0(CO,)s helped to
decrease the sensor resistance. H, gas was chemisorbed at the
“Zn” and “O” sites. Upon adsorption on “O” sites, O-H bonds
were formed through strong hybridization between the H-s and
O-p orbitals. Moreover, the delocalization of electrons between
the Zn and O-H bonds facilitated the surface metallization of
Zn, with a significant change in conductance.**°

Few studies have explored the incorporation of noble metals
on MOFs for gas sensing. In this context, sulfone-func-
tionalized Zr-MOF (Zr-BPDC-SO,) and Pd-loaded Zr-BPDC-
SO, composites were hydrothermally prepared at 120 °C/24
hours. Zr-BPDC-SO,, exhibited a stronger response to ethanol,

This journal is © The Royal Society of Chemistry 2025

while Pd/Zr-BPDC-SO, showed better sensing with respect to
H, gas. At 150 °C, the Zr-BPDC-SO, gas sensor manifested a
response of 1.45 to 100 ppm ethanol. Also, the response of the
Pd/Zr-BPDC-SO, sensor was ~2 to 10 ppm H, gas at 150 °C.
The SSAs of the two sensors were 1360 and 530 m® g/,
respectively. In addition, the pore sizes of Zr-BPDC-SO, and
Pd/Zr-BPDC-SO, were 12 and 6 A, respectively. Therefore,
following Pd-loading, some pores were closed, which caused a
decrease in both SSA and pore size and a lower response to
ethanol compared to the Zr-BPDC-SO, sensor. Fig. 19(a) and (b)
show the reaction of the Zr-BPDC-SO, and Pd/Zr-BPDC-SO, gas
sensors to ethanol and H, gases, respectively. Furthermore,
Fig. 19(c) shows the variation of the hole accumulation layer
(HAL) of gas sensors in air, ethanol, and H, gas. In terms of H,
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Fig. 18 Schematic illustration of the H, gas sensing mechanism of Zn-BDC-NH, in (a) air and (b) H, atmospheres, and (c) change of the thickness of the
EDL of Zn-BDC-NH; in air and H, atmospheres.??° Reproduced from ref. 220 with permission from Elsevier, copyright 2022.
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Fig. 19 Schematic illustrating the gas sensing mechanism of (a) Zr-BPDC-SO, and (b) Pd/Zr-BPDC-SO, gas sensors to ethanol and H,, respectively. (c)
Modulation of HAL in air, ethanol, and H, atmospheres.t*® Reproduced from ref. 130 with permission from Elsevier, copyright 2021.

gas sensing, the catalytic effect of Pd plays an important role. First,
H, gas molecules adsorb easily on Pd and dissociate into atomic
species. Under the spillover effect, they move to the neighboring
sensing material and then readily react with adsorbed oxygen.
Thus, a strong response to H, gas was observed. In addition, PdH,,

1042 | Nanoscale Horiz., 2025, 10, 1025-1053

formed in an H, gas atmosphere, exhibits different resistance
compared to metallic Pd due to Pd’s ability to adsorb H, gas,
which substantially modulates its resistance."*°

NH; is a hazardous and corrosive gas that can irritate the
eyes, nose, and lungs and damage the immune system.>*'
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Fig. 20 Schematic illustration of the synthesis and functionalization of Hf-BTC. (a) The HfsO4(OH)4(CO,)1» cluster as the secondary building unit (SBU).
(b) 1,3,5-Benzenetricarboxylic acid (HsBTC) as the organic linker. (c) Formation of the Hf-BTC MOF via coordination between Hf clusters and BTC linkers.
(d) Sulfation of Hf-BTC using H,SO4 to obtain Hf-BTC-SO4 for ammonia (NHs) sensor.?%? Reproduced from ref. 222 with permission from Elsevier,

copyright 2022.

In air, it produces aerosols that exhibit a temperature-
reducing effect and negatively affect the global greenhouse
balance.?*> Moreover, it is considered a medical biomarker for
kidney disorders.”*> An Hf-BTC MOF was synthesized and
functionalized via the SO, group to boost the sensing response
to NH; (Fig. 20).

The Hf-BTC MOF showed a very high SSA of 1100 m* g~ ' and
an average pore size of 15 A that promoted sensing reactions
through the rapid diffusion of gases. At 100 °C, the sensor
exhibited a response of 2.1 to 10 ppm NH;. In addition to the
high SSA, the excellent crystallinity of Hf-BTC-SO, allowed NH;
to be adsorbed on the sensor through strong host/guest inter-
actions. The SO, groups, which were Brensted acid sites,
interacted with the Lewis acid sites on the Hfg cluster. This
led to a strong interaction with NH; and improved the response
to NH;. In addition, the good selectivity to NH; was due to the
interactions of N atoms in NH; with metal sites on the MOF.
The kinetic diameter of NH; (0.26 nm) was also smaller than

that of other gases, which enabled easy penetration through the
pores inside the sensing layer.***

Table 2 compares the gas sensing properties of various MOF-
based gas sensors. The main criteria for comparing sensing
performance are response, sensing temperature, selectivity,
and response and recovery times. Obviously, lower sensing
temperature is a beneficial factor for gas sensors as it leads
to reduced power consumption. Also, higher sensing response
is better for practical application. Selectivity to a particular gas
is important for practical application to avoid the false alarms.
Faster dynamics in terms of response and recovery times is also
a beneficial factor for real applications. Specially, for highly
toxic gases such as NO, and CO, swift response time is highly
important from a safety point of view. Overall, MOF-based gas
sensors have been successfully used for the detection of various
gases. The sensing temperature is often low, compared with
metal oxide gas sensors. However, response and recovery times
are usually longer than those of metal oxide-based gas sensors,

Table 2 Comparison of gas sensing performance of various MOF-based gas sensors

Specific surface Conc. Response (R./Ry) or (Ry/R,) Response/recovery Detection

Sensing material areas (m*g™") T (°C) Gas (ppm) or [(AR/R,) x 100] time (s/s) limit (ppm) Ref.
Fe-MOF 735 50 Acetone 10 1.7 64/78 1 27
Co-MOF-II 2420 200 H, 50 101.4% —/— 1 16
Ni-VNU-74-11 2020 200 CO 50 1.65 —/— 1 29
NiO-MOF/rGO 872 25 CcO 25 ~0.9% 30/75 25 194
Cu(INA),/rGO Not mentioned 25 NH; 50  ~4.651% —/— 50 195
GA/UiO-66-NH, 598 200 CO, 500000 8.6% 18.5/18.7 — 196
SWCNT/Pd NPs/Cu-MOF-74 92 25 C,H,y 0.1 34.2% 200/50 0.1 202
Si0,-coated Cu-MOF/ 756 25 NH; 1 — 30/180 0.6 207
graphene/PANI

UiO-66-NH, MOF 876 25 C,Hg 10 1.42 340/— 1 209
Cuz(HHTP), MOF/PVA 279.997 25 H,S 100 91% 8/— 1 210
ZIF-8 coated ZnO NWs 1760 300 H, 50 1.44 —/— 10 180
In,O;@MIL-68 133.48 300 HCHO 100 18 28/43 5 212
Ti-MOF-coated SnO, NWs  Not mentioned 200 NO, 2 4.3 672/843 2 216
Zr-BPDC-SO, 1360 150 C,H;0H 100 1.383 —/— 10 130
Pd/Zr-BPDC-SO, 530 150 H, 100 1.947 —/— 10 130
Hf-BTC-SO, 1100 100 NH; 10 2.1 72/138 1 222
This journal is © The Royal Society of Chemistry 2025 Nanoscale Horiz., 2025, 10, 1025-1053 | 1043
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mainly due to working at low temperatures. Also, generally
detection limits are down to 1 ppm, which is higher than those
of metal oxide gas sensors, which are generally in the ppb
range. Also, by properly adjusting pore sizes and the use of
different strategies such as functionalization, MOF gas sensors
often can have better selectivity relative to metal oxide gas
Sensors.

5. Degradation and long-term stability
of MOF gas sensors

Despite their numerous advantages, the practical deployment
of MOFs is often limited by their stability and degradation
under operational conditions. Generally, three types of degra-
dation mechanisms have been identified for MOFs:

(i) Hydrolytic degradation: exposure to moisture can lead to
the hydrolysis of metal-ligand bonds in MOFs, resulting in
structural collapse. For instance, the ZrsO4(OH), secondary
building unit in some MOFs undergoes significant changes in
chemical and thermal stability upon incorporation of different
organic linkers, affecting their resistance to hydrolysis.>**

(ii) Thermal degradation: elevated temperatures can weaken
the coordination bonds within MOFs, leading to decomposi-
tion. The thermal stability of a MOF is influenced by factors
such as the strength of metal-ligand bonds and the robustness
of its framework.>*®

(iii) Chemical degradation: exposure to acidic or basic
environments can disrupt the coordination bonds in MOFs.
For example, carboxylate-based MOFs with high-valent metal
ions exhibit remarkable robustness in acidic water but show
moderate resistance in alkaline environments. The degradation
in basic solutions is attributed to the high affinity between
hydroxide ions and high-valency metal ions.**

Also, factors influencing the long-term stability of MOFs are
as follows:**

(i) Framework hydrophobicity: hydrophobic frameworks can
repel water molecules, reducing the likelihood of hydrolytic
degradation. This property is particularly beneficial for MOFs
intended for application in humid or aqueous environments.

(ii) Metal-ligand bond strength: stronger coordination
bonds between metal ions and ligands enhance the resilience
of MOFs to environmental stressors. Hence, MOFs constructed
with inert metal ions and robust, hydrophobic linkers demon-
strate increased resistance to hydrolysis.

In the case of MOFs for gas sensing applications, the main
stability issues are related to temperature and humidity. In parti-
cular, low thermal stability at the sensing temperature causes
changes in the phase and composition of the MOF sensor,
affecting the overall sensing performance. In this regard, some
strategies such as chemical treatment after synthesis to increase
the strength of the framework, composite formation and the use
of appropriate ligands can increase the stability of MOFs.
Integrating MOFs with other materials with high thermal stabi-
lity can enhance their mechanical strength and thermal stability.
Also, applying protective coatings to MOFs can shield them from
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moisture, contaminants, and other environmental factors that
may cause degradation. Advances in MOF coatings have led to
the development of composites that exhibit improved stability
and functionality. These coatings not only protect the MOF
structures but also enhance their applicability in various fields,
including gas sensing.>>*?**’

Also, humid air generally has a negative effect on the
performance of almost all MOFs. In fact, in humid air, water
molecules are adsorbed on the surface of MOFs, decreasing the
number of adsorption sites and leading to a decrease of sensing
response. However, the use of hydrophobic MOFs can some-
what overcome this negative humidity effect.”*® Contaminants
can occupy or block the MOF pores, resulting in a decrease of
the effective surface area and sensing performance.

6. Conclusion and outlooks

This study explored the synthesis methods for preparing MOFs
and their applications as resistive gas sensors. MOFs were
synthesized via different routes, including hydrothermal/
solvothermal, microwave, ionothermal, pyrolysis, mechano-
chemical, electrochemical, and template-directed synthesis
methods. Scalability and industrial feasibility remain key chal-
lenges for MOF-based sensors due to high synthesis costs,
complex fabrication, and energy-intensive processes. To address
these issues, alternative synthesis methods such as mechano-
chemical, microwave-assisted, and electrochemical approaches
have been explored for faster and more cost-effective production.
Additionally, integrating MOFs with scalable substrates and devel-
oping continuous-flow synthesis methods can enhance their
industrial applicability. Furthermore, the functionalization of
MOFs is a crucial factor that enhances their versatility and
tailors their properties for specific applications. The functio-
nalization of MOFs was achieved through several strategies,
including post-synthetic modification, incorporation of func-
tional linkers, metal site functionalization, coordinative unsa-
turation, encapsulation of functional molecules, and surface
functionalization. Highly porous MOFs with a high SSA are
promising materials for gas-sensing applications. In addition,
with tuneable pore sizes, they can act as molecular sieves for
the selective detection of target gases. However they generally
show low conductivity, which limits their application in
pristine form.

Because stability is a critical factor in gas sensors, both
chemical and physical durability play a significant role in
maintaining performance over extended use. Chemically, the
incorporation of stable metal clusters (e.g., Zr-, Ti-, and Hf-
based MOFs) enhances resistance to hydrolysis and oxidation,
while the addition of carbon materials and conductive poly-
mers as well as doping with metal or redox-active species to
facilitate charge transport improves moisture resistance and
electrical conductivity, reducing framework degradation. Phy-
sically, these composites exhibit superior structural integrity
compared to pristine MOFs, as carbon materials help prevent
framework collapse during repeated gas adsorption/desorption
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cycles, and polymer matrices enhance mechanical robustness
and adhesion to substrates.

Different materials with higher conductivity than MOFs, like
carbon materials, metal oxides, and conductive polymers, were
added to MOFs to increase the overall conductance and sensing
performance of the resulting composite. Also, in the composite
form, MOFs can act as molecular sieves, preventing the adsorp-
tion of undesired gases or humidity on the surface of the
sensing layer. For example, coating metal oxides with MOFs
can reduce the interference caused by humidity and enhance
the selectivity of the sensor.

We also explained the gas sensing performance of various
MOF-based gas sensors, demonstrating the fact that MOFs have
high potential to be used as gas sensing devices. However, to
further boost their performance, they can be integrated with
metal oxides, metal sulfides, and MXenes. In particular,
MXenes with high conductivity, tunable properties, and high
surface area are the most promising materials to be integrated
with MOFs to significantly increase the sensing performance at
low temperatures. With high potential of working at low
temperatures down to room temperature along with relatively
good flexibility, MOFs can be used for the realization of flexible/
wearable gas sensing devices. However, when sensing tempera-
ture is high, by use of different strategies such as UV illumina-
tion or operation of the sensor in self-heating mode the sensing
temperature and power consumption can be significantly
decreased. Operation in self-heating mode means applying an
external voltage directly to the sensor electrodes, which induces
heat internally within the sensing material via the Joule heating
effect.
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