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Enhancing memristor multilevel resistance state
with linearity potentiation via the feedforward
pulse scheme†

Zhuo Diao, * Ryohei Yamamoto, Zijie Meng, Tetsuya Tohei and Akira Sakai *

Mapping the weights of an Artificial Neural Network (ANN) onto the

resistance values of analog memristors can significantly enhance the

throughput and energy efficiency of artificial intelligence (AI) applica-

tions, while also supporting AI deployment on edge devices. However,

unlike traditional digital-based processing units, implementing AI com-

putation on analog memristors presents certain challenges. The non-

linear resistance switching characteristics and limited numerical bit

precision, determined by the number of program levels, can become

bottlenecks affecting the accuracy of ANN models. In this study, we

introduce a resistance control method, a feedforward pulse scheme

that enhances resistance configuration precision and increases the

number of programmable levels. Additionally, we propose an evalua-

tion method to explore the impact of setting multi-level resistance

states on ANN accuracy. Through demonstrations on a TiO2�x-based

memristor, our method achieves 512 states on a device with a high

resistance state to a low resistance state ratio of just 1.19. Our approach

achieves 95.5% accuracy on ResNet-34 with over 20 million parameters

through weight transfer, thereby demonstrating the potential of analog

memristors in AI model inference. Furthermore, our findings pave the

way for future advancements in increasing resistance states, which will

enable more complex AI tasks and enhance the in-memory computa-

tional capabilities required for AI edge applications.

Introduction

The evolution of artificial intelligence (AI) in recent years has
been marked by a diversification of tasks, progressing from
initial text classification,1 image classification,2–5 and object
detection6 to more complex tasks. This progress has culmi-
nated in multi-task summarization, which requires large
language models,7 and image generation that requires larger

decision spaces.8 As artificial neural network (ANN) models
have grown in complexity, the scale of numerical computations
involving matrix and vector (matvec) operations has escalated
commensurately.9 This escalation has raised societal concerns
regarding AI’s voracious appetite for computational resources
and the resulting environmental impact of increased power
consumption.10,11 To address these challenges, there could be a
shift toward non-von Neumann computing architectures, such as
those based on memristors.12 Leveraging the non-volatile nature of
memristors and their ability to integrate memory and processing,
these architectures offer the potential to reduce the power con-
sumption associated with data storage13 and data movement.14

In contrast to digital-based processing units such as GPUs
and TPUs, memristors offer the ability of analog matvec com-
putations. Memristors are characterized by their resistive
switching (RS) functionality, which allows dynamic adjustment
of the device resistance within a range from a low resistance
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New concepts
Analog memristors can be applied to artificial neural networks (ANNs) by
utilizing multi-state resistance to represent ANN weights. However, due to their
inherent non-linearity, the number of achievable program levels is limited,
constraining the accuracy of ANN computations. To address this limitation, a
common approach is to increase the device’s ON/OFF ratio, enhancing the
signal intensity and enabling more precise program levels. In contrast, our
research demonstrates the capability to achieve 512 program levels with an
ON/OFF ratio as low as 1.19. This breakthrough provides new insights into
strategies for improving the linearity – instead of increasing the device’s
dynamic range, we employ an optimized write pulse scheme at the system
level coupled with a two-dimensional topology for precise dopant ion control to
enhance resistive switching properties and thereby improve linearity. Also,
these findings underscore the critical importance of program levels against
ANN accuracy. 3-Bit program levels are sufficient for MNIST dataset
recognition. For more complex tasks, such as classifying 101 categories with
a 20 M-parameter ResNet-34, our method extends the program levels of the
device to 8 bits and achieves 95% accuracy. Building on this progress, our
findings highlight the exciting opportunity further to enhance the number and
precision of program levels, enabling analog memristors to tackle increasingly
complex artificial intelligence tasks with greater accuracy and efficiency.
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state (LRS) to a high resistance state (HRS) through the applica-
tion of write voltages.15,16 The matrix computations in the
ANN can be mapped to memristor crossbar architectures.17,18

The crossbar array uses a multi-level resistance state to map
the weight matrix in ANN blocks and a series of read voltages
to represent the ANN input matrix.19,20 Multiplication can then
be performed according to Ohm’s law, while addition is per-
formed according to Kirchhoff’s current law. This architecture
enables low-power, high-throughput, and large-scale matvec
computations in fewer clocks. In addition, a single product–
sum operation requires only one device, resulting in higher
space utilization in integrated circuit design. However, the
analog memristor currently has limitations in achieving enough
computational accuracy comparable to digital-based computers.

One of the critical factors contributing to the low accuracy is the
RS behavior. The inherent non-linearity makes it difficult to achieve
consistent resistance changes with each pulse event, leading to
errors when setting target resistance values. Furthermore, the
limited range between the LRS and HRS, coupled with the device’s
endurance constraints, restricts the number of programmable
resistance levels in practical applications. The number of program
levels directly affects the dynamic range of numerical variables,
introducing quantization errors during computations. These errors
are particularly amplified during layer-to-layer propagation in ANN
structures, where accuracy depends heavily on the complexity of the
ANN blocks and the depth of the layers. In previous research, 2048
program levels were realized on CMOS21 by the trapped-charge-
based denoising approach, while by the normal electrical control,
general research can realize less than 100 program levels.22–28 From
a system-level perspective, RS linearity can be optimized using non-
identical pulse schemes.29–31 This approach incrementally adjusts
pulse voltage to converge on the desired resistance value. While this
method is versatile and applicable across various memristor mate-
rials and types, the trial-and-error and the data exploration pro-
cesses often lead to increased time and power consumption. Thus,
there is a need for an RS optimization method that eliminates the
redundant operation of error exploration while maximizing the
potential program levels of the device. Also, an evaluation method
for the program levels of analog memristors that affect ANN
accuracy plays a crucial role in designing integration chips based
on analog memristors.

In this paper, we introduce a feedforward pulse (FFP) scheme for
potentiation and depression, specifically designed for a high-
endurance memristor device. The FFP scheme calibrates the write
voltages for each resistance state beforehand, using multiple and
different pulse voltages as a single pulse event to achieve linear RS.
This method maintains RS linearity and improves the number of
program levels. We utilized a four-terminal TiO2�x memristor
device32 that drives the oxygen vacancies (V+2

O ) in a two-dimension
topology. This implementation illustrates high performance in the
cycle-to-cycle endurance for RS characteristics and fine-tuned linear
resistance switching with 512 resistance levels for 9-bit analog
computation. To evaluate the performance of the combination of
this four-terminal device and the FFP scheme, we proposed a
benchmark method to compute the accuracy of analog memristor-
based ANNs using the simulated crossbar array. Our results show

that even with a complex ANN model such as ResNet-34, which
contains over 20 million learnable parameters, our device controlled
by FFP can achieve 95% accuracy. This work represents a critical
step toward achieving highly accurate fixed-point computations
using analog memristors, supporting the detection of high-
dimensional datasets in more complex neural network architectures.

Results and discussion
Resistive switching with the two-dimension distribution of V+2

O

We fabricated a planar TiO2�x four-terminal memristor device32,33

using a lithography process (see Fig. 1(a) and the Experimental
section). The memristive material has four electrodes, each of
which is measured independently to control the voltages applied
to the four terminals (V1, V2, V3, and V4) and monitor the resulting
currents (I1, I2, I3, and I4) [Fig. 1(b)]. In our previous research, the
design unlocks additional neuromorphic functions such as RS
modulation34 and associative learning.32 This memristor exhibits
bulk-type switching behavior.35–37 For bulk-type devices, the dis-
tribution of V+2

O directly determines the current path in the RS layer.
Our devices control the drift of V+2

O in the two-dimensional (2D)
space, enabling more precise control of the dopant movement to
achieve reproducible RS curves. The specific write/read protocol
designed for the four-terminal device is shown in Fig. 1(c). Applying
appropriate voltages to the four terminals allows the V+2

O domains
near the electrodes to expand or contract, enabling the precise
distribution of V+2

O within a 2D topology [see Fig. S1, ESI†]. To write
a resistance value, a write pulse is applied to terminals T2 and T4
while T1 and T3 are grounded. After each pulse event, the
resistance is measured by applying voltage to T1 while grounding
T2, T3, and T4. The current between T1 and T3 (I3) is used to
calculate the device’s resistance. We applied the voltage protocol
shown in Fig. 1(d) to demonstrate the memory characteristics and
initialize the device. Each V2,4 write process lasts 100 s, and the
voltage application loop repeated 20 times is presented in Fig. 1(e).
As the number of loops increases, the differences between the loop
curves diminish. This suggests that the movement of V+2

O stabilizes
with repeated cycling, eventually reaching a dynamic equilibrium.

We investigated the RS behavior under various Vw by measuring
the potentiation characteristics starting from the HRS (880 O) and
depression characteristics from the LRS (740 O), respectively. The
experimental protocol involved applying 100 write operations at
each Vw and automatic initialization to the HRS and LRS using a
Vw = �6 V. We explored a range of write voltages: Vw = 0.3, 0.4, 0.5,
0.6, 0.7, 0.8, 1.0, 1.5, 2.0, 2.5, 3.0, 4.0, 5.0, 6.0, and 7.0 V in 2 s. The
results of five repetitions for each RS condition are presented in
Fig. 2(a). To evaluate the cycle-to-cycle endurance of our device, we
employed the Pearson Correlation Coefficient (pxy) shown in eqn (1).

pxy ¼

Pn
i¼1
ðxi � �xÞðyi � �yÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1
ðxi � �xÞ2

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1
ðyi � �yÞ2

s (1)

Here, x and y represent two arrays of length n, with pxy

assessing their correlation. %x and %y represent their mean value.
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A pxy value of 1 indicates a perfect correlation between the
datasets. Fig. 2(b) illustrates the relationship between the RS
dynamic range (Rmax–Rmin) and pxy, calculated after every 100
write pulse operations. The mean pxy is computed by averaging
the pxy values between the final RS array and all preceding RS

arrays under identical Vw conditions. The pxy values approaching
‘‘1’’ demonstrate our device’s exceptional cycle-to-cycle endurance,
ensuring the reliability and reproducibility of RS characteristics
for specific resistance levels under consistent Vw inputs. However,
we observed an inverse relationship between the dynamic range

Fig. 2 (a) Resistance switch achieved via identical pulses. During each potentiation and depression process, the device resistance is initially programmed
to 880 O and 740 O, respectively. Then, the variety amplitude Vw and 2 s width write pulse is applied 100 times. (b) Metrics for the cycle-to-cycle
reproducibility: in both the potentiation and depression processes, the mean value of the Pearson correlation coefficient between the last resistance R
and every preceding resistance R is used for calculation. Resistance change (|DR|) after every programming pulse during (c) potentiation and
(d) depression processes.

Fig. 1 (a) Optical micrograph of the four-terminal TiO2�x device, along with a cross-sectional diagram of the active region of the device at the magenta
dashed line. (b) Schematic illustration of the oxygen vacancy (V+2

O ) distribution in the resistive switching region of the device, along with the definitions of
the current and voltage at each terminal. (c) Schematic diagram representing the voltage application conditions during write and read operations, as well
as the measurement current during read operations. The dotted region indicates areas with a high concentration of V+2

O . (d) Voltage application protocol
for memory characteristics measurement. (e) Resistive switching characteristics between T1 and T3 after applying the protocol in (d).
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and cycle-to-cycle endurance, with larger dynamic ranges leading
to diminished endurance. Considering this trade-off, we opted for
a relatively narrow dynamic range to prioritize high cycle-to-cycle
endurance, thereby enhancing the precision of the RS process.

When setting the write pulse voltage, |DR| represents the
change in resistance caused by a single write pulse. Fig. 2(c) and
(d) show the values of |DR| that can be achieved with different
magnitudes of Vw for each resistance level between the HRS and
LRS during the potentiation and depression processes, respec-
tively. For a given resistance value, an appropriate Vw can be
determined by selecting the desired range of |DR|. This study
defines the suitable range as 0.1 O o |DR| o 0.3 O. The upper
limit of 0.3 O is set because we aim to precisely adjust the
resistance change of the device with each pulse event to establish
more program levels. The lower limit of 0.1 O is chosen because,
for minimal resistance changes, the influence of noise becomes
dominant. This range ensures that the device’s resistance can be
finely tuned without being overwhelmed by noise, thus achieving
linear and precise adjustments in resistance levels. Furthermore,
to maintain the reproducibility of resistance changes concerning
the applied write voltage, this method requires the device to
exhibit good cycle-to-cycle endurance characteristics.

Feedforward pulse scheme for potentiation and depression

To achieve linear RS characteristics in memristors, we scheme
to select appropriate write voltages corresponding to different
resistance states, as the resistance update curves will typically
reach saturation at constant write voltages. Using the afore-
mentioned relationship between the resistance value and |DR|
[Fig. 2(c) and (d)], we can employ a FFP to tune the memristor.
Fig. 3(a) illustrates the systematic approach of this scheme: the
current resistance value (rFF) is obtained using a read pulse,
and a 0.8 s duration write pulse with the appropriate voltage,
Vw(rFF) is applied. Although shorter write pulse durations can
create more program levels, they increase the tuning time. The
results of continuous potentiation and depression using the

FFP are plotted in Fig. 3(b). The average power consumption
per potentiation and depression process is 240.7 mW and
114.6 mW, respectively (see ESI†). Since our device size is
15 mm, scaling down the device to the nanometer order will
significantly reduce the power consumption. During the first
depression process, the Vw values for each pulse event are plotted
in different colors in Fig. 3(c). Throughout the potentiation and
depression processes, the pulse event count for potentiation is
494 � 11, and for depression, it is 579 � 17, forming compara-
tively symmetrical RS characteristics. Higher symmetry might be
achievable by reconfiguring the values of the LRS and HRS.

Based on the RS characteristics data obtained via the FFP, we
can further calibrate the pulse events to achieve linear resistance
updates. Fig. 3(d) shows that by applying a multilevel resistance
segmentation method (see the Experimental section) to the pulse
events in Fig. 3(c), multiple pulse events are consolidated into a
single pulse event, resulting in segments of resistance update
characteristics with a higher linearity, Ra with highly reliable
32 program levels (5 bits) [see Fig. S3, ESI†]. For example, in
Fig. 3(d), the two program levels indicated by ‘‘red stars’’ are
achieved from the previous program level by applying the pulses
shown in the inset diagram, as directed by the arrows. Next,
using the multilevel resistance segmentation method, the Ra

with 512 (9 bits), 128 (7 bits), and 32 (5 bits) program levels from
the potentiation and depression processes are plotted in Fig. 4(a)
and (b). By fitting the RS pulse event curves with eqn (2) and (3),
the calculated vp and vd can be used to evaluate the nonlinearity
of the device’s RS characteristics.38–40

Rp � rmin

rmax � rmin
¼ 1� evpðnj�nÞ

1� e�vpn
(2)

Rd � rmin

rmax � rmin
¼ 1� evdnj

1� evdn
(3)

where Rp and Rd are resistance update curves during potentia-
tion and depression, nj is the pulse event number and n is the

Fig. 3 (a) Systematic using the feedforward pulse scheme. (b) RS characteristics performed by the feedforward pulse scheme. (c) Detailed voltage
application for the first depression process in (b). (d) Multilevel resistance segmentation result for a level count, n = 32. Two ‘‘red star’’ marks indicate
details of the actual voltage application pulse events.
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total number of pulse events, respectively. The best-fit values for
512 (9 bits), 128 (7 bits), and 32 (5 bits) program levels are given
by the parameters vp and vd, which quantify the linearity of the Ra.
Specifically, for the potentiation process, vp is 1.91 � 0.06 � 10�5,
3.10 � 0.12 � 10�4, and 4.95 � 0.08 � 10�3, while for the
depression process, vd is 1.93 � 0.08 � 10�5, 3.10 � 0.08 �
10�4, and 4.91 � 0.05 � 10�3. Since vp and vd values approaching
0 represent a perfect linear resistance update curve, and consider-
ing that the best nonlinearity coefficients in most previous
research are on the order of 10�2,38–40 the FFP method has
achieved a highly linear resistance update characteristic.

The reliability of individual multi-level settings is verified
by cumulative probability density (CPD) plots shown in Fig. 4(c)
and (d). The 66 samples from the RS process are used for
the CPD analysis. To compare the program levels for n = 32 and
n = 512, nine random potentiation and depression processes
corresponding to resistance levels are normalized based on the
current and the next resistance level, normalized between 0 and 1.
For n = 512, in the high resistance region on potentiation (c)
and low resistance region on depression (d), the horizontal axis
of the CPD values are more likely to exceed 1, meaning that
the level is easier to be ‘‘skipped.’’ This is likely due to extra
ion diffusion caused by the Joule heating effect41,42 on the bulk-
type device, as well as resistance overshoots due to different Vw

values (see the ESI†). Additionally, based on the statistical
analysis of all data, we define program levels with a ‘‘normal-
ized resistance level’’ 4 1 at a CPD = 80% as the program levels
have a tendency to be skipped. In n = 32, the number of such
levels is 0. In contrast, in n = 512, there are 117 levels for
the potentiation process and 8 for the depression process.

Despite this, the Non-Linearity Factor (NLF) remains at a very
low level of 0.0009 for the depression process and 0.001 for the
potentiation process. The higher error in potentiation compared
to depression can also be observed in the global program level
evaluation [Fig. S4, ESI†]. As the value of n increases, the program
levels displayed by the CPD show greater variation, which impacts
the reliability when used as a multi-bit memory. However, an
increase in n also means more program levels, which represent a
higher numerical precision in the computation. Therefore, in
numerical computations, the errors introduced by setting the
program levels and the quantization errors due to numerical
precision are in a trade-off relationship. Choosing the appropriate
program level based on the device’s RS characteristics is essential
in the design of memristor-based ANNs.

Image recognition ANN using the device characteristic

The accuracy of devices tuned by the FFP method is then
validated in ANN computation applications. The program error,
which occurs when setting the target resistance, can be simu-
lated using the value sampler (see the Experimental section).
Fig. 5(a) shows the generated results for the potentiation process
(worst-case), where the actual resistance values yactual are gener-
ated based on the normalized target resistance values yideal with
included program errors. Ideally, yideal and yactual would corre-
spond to the straight red dashed line. But in reality, the resistance
value setting errors |ri� ra| lead to the greater dispersion of yactual.
The error, which comes from the device, is dominated in the
magnified HRS region [Fig. 5(b)], and the quantization error due
to bit precision is dominated in other magnified regions
[Fig. 5(c)]. Thus, program errors can be estimated by a random

Fig. 4 Multilevel resistance segmentation result of setting the level count as n = 512, n = 128, and n = 32 for (a) potentiation and (b) depression
processes. Selected multi-level resistance settings for n = 32 and n = 512 configurations on (a) potentiation and (b) depression processes are randomly
chosen and evaluated using the cumulative probability density (CPD) plots, which are displayed in (c) and (d), respectively. The vertical dashed line at the
‘‘normalized resistance level’’ = 1 represents the next level for the current program level.
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sampling of errors caused by RS non-linearity and an error due to
numerical quantization. We used program errors to simulate two
different applications of setting up ANNs with a memristor cross-
bar array, as shown in Fig. 5(d) and (e). Weight transfer involves
mapping trained model parameters onto the resistance of the
crossbar array, while in-memory training performs forward and
backward propagation calculations directly within the crossbar
array, updating each device’s weight in real time.

We constructed three image recognition ANNs of varying
complexity for image classification tasks using diverse datasets:
MNIST,43 Fashion-MNIST,44 and Caltech101.45 The architec-
tures of these ANNs are illustrated in Fig. 6(a)–(c), with their
parameters summarized in Table 1. The first neural network is
a multilayer perceptron (MLP)46 with two hidden layers com-
prising 256 and 128 neurons, respectively. The second network
is LeNet-5,5 with two convolutional layers having depths of
16 and 32, and the third network is ResNet-34,4 with 34
convolutional layers. Fig. 6(d) illustrates the accuracy of ANNs
via the weight transfer method using different program levels.
The horizontal dashed lines (pink, green, and azure) represent
the accuracy achieved by training on digital devices (GPU).
Although larger models can perform better on complex data-
sets, the computational accuracy of analog devices leads to
amplified propagation errors in deeper networks and more
frequent program errors with increasing weight parameters.
As a result, to approximate GPU training results, an MLP
architecture mapped to an analog device requires only 3 bits
to achieve 95.2% accuracy, LeNet-5 requires 4 bits to achieve
86.9% accuracy, and ResNet-34 requires 8 bits to achieve 95.5%
accuracy. Although increasing the number of program levels
introduces higher errors in individual program level values

[Fig. S2, ESI†], we find that maximizing the number of program
levels is more effective for improving ANN accuracy. This out-
come may be attributed to the excellent cycle-to-cycle endur-
ance of our device, which indirectly ensures that quantization
errors across most resistance ranges remain at a low level, as
shown in Fig. 5(c).

Fig. 6(e) and (f) illustrate the accuracy of in-memory training
for ANNs using MLP and LeNet-5 architectures. The in-memory
training results for ResNet-34 are omitted because, under our
program error settings, the accuracy could not be improved
during the gradient update. The blue line represents the train-
ing curve considering only the ADC/DAC effects and circuit
noise, excluding program errors. The blue and orange dashed
lines represent training curves using 4-bit and 9-bit program
levels, respectively. Due to the lower computational precision of
analog-based devices compared to the 64-bit double precision
used by GPUs, in-memory training with memristors demands
higher analog precision than weight transfer. For the MLP
architecture, both 4-bit and 9-bit program levels achieve nearly
85% accuracy, but in the more complex LeNet-5 architecture,
only the 9-bit program level can approach the ideal perfor-
mance. For the ResNet-34 with 20 M parameters, significantly
more than 9-bit program levels are required to achieve effective
in-memory training. This precision requirement can be attrib-
uted to the amplification of noise effects during differential
computations, which will disrupt proper gradient updates.
While both weight transfer and in-memory training methods
can map ANN weights onto memristor devices, in-memory
training offers broader applicability in AI applications. One of
the advantages of in-memory training is that it extends the use
of memristive devices to real-time AI applications on edge

Fig. 5 (a) Program error generation results for the potentiation process, considered the worst case while segmenting the resistance levels to 5 bits (n = 32),
7 bits (n = 128), and 9 bits (n = 512). The zoomed detail highlights the value areas at (b) the HRS and (c) other regions. To evaluate the ANN benchmark
according to device performance, the systematic approaches of (d) the weight transfer method and (e) the in-memory training method are illustrated.
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devices and facilitates hardware-aware training to optimize
retention errors. Additionally, in-memory training leverages
fully memristor-based computation, consuming less power
than weight transfer approaches.

We have demonstrated the FFP method on a high cycle-to-
cycle endurance device, achieving linear resistance updates with
a 9-bit programming resolution. An overview of the current
research on the HRS/LRS ratio and the number of resistance
levels in the devices21–28 is presented, categorizing the devices
into filament-switching memristors and bulk-switching memris-
tors, as plotted in Fig. 7. To increase the number of resistance

levels, the most straightforward approach is to expand the
device’s dynamic range, which means increasing the HRS/LRS
ratio. Conversely, in this study, we achieve a high-level control
of RS characteristics through the mechanism of controlling bulk-
switching using a four-terminal memristor32,33,47 and implemen-
ted FFP device tuning method, enabling the realization of
512 resistance levels even at a very low HRS/LRS ratio at 1.19.
In bulk-type memristors, unlike filament-type ones, the RS
rely on ion distribution and can achieve a higher number of
resistance levels. To highlight the characteristics of bulk-type
memristors, we propose a novel design approach that enhances

Fig. 6 Image recognition results were obtained using the characteristics of a four-terminal TiO2�x device. The neural network diagrams illustrate the
ANN type as (a) MLP, (b) LeNet-5 and (c) ResNet-34. The detailed parameters of the ANN architectures are shown in Table 1. (d) The device benchmark
using the weight transfer method with different bit precisions applied. The device benchmark using the in-memory training method for the MNIST
dataset and the Fashion MNIST are illustrated in (e) and (f), respectively.

Table 1 Detailed parameters of the ANN architectures

Dataset Architecture Input shape Output class Layers Parameters

MNIST MLP 28 � 28 10 2 202 364
Fashion-MNIST LeNet-5(CNN) 28 � 28 10 4 80 064
Caltech101 ResNet-34(CNN) 3 � 256 � 256 101 35 21 336 485
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multi-level performance by focusing on controlling ion drift rather
than increasing the HRS/LRS ratio. Additionally, both our study
and ref. 21 demonstrate that utilizing optimized write pulses,
rather than identical pulses, improves the linearity and resistance
level potential of the device. The analog memristor controlled by
FFP can achieve a higher number of resistance levels, enhancing
efficiency in multi-bit memory and AI edge devices. The ability of
FFP to separate more program levels under a fixed HRS/LRS ratio
relies on the device having good cycle-to-cycle and device-to-device
variations. Future efforts to apply the FFP scheme to crossbar
devices should focus on fabricating crossbar integration devices
while ensuring that these characteristics are maintained. From the
perspective of a single device, bulk-type memristors deterministi-
cally control the distribution of ion dopants through the applied
write voltage, reducing randomness in the RS process. Therefore,
as same as our TiO2�x-based devices, bulk-type memristors gen-
erally show good cycle-to-cycle endurance and low device-to-device
variance [see Fig. S2 in the ESI†]. However, as a common issue for
bulk-switching devices, the high-temperature operation caused by
Joule heating effects affects the retention characteristics of our
device [see Fig. S5, ESI†]. Such Joule heating effects influence the
movement of dopant ions in our device, adversely affecting cycle-
to-cycle variations and retention characteristics. Reducing the
device temperature helps improve the retention characteristics of
bulk-type memristors.37 To address this, we can introduce mod-
ulation techniques,34,48–50 which employ additional signals to
regulate the RS speed. Incorporating this mechanism could allow
us to reduce write voltages to mitigate Joule heating effects while
maintaining the On/Off ratio. Additionally, time drift errors due to
retention can also be corrected using in-memory training
[Fig. 5(e)], and other in situ training algorithms.51 Regardless of
this, the FFP scheme can be applied to other memristors, parti-
cularly to bulk-type memristors, which are expected to further
enhance the precision and increase the number of program levels.

Meanwhile, our ANN simulation results indicate that the
precision of program levels and the number of program levels
are critical metrics for crossbar devices to achieve deeper neural
network computation. To handle the complexity of AI models,
even devices with 9-bit program levels may face challenges,
particularly in ‘‘in-memory training’’ scenarios. By applying the

FFP scheme combined with the bulk-switching mechanism, we
can improve the linearity characteristics affected by the pro-
gram level, enabling the current device to meet the growing
complexity of AI models, and paving the way for utilizing
memristors in practical AI applications.

Conclusions

This study presents an FFP method, with the concept of proac-
tively calibrating the RS characteristics for each resistance value
and effectively regulating the RS change rate concerning the
number of pulse events. As a demonstration, we apply the FFP
scheme on a four-terminal bulk-type memristor device with high
cycle-to-cycle endurance and achieve precise resistance switching
control with 512 program levels at a low HRS/LRS ratio of 1.19,
maintaining 10�3 RS nonlinearity metrics. This method is com-
patible with other memristor devices and can facilitate an
increased number of program levels while ensuring the device’s
linearity. Moreover, we have devised an analog-based ANN accu-
racy assessment framework for the FFP-tuned device. This frame-
work accounts for device linearity through specific metrics,
including resistance setting errors caused by RS nonlinearity
and quantization errors arising from program-level limitations.
Using weight transfer, we estimate that the analog computing
accuracy of our device achieves 95.5% accuracy in ResNet-34 with
21 336 485 parameters across 34 layers. Our accuracy evaluation in
in-memory training indicates that for deeper neural networks
capable of processing complex datasets beyond MNIST, a program
level on the order of 500 remains insufficient to achieve the same
level of accuracy as digital-based processing units. Therefore, for
future applications involving deeper ANNs, the number of pro-
gram levels that affect computing accuracy will become increas-
ingly important.

Experimental section
Memristive device fabrication

A (001) rutile-type insulating TiO2 single-crystal substrate
was used for memristor device fabrication. A TiO2�x epitaxial

Fig. 7 Characteristics of the HRS/LRS ratio and the number of resistance levels of multi-level analog memristors reported to date.
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thin film, serving as the resistive switching layer, was deposited
on a substrate using pulsed laser deposition at 500 1C, under
typical conditions of an oxygen partial pressure of 1.0� 10�4 Pa
to achieve a thickness of 40 nm. The electrodes were patterned
using electron beam lithography followed by Pt deposition by
electron beam evaporation and a lift-off process. An SiO2

insulating layer (100 nm) was deposited using RF sputtering
and then patterned and etched to create contact holes.

Device measurements

Measurements were conducted using a Keithley 3706A system
switch/multimeter and a Keysight B1500A semiconductor device
analyzer at room temperature under air conditions. The measure-
ment system was home-built in Python, with the instrument
control facilitated via the Virtual Instrument Software Architecture
(VISA) protocol. Standard Commands for Programmable Instru-
ments (SCPI) were employed for the Keysight B1500A, and Test
Script Processor (TSP) commands were utilized for the Keithley
3706A to automate and program the measurement processes. The
resistance write process involved applying a pulse voltage to
terminals T2 and T4, with T1 and T4 grounded. For the resistance
read process, a pulse voltage of 0.1 V was applied to T1, while T2,
T3, and T4 were grounded. Although currents from T1 to T2, T3,
and T4 can be measured separately, the device resistance was
calculated based on the current measured between T1 and T3. To
clearly distinguish a large number of resistance levels on our
device, the order of 100 nA current measurement resolution is
required. For such a high-precision measurement, the resolution
of Keysight B1500A is set at 10 nA and the number of averaging
samples for ADC is set at 11.

Multilevel resistance segmentation method

To achieve a multilevel resistance, we utilized the FFP pulse
application method shown in Fig. 3(a) to obtain the measured
feedforward pulse events (RFF) [Fig. 3(c)]. To further enhance the
linearity in RFF, all events of the feedforward pulse are segmented
into several pulse event groups, each considered as one applied
pulse. First, RFF is normalized to a range of 0 to 1. When the
resistance level count is set to n, Ri = [ri,1, . . ., ri,n] as the target values
for segmenting RFF and Ra = [ra,1, . . ., ra,n] as the actual segmented
multilevel results. Here, ri,1 can be the low resistance state (rmin) and
ri,n can be the high resistance state (rmax). For a target resistance level
ri,j, the index value m in array RFF is calculated by m = argmin|RFF�
ri,j|, then ra,j = RFF[m]. At this point, to compute the write pulse (Vw)
required to update the state from ri,j to ri,j+1, suppose the index of
RFF corresponding to the state ri,j is mj and the index corresponding
to the state ri,j+1 is mj+1, then the write pulse events are
[Vw(rFF,mj

),. . .,Vw(rFF,mj+1
)]. For example, the inset figure in Fig. 3(d)

shows the planning results for two write pulse events. In this
planning, if it is insufficient to separate enough resistance levels
in RFF, the states of the elements in Ri will remain unoccupied.

Crossbar device simulations

We implement a framework of crossbar device simulations to
compute the performance of AI applications. All networks are
implemented in PyTorch.52 The tensor computing for training

networks is performed in GPU, while the tensor computing
for program error simulations is performed in the CPU and
accelerated by Numba.53 To ensure the validity of the ANN
benchmark, the dataset used for training and testing is fixed in
each computation, and the random seed is not used to control
the generated values in other random numeric generations.
IBM aihwkit,54 an in-memory computing device simulation
toolkit, is used to benchmark hardware-specific non-
idealities of the four-terminal TiO2�x crossbar array. Blocks
in digital ANN models are converted into analog blocks
and mapped into crossbar tiles. The ADC/DAC non-idealities,
forward noise during the analog-matvec computation, and
custom device program error including non-linearity and bit
precision have been taken into account. Errors due to time drift
behavior and device-to-device variance are not considered in
this work.

Device program error sampler

Increasing the bit count in the digital domain enhances com-
putational precision; however, our device characterization
results indicate that it also exacerbates the non-linear factor,
thereby diminishing computational accuracy. A custom device
program error is implemented to assess the performance of the
ANN relative to bit count and nonlinearity, considering the
interplay between bit quantization and non-linearity.

Prior to applying the program error, the resistance array,
which represents the weight elements in the ANN neurons, is
normalized to yideal. The actual value yactual, incorporating the
device program error, is then randomly sampled as described
in eqn (4). As an illustration, the correspondence between yactual

and yideal for the potentiation case is depicted in Fig. 5(a)–(c).

yactual = Q(yideal) + T(loc(yideal),s(yideal),n(yideal)) (4)

Here, Q denotes the method for calculating the bit quantiza-
tion value of yideal, while T represents a random variate in
Student’s t-distribution with the mean value loc, scale s and
degree of freedom n. For Q, the specific bit count and value
range are set to determine the quantization target values. Each
resistance value is designated as the argument ri,j in the
‘‘multilevel resistance segmentation method’’ to compute ra,j as
the bit precision error. Additionally, the random value T is
generated according to the probability density function as shown
in eqn (5).

f ðt; vÞ ¼
G

vþ 1

2

� �
ffiffiffiffiffi
vp
p

G
v

2

� � 1þ t2

v

� �� vþ1
2

� �

T(loc,s,n) = f (t,n) � s + loc (5)

loc, s, and n are calibrated from the experimental resistance
switch data. For each defined resistance level count, the distribu-
tion of errors corresponding to each resistance level, i.e. yideal is
calculated. These distributions are then fitted to Student’s t-
distribution to obtain loc, s, and n for each target value in yideal.
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ANN weight transfer

As shown in Fig. 5(c), the weight transfer method involves training
a full-precision (FP64) AI model on a GPU and then transferring
the weight parameters from the ANN to the memristor device as
resistance values. During this process, configuring the resistance
of a device to match the ANN parameter weight w may result in
deviations due to programming pulse errors. For our TiO2�x

device characteristics, using FFP to control resistance switching
(RS) leads to errors dependent on the weight values, as illustrated
in Fig. S2(b) and (c) (ESI†). The relationship of this error after
normalization can be expressed by the ideal value yideal corres-
ponding to the sampled actual value yactual, shown in Fig. 5(a).
When transferring ANN weights, we map the high resistance state
(HRS) and low resistance state (LRS) of the memristor to weight
values in the range of [�4, 4], considering the value ranges of the
common output of each hidden layer in the AI model. In this ANN
simulation, we convert the ANN to an analog ANN mapped in a
memristor crossbar device and then calculate the analog ANN
accuracy when the n state amounts are separated uniformly
within this weight value range.

In-memory training

As shown in Fig. 5(d), the in-memory training method involves
using backpropagation55 to update the weights directly in the
memristor array. First, the ANN is converted into an analog
ANN that can be mapped to a memristor crossbar. In the
forward pass of the analog ANN, the computation is performed
by the voltage output of the memristor array instead of using a
GPU. The loss of the memristor is then externally evaluated on
the test dataset, and this loss is used to update the model
gradient by reconfiguring the resistance of each memristor
during the backward pass. The algorithm for updating analog
ANN weights employs the AnalogSGD optimizer,56 which is
implemented in IBM’s aihwkit. For all training, the batch size
is 64, the training epoch is 50, and the learning rate is 0.1, 0.01,
and 0.0001 for each of the three models shown in Table 1.

The in-memory training will introduce errors each time the
weights are updated due to the memristor programming error
and both the forward pass and backward pass will be affected.
To represent this error, in addition to converting the ANN to an
analog ANN model, we add a noise layer using the device
programming error sampling method behind each block con-
taining trainable weights [Fig. 5(d)]. Each noise layer generates
values with the same shape as the input matrix, incorporating
the device programming error values.
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