



Cite this: *Nanoscale Horiz.*, 2025, **10**, 586

Received 2nd September 2024,  
Accepted 2nd January 2025

DOI: 10.1039/d4nh00437j

[rsc.li/nanoscale-horizons](http://rsc.li/nanoscale-horizons)

## Spillover of active oxygen intermediates of binary $\text{RuO}_2/\text{Nb}_2\text{O}_5$ nanowires for highly active and robust acidic oxygen evolution<sup>†</sup>

Linqing Liao,<sup>‡,ab</sup> Wangyan Gou,<sup>‡,c</sup> Mingkai Zhang,<sup>d</sup> Xiaohe Tan,<sup>ab</sup> Zening Qi,<sup>e</sup> Min Xie,<sup>e</sup> Yuanyuan Ma<sup>\*,ab</sup> and Yongquan Qu<sup>\*,ab</sup>

**Over-oxidation of surface ruthenium active sites of  $\text{RuO}_x$ -based electrocatalysts leads to the formation of soluble high-valent Ru species and subsequent structural collapse of electrocatalysts, which results in their low stability for the acidic oxygen evolution reaction (OER). Herein, a binary  $\text{RuO}_2/\text{Nb}_2\text{O}_5$  electrocatalyst with abundant and intimate interfaces has been rationally designed and synthesized to enhance its OER activity in acidic electrolyte, delivering a low overpotential of 179 mV at 10 mA cm<sup>-2</sup>, a small Tafel slope of 73 mV dec<sup>-1</sup>, and a stabilized catalytic durability over a period of 750 h. Extensive experiments have demonstrated that the spillover of active oxygen intermediates from  $\text{RuO}_2$  to  $\text{Nb}_2\text{O}_5$  and the subsequent participation of lattice oxygen of  $\text{Nb}_2\text{O}_5$  instead of  $\text{RuO}_2$  for the acidic OER suppressed the over-oxidation of surface ruthenium species and thereby improved the catalytic stability of the binary electrocatalysts.**

## Introduction

The rational design and synthesis of Ru-based acidic OER electrocatalysts with low overpotential and high durability are essential for the development of electrocatalytic hydrogen generation from water electrolysis in acidic media.<sup>1,2</sup> Previous investigations have suggested that the surface Ru species of  $\text{RuO}_2$  tend to be over-oxidized during the acidic OER and generate the soluble high valent Ru species under external

### New concepts

The lattice oxygen mechanism (LOM) can break the scale relationship of Ru-based electrocatalysts for the acidic oxygen evolution reaction (OER) through the involvement of lattice oxygen, which can greatly enhance the activity. However, the generation of surface high-valent ruthenium species accompanied by the formation of oxygen vacancies leads to dissolution of surface Ru species and then decay of catalytic activity. Herein, we designed and synthesized a binary  $\text{RuO}_2/\text{Nb}_2\text{O}_5$  nanowire catalyst with intimate interfaces, which enabled the spillover of the reactive intermediate  $^*{\text{O}}$  from  $\text{RuO}_2$  to  $\text{Nb}_2\text{O}_5$  and thereby delivered significantly improved activity and durability for the acidic OER. Combination of various *in situ* and *ex situ* techniques demonstrated the occurrence of the spillover of active oxygen intermediates from  $\text{RuO}_2$  to  $\text{Nb}_2\text{O}_5$  and the subsequent participation of lattice oxygen of  $\text{Nb}_2\text{O}_5$  instead of  $\text{RuO}_2$  for the acidic OER, thereby suppressing the over-oxidation of surface ruthenium species. We anticipate that this work can be beneficial in stimulating the study of oxygen spillover at the interface of binary oxide catalysts for designing high performance OER electrocatalysts.

<sup>a</sup> Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, 518057, China. E-mail: [jyma@nwpu.edu.cn](mailto:jyma@nwpu.edu.cn), [yongquan@nwpu.edu.cn](mailto:yongquan@nwpu.edu.cn)

<sup>b</sup> Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, China

<sup>c</sup> School of Materials Engineering, Xi'an Aeronautical University, Xi'an, 710077, China

<sup>d</sup> School of Science, Xi'an University of Technology, Xi'an, 710048, China

<sup>e</sup> Xi'an Yiwai Putai Environmental Protection Co., Ltd, Xi'an, 710065, China

<sup>†</sup> Electronic supplementary information (ESI) available. See DOI: <https://doi.org/10.1039/d4nh00437j>

<sup>‡</sup> These authors contributed equally to this study.

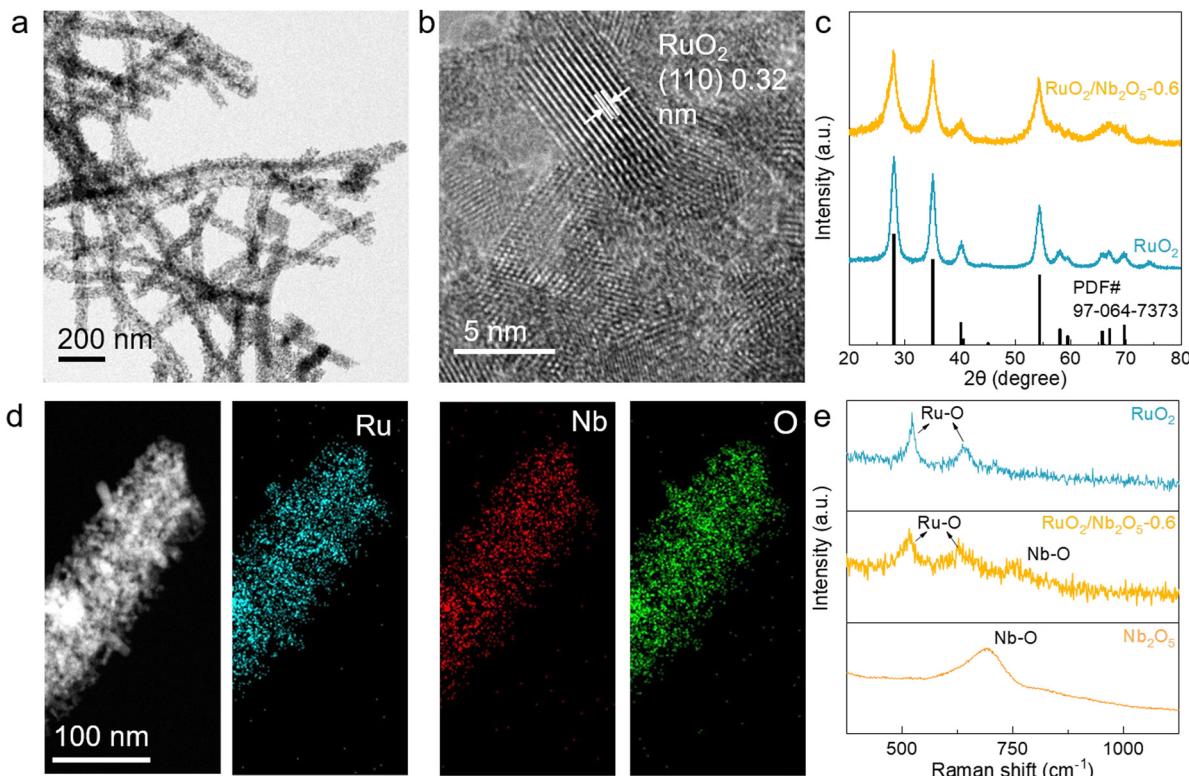
potentials of over 1.4 V.<sup>1,3,4</sup> Especially, defective  $\text{RuO}_x$  has been reported to deliver high catalytic activity for the acidic OER, which has been recognized to undergo a lattice oxygen mediated (LOM) pathway.<sup>3,5–7</sup> Participation of lattice oxygen leads to the formation of oxygen vacancies and subsequent production of high valent Ru species, thereby unavoidably inducing the serious dissolution of surface electroactive high-valent Ru species and consequent collapse of the crystal structure of the highly defective  $\text{RuO}_x$ -based electrocatalysts during the long-term operation. Thus, it's highly expected that new strategies to realize high performance Ru-based electrocatalysts for acidic OER can be developed.

To address this challenge, various interfacial and structural engineering strategies have been developed to modulate the valence state of Ru and suppress the over-oxidation of surface Ru species, including the hybridization of Ru-based catalysts with other components, chemical doping, formation of solid solution, *etc.*<sup>8–11</sup> Moreover, alternating between the LOM pathway of the defective  $\text{RuO}_x$ -based electrocatalysts and adsorbate

evolution mechanism (AEM) pathway or oxide path mechanism (OPM) also showed the potential to enhance the catalytic activity and durability of Ru-based catalysts for the acidic OER.<sup>3,8,12,13</sup> However, the catalytic performances were still far below the expectations for the practical applications, and part of the above-mentioned methodologies improved the catalytic stability of Ru-based electrocatalysts at the expense of activity.<sup>14–16</sup> Recently, the spillover of active oxygen intermediates has been proposed as a promising strategy to simultaneously enhance the activity and stability of  $\text{IrO}_x$ -based OER electrocatalysts in acidic electrolyte.<sup>17</sup> We recently reported the spillover of active oxygen intermediates from  $\text{RuO}_2$  to  $\text{MoO}_3$  in the binary  $\text{RuO}_2/\text{MoO}_3$  electrocatalysts for the enhanced OER activity and stability in acidic electrolyte.<sup>18</sup> In this approach,  $\text{MoO}_3$  with a low solubility in acidic media was integrated with  $\text{RuO}_2$ , in which the active oxygen species was initially generated on the surface active sites of  $\text{RuO}_2$  and then spilled over towards  $\text{MoO}_3$  for the release of oxygen. The spillover of the active oxygen species from  $\text{RuO}_2$  to  $\text{MoO}_3$  for the subsequent release of oxygen can avoid the generation of oxygen vacancies on  $\text{RuO}_2$  and consequently suppresses the over-oxidation of surface Ru species, which theoretically improves the catalytic activity and stability. To date, only a few electrocatalysts have been reported to realize the simultaneously improved activity and stability for the acidic OER through the oxygen spillover strategy. To investigate the universal applicability of the oxygen spillover strategy for enhancing the acidic OER performance of  $\text{RuO}_2$ , the exploration of new binary electrocatalysts is anticipated.

Herein, a binary electrocatalyst of ruthenium oxide and niobium oxide nanowire ( $\text{RuO}_2/\text{Nb}_2\text{O}_5$ ) was synthesized *via* a facile electrospinning/thermal treatment approach.  $\text{RuO}_2/\text{Nb}_2\text{O}_5$  delivered a remarkable low overpotential of 176 mV at a current density of  $10 \text{ mA cm}^{-2}$ , a Tafel slope of  $73 \text{ mV dec}^{-1}$ , and a mass activity of  $296 \text{ A g}^{-1}$ , suggesting substantially superior catalytic performance in comparison to commercial  $\text{RuO}_2$ . Furthermore,  $\text{RuO}_2/\text{Nb}_2\text{O}_5$  demonstrated an exceptional stability, enduring for at least 750 h in  $0.5 \text{ M H}_2\text{SO}_4$ . The *S*-numbers of  $\text{RuO}_2/\text{Nb}_2\text{O}_5$  ( $3.01 \times 10^5$ ) and C- $\text{RuO}_2$  ( $1.07 \times 10^3$ ) indicated a significantly reduced dissolution rate of ruthenium in  $\text{RuO}_2/\text{Nb}_2\text{O}_5$ . Extensive experiments demonstrated that the integration of  $\text{Nb}_2\text{O}_5$  and  $\text{RuO}_2$  effectively inhibited the over-oxidation of surface Ru species and avoided the dissolution of Ru of the binary electrocatalysts for the acidic OER. Catalytic mechanism studies suggested the occurrence of spillover of the active oxygen species from  $\text{RuO}_2$  to  $\text{Nb}_2\text{O}_5$  during the acidic OER. Such a binary electrocatalyst broke the dilemma between the activity and stability of Ru-based electrocatalysts by preserving lower oxidation states of surface Ru species for a long period in the acidic OER.

## Synthesis and characterization of $\text{RuO}_2/\text{Nb}_2\text{O}_5$


The synthetic process of the  $\text{RuO}_2/\text{Nb}_2\text{O}_5$  binary nanowire electrocatalysis involves electron-spinning and subsequent thermal treatment at various temperatures. The details can be found in the ESI.† Typically, the nanowire-like precursors were prepared by

electro-spinning of a polyvinyl pyrrolidone (PVP) solution containing  $\text{RuCl}_3$  and  $\text{NbCl}_5$  in the desired molar ratios. Then, calcination under a flow of air removed the polymers and transformed the wire-like precursors into binary oxide catalysts.<sup>19</sup>

Three  $\text{RuO}_2/\text{Nb}_2\text{O}_5$  electrocatalysts were synthesized with the Ru/(Ru + Nb) molar ratios of 0.7, 0.6, and 0.5, which were determined using inductively coupled plasma emission spectrometry (ICP-ES, Table S1, ESI†). The catalysts were named  $\text{RuO}_2/\text{Nb}_2\text{O}_5-x$ , where  $x$  represented the molar ratio of Ru/(Ru + Nb). The transmission electron microscopy (TEM) image demonstrated the nanowire-like morphology of the binary  $\text{RuO}_2/\text{Nb}_2\text{O}_5-0.6$  electrocatalysts (treated at  $400 \text{ }^\circ\text{C}$ ) with an average diameter of  $\sim 100 \text{ nm}$  (Fig. 1a). The electrocatalysts were composed of small nanoparticles, indicating the highly accessible surface and largely exposed active sites for electrocatalysis. High-resolution TEM (HRTEM) images of  $\text{RuO}_2/\text{Nb}_2\text{O}_5-0.6$  revealed a crystal structure with a lattice fringe spacing of  $0.32 \text{ nm}$ , which corresponded to the (110) lattice plane of rutile phase  $\text{RuO}_2$  (Fig. 1b),<sup>20</sup> while no lattice fringe information of  $\text{Nb}_2\text{O}_5$  was found, which could be attributed to the poor crystalline structure and small size of  $\text{Nb}_2\text{O}_5$  in the catalysts. Fig. 1c showed the X-ray diffraction (XRD) patterns of  $\text{RuO}_2/\text{Nb}_2\text{O}_5-0.6$  and  $\text{RuO}_2$ .  $\text{RuO}_2$  was synthesized through the identical approach of  $\text{RuO}_2/\text{Nb}_2\text{O}_5$  in the absence of the Nb precursor (Fig. S1, ESI†). The characteristic peaks of  $\text{RuO}_2$  and  $\text{RuO}_2/\text{Nb}_2\text{O}_5$  electrocatalysts matched well with the database profile of  $\text{RuO}_2$  (rutile phase, PDF#: 97-064-7373), suggesting the formation of rutile phase  $\text{RuO}_2$  in the catalysts.<sup>21</sup> The absence of characteristic XRD peaks of  $\text{Nb}_2\text{O}_5$  further indicated the poorly crystallized and/or small  $\text{Nb}_2\text{O}_5$  particles in the electrocatalysts. Energy-dispersive X-ray spectroscopy (EDS) elemental mapping images suggested the uniform distribution of Ru, Nb and O in a single nanowire of  $\text{RuO}_2/\text{Nb}_2\text{O}_5-0.6$ , demonstrating the presence of Nb in the electrocatalyst (Fig. 1d). As shown in Table S2 (ESI†), the atomic and weight ratios of Ru/(Ru + Nb) in  $\text{RuO}_2/\text{Nb}_2\text{O}_5-0.6$  derived from EDS elemental mapping images were 0.63 and 0.65, respectively, which were close to the results of ICP (0.59 and 0.62). Similar EDS and ICP results further indicated that the distribution of elements within the catalyst was uniform. To further determine the formation of a binary structure of the electrocatalyst, Raman spectra of  $\text{RuO}_2$ ,  $\text{Nb}_2\text{O}_5$  and  $\text{RuO}_2/\text{Nb}_2\text{O}_5-0.6$  were recorded and analyzed. In the Raman spectrum of  $\text{RuO}_2/\text{Nb}_2\text{O}_5-0.6$ , the characteristic peaks at  $517$  and  $624 \text{ cm}^{-1}$  corresponded to the  $\text{E}_g$  and  $\text{A}_{1g}$  vibrational modes of  $\text{RuO}_2$ , respectively (Fig. 1e).<sup>22</sup> The broad peak surrounding at  $748 \text{ cm}^{-1}$  was attributed to the Nb–O vibrational peak of  $\text{Nb}_2\text{O}_5$ . In comparison with the characteristic peak of highly crystalline commercial  $\text{Nb}_2\text{O}_5$  appearing at  $693 \text{ cm}^{-1}$ , the blue-shift and broadening of the characteristic peak of the  $\text{RuO}_2/\text{Nb}_2\text{O}_5-0.6$  catalysts by nearly  $50 \text{ cm}^{-1}$  suggested the poor crystalline and small size of  $\text{Nb}_2\text{O}_5$  in the binary electrocatalysts.<sup>23</sup>

## Catalytic performance

Initially, the catalytic performance of a series of  $\text{RuO}_2/\text{Nb}_2\text{O}_5$  electrocatalysts was evaluated in a three-electrode electrolytic



**Fig. 1** Characterization studies of RuO<sub>2</sub>/Nb<sub>2</sub>O<sub>5</sub>-0.6. (a) TEM image of RuO<sub>2</sub>/Nb<sub>2</sub>O<sub>5</sub>-0.6. (b) HRTEM image of RuO<sub>2</sub>/Nb<sub>2</sub>O<sub>5</sub>-0.6. (c) XRD patterns of RuO<sub>2</sub>/Nb<sub>2</sub>O<sub>5</sub>-0.6 and RuO<sub>2</sub>. (d) Elemental X-ray mappings of RuO<sub>2</sub>/Nb<sub>2</sub>O<sub>5</sub>-0.6. (e) Raman spectra of RuO<sub>2</sub>/Nb<sub>2</sub>O<sub>5</sub>-0.6, RuO<sub>2</sub> and Nb<sub>2</sub>O<sub>5</sub>.

cell with 0.5 M H<sub>2</sub>SO<sub>4</sub> as the electrolyte, in which graphite rod and Hg/Hg<sub>2</sub>Cl<sub>2</sub>/KCl electrode were employed as the counter and reference electrodes, respectively. All electrode potentials were calibrated and normalized to the reversible hydrogen electrode (RHE). After calcination under different temperatures, various RuO<sub>2</sub>/Nb<sub>2</sub>O<sub>5</sub> electrocatalysts were synthesized, exhibiting similar morphological features and the same crystal phase (Fig. 1 and Fig. S2–S5, ESI†). Afterwards, the catalytic performance of the prepared catalysts was analyzed to screen out the optimal composition and treatment temperature. As shown in Fig. S6 and S7 (ESI†), the RuO<sub>2</sub>/Nb<sub>2</sub>O<sub>5</sub>-0.6 electrocatalyst treated at 400 °C delivered the best OER activity with the lowest overpotential of 179 mV at 10 mA cm<sup>-2</sup> and the smallest Tafel slope of 73 mV dec<sup>-1</sup>, which was identified as the optimal electrocatalyst in this work. Then, RuO<sub>2</sub>, the commercially available Nb<sub>2</sub>O<sub>5</sub> and RuO<sub>2</sub> (C-RuO<sub>2</sub>) catalysts, as well as the electron-spun RuO<sub>2</sub> electrocatalysts synthesized through the identical process of RuO<sub>2</sub>/Nb<sub>2</sub>O<sub>5</sub>-0.6 were selected as the control catalysts to highlight the importance and roles of Nb<sub>2</sub>O<sub>5</sub> in improving catalytic performance of RuO<sub>2</sub>/Nb<sub>2</sub>O<sub>5</sub>-0.6. As shown in their linear voltammetry scanning (LSV) curves (Fig. 2a), the bare OER activity of Nb<sub>2</sub>O<sub>5</sub> was observed, indicating the catalytic inertness of Nb<sub>2</sub>O<sub>5</sub>. Comparatively, the RuO<sub>2</sub>/Nb<sub>2</sub>O<sub>5</sub>-0.6 catalysts delivered the lowest overpotential of 179 mV at a current density of 10 mA cm<sup>-2</sup>, which was much lower than those of RuO<sub>2</sub> (215 mV) and C-RuO<sub>2</sub> (256 mV). The catalytic current density of RuO<sub>2</sub>/Nb<sub>2</sub>O<sub>5</sub>-0.6 at 1.5 V was 75.2 mA cm<sup>-2</sup>, which was 2.7 times higher than that of the electron-spun RuO<sub>2</sub>

electrocatalysts (27.9 mA cm<sup>-2</sup>) and 6.1 times higher than that of the commercial C-RuO<sub>2</sub> electrocatalysts (12.3 mA cm<sup>-2</sup>). The reaction kinetics were further evaluated by the derived Tafel slopes. The Tafel slope of RuO<sub>2</sub>/Nb<sub>2</sub>O<sub>5</sub>-0.6 (73 mV dec<sup>-1</sup>) was significantly lower than that of RuO<sub>2</sub> (107 mV dec<sup>-1</sup>) and C-RuO<sub>2</sub> (164 mV dec<sup>-1</sup>), indicating that the combination of ruthenium oxide and niobium oxide significantly enhanced the OER kinetics of the binary electrocatalysts (Fig. 2b).

In order to explore the intrinsic activity of the catalysts, the electrochemically active surface area (ECSA) was calculated from the electrochemical double layer capacitance ( $C_{DL}$ ) by cyclic voltammetry (CV) tests (Fig. S8, ESI†).<sup>24</sup> After analyzing and fitting the data, the  $C_{DL}$  values of various electrocatalysts were calculated to be 2.73, 5.18 and 11.89 mF for the commercial C-RuO<sub>2</sub>, RuO<sub>2</sub> and RuO<sub>2</sub>/Nb<sub>2</sub>O<sub>5</sub>-0.6, respectively.  $C_S$  was the capacitance of an atomically smooth planar surface, which was 0.06 mF cm<sup>-2</sup> in acidic media.<sup>25</sup> According to  $ECSA = C_{DL}/C_S$ , the RuO<sub>2</sub>/Nb<sub>2</sub>O<sub>5</sub>-0.6 electrocatalysts possessed the highest ECSA of 198.2 cm<sup>2</sup>, which was significantly higher than that of RuO<sub>2</sub> (86.4 cm<sup>2</sup>) and commercial RuO<sub>2</sub> (45.5 cm<sup>2</sup>).<sup>24</sup> By normalizing with the respective ECSA, the RuO<sub>2</sub>/Nb<sub>2</sub>O<sub>5</sub>-0.6 electrocatalysts delivered the highest intrinsic OER activity of 200 mV at 0.1 mA cm<sub>ECSA</sub><sup>-2</sup> under the acidic electrolyte, in comparison with that of RuO<sub>2</sub> (210 mV at 0.1 mA cm<sub>ECSA</sub><sup>-2</sup>) and commercial C-RuO<sub>2</sub> (217 mV at 0.1 mA cm<sub>ECSA</sub><sup>-2</sup>).

In addition, the turnover frequency (TOF) served as a pivotal metric for assessing catalyst activity. At an applied potential of 1.5 V, the TOF value of RuO<sub>2</sub>/Nb<sub>2</sub>O<sub>5</sub>-0.6 reached 7.7 s<sup>-1</sup>,

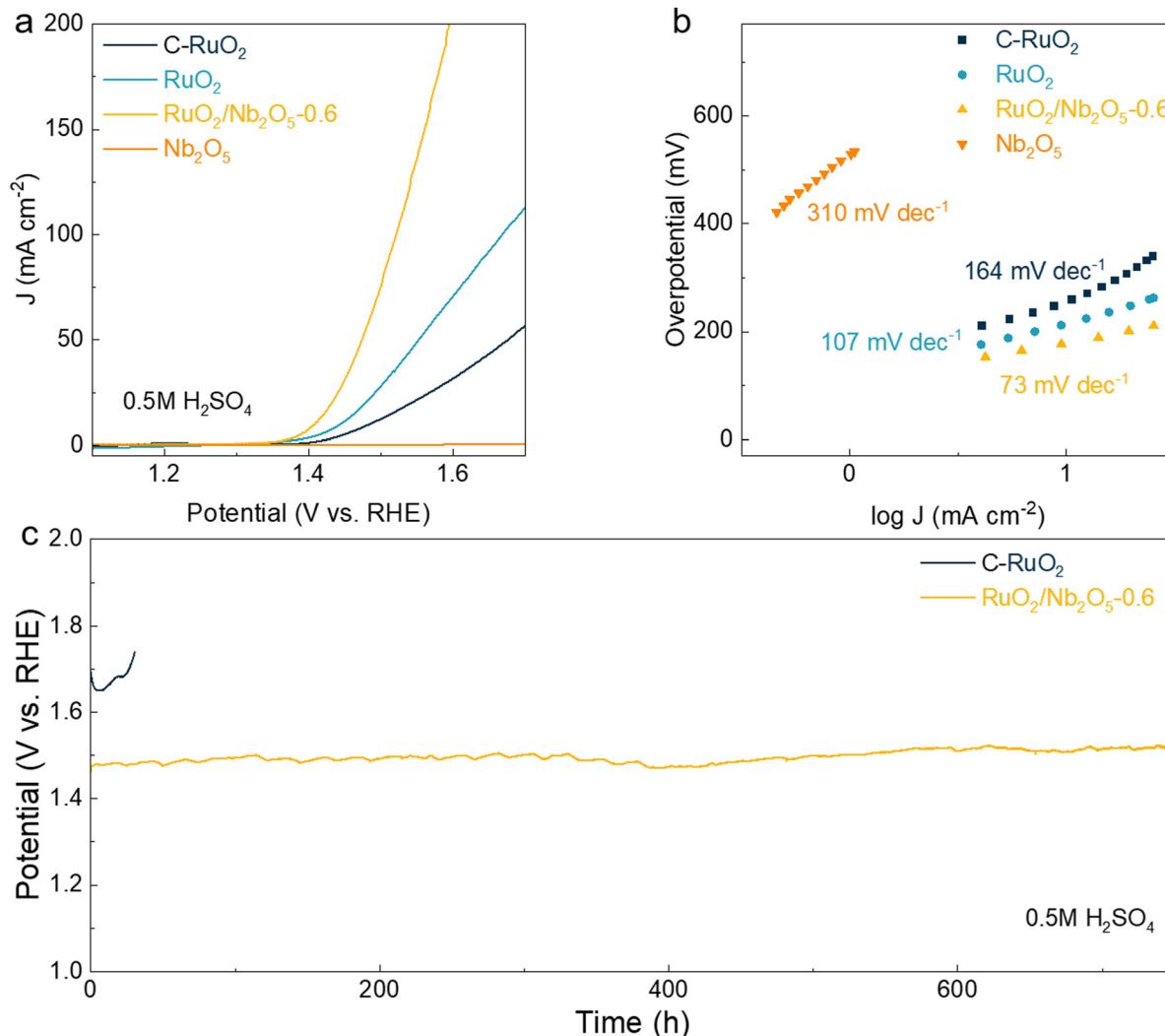



Fig. 2 Catalytic performance of various electrocatalysts in 0.5 M H<sub>2</sub>SO<sub>4</sub> electrolyte. (a) LSV curves of RuO<sub>2</sub>/Nb<sub>2</sub>O<sub>5</sub>-0.6, RuO<sub>2</sub>, C-RuO<sub>2</sub>, and Nb<sub>2</sub>O<sub>5</sub>. (b) Tafel slopes of RuO<sub>2</sub>/Nb<sub>2</sub>O<sub>5</sub>-0.6, RuO<sub>2</sub>, C-RuO<sub>2</sub>, and Nb<sub>2</sub>O<sub>5</sub>. (c) Chronopotentiometry tests of RuO<sub>2</sub>/Nb<sub>2</sub>O<sub>5</sub>-0.6 and C-RuO<sub>2</sub>.

representing an almost sevenfold increase compared to RuO<sub>2</sub> (1.7 s<sup>-1</sup>) and tenfold enhancement in comparison to C-RuO<sub>2</sub> (0.7 s<sup>-1</sup>), as illustrated in Fig. S9a (ESI<sup>†</sup>). Moreover, the mass activity of RuO<sub>2</sub>/Nb<sub>2</sub>O<sub>5</sub>-0.6 was 296 A g<sup>-1</sup> at 1.5 V, surpassing that of RuO<sub>2</sub> (73 A g<sup>-1</sup>) and C-RuO<sub>2</sub> (30 A g<sup>-1</sup>), as depicted in Fig. S9b (ESI<sup>†</sup>). These significantly elevated TOF values and mass activities illustrated the enhanced intrinsic activity of RuO<sub>2</sub>/Nb<sub>2</sub>O<sub>5</sub>-0.6 through the incorporation of Nb<sub>2</sub>O<sub>5</sub>.

The d-band of various catalysts, which was directly related to the strength of interaction between the Ru and guest molecules, was also determined by high-resolution valence-band (VB) XPS spectra. As shown in Fig. S10 (ESI<sup>†</sup>), our findings revealed that the d-band center of RuO<sub>2</sub>/Nb<sub>2</sub>O<sub>5</sub>-0.6 was located at -1.53 eV, positioning it midway between C-RuO<sub>2</sub> (-1.55 eV) and RuO<sub>2</sub> (-1.48 eV). It was noteworthy that the closer proximity of the d-band center to the Fermi level implied a stronger binding strength between the catalyst and the adsorbed intermediates, which could be inconducive to their desorption.<sup>26</sup> Therefore, RuO<sub>2</sub>/Nb<sub>2</sub>O<sub>5</sub>-0.6 showed a balanced adsorption

capacity for these intermediates, ultimately contributing to its high activity.

Stability was another key parameter of electrocatalysts. The chronopotentiometry (CP) test was employed to assess the OER stability of RuO<sub>2</sub>/Nb<sub>2</sub>O<sub>5</sub>-0.6, which exhibited high catalytic durability during a period of 750 h at a constant current density of 10 mA cm<sup>-2</sup> (Fig. 2c). The performance of RuO<sub>2</sub>/Nb<sub>2</sub>O<sub>5</sub>-0.6 was superior to that of the majority of recently reported Ru-based electrocatalysts in acidic electrolytes (Table S3, ESI<sup>†</sup>). Negligible decay was observed for RuO<sub>2</sub>/Nb<sub>2</sub>O<sub>5</sub>-0.6. Based on the results of the ICP-ES tests, the *S*-numbers (*S* = *n*<sub>O<sub>2</sub>/*n*<sub>Ru</sub>) of various catalysts at 10 mA cm<sup>-2</sup> were calculated according to a previous report.<sup>27</sup> Compared to that of C-RuO<sub>2</sub> ( $1.07 \times 10^3$ ), the *S*-number of RuO<sub>2</sub>/Nb<sub>2</sub>O<sub>5</sub>-0.6 was as high as  $3.01 \times 10^5$ , indicating that the dissolution of Ru was significantly suppressed during the long-term operation. Characterization studies on the spent catalysts indicated the preserved structural features of RuO<sub>2</sub>/Nb<sub>2</sub>O<sub>5</sub>-0.6 during the OER (Fig. S11–S13, ESI<sup>†</sup>).</sub>

These results demonstrated the high chemical and structural stability and suppressed Ru dissolution of  $\text{RuO}_2/\text{Nb}_2\text{O}_5$ -0.6 for the acidic OER.

## Chemical state analysis

To understand the influence of Nb on the electronic structures of  $\text{RuO}_2/\text{Nb}_2\text{O}_5$ -0.6 and their roles in the catalytic activity, chemical states of Ru were analyzed by using X-ray photoelectron spectroscopy (XPS, Fig. 3). For  $\text{RuO}_2/\text{Nb}_2\text{O}_5$ -0.6, the peak with a binding energy of 462.6 eV could be categorized as the 3p XPS characteristic peak of  $\text{Ru}^{4+}$ , which was shifted to the lower binding energy by 0.2 eV compared with those of  $\text{RuO}_2$  and C- $\text{RuO}_2$  (at 462.8 eV).<sup>28,29</sup> Niobium 3d XPS spectroscopy showed that the  $\text{RuO}_2/\text{Nb}_2\text{O}_5$ -0.6 shifted to the lower binding energy by 0.5 eV (from 207.1 to 206.6 eV) compared to  $\text{Nb}_2\text{O}_5$ . The fitted deconvolution spectra of Nb contained  $3d_{5/2}$  and  $3d_{3/2}$  peaks in  $\text{Nb}_2\text{O}_5$ , which represented the  $\text{Nb}^{5+}$  states at 207.1 and 209.9 eV, respectively.<sup>30</sup> The  $\text{Nb}^{4+}$  peaks were also observed for  $\text{RuO}_2/\text{Nb}_2\text{O}_5$ -0.6 with a derived  $\text{Nb}^{4+}/\text{Nb}^{5+}$  ratio of 0.92 for  $\text{RuO}_2/\text{Nb}_2\text{O}_5$ -0.6, indicating the presence of abundant oxygen vacancy in the as-synthesized  $\text{RuO}_2/\text{Nb}_2\text{O}_5$ -0.6 electrocatalysts. In addition, the O 1s XPS spectra of various electrocatalysts were deconvoluted into lattice oxygen ( $\text{O}_L$ ), oxygen atoms adjacent to defects ( $\text{O}_V$ ) and hydroxyls ( $\text{O}_H$ ).<sup>31</sup> The binding energy for lattice oxygen of the  $\text{RuO}_2/\text{Nb}_2\text{O}_5$ -0.6 was located at 530 eV, which was shifted towards higher binding energy by 0.5 eV compared to the synthetic  $\text{RuO}_2$  and commercial C- $\text{RuO}_2$  (529.5 eV). The positive shift of the lattice oxygen indicated the transfer of electrons from lattice oxygen to metal sites, which reduced the oxidation state of Ru and Nb. The characteristic peaks located at 530.7 eV and 532.1 eV were attributed to  $\text{O}_V$  and  $\text{O}_H$ , respectively. The proportion of  $\text{O}_H$  of  $\text{RuO}_2/\text{Nb}_2\text{O}_5$ -0.6 ( $\text{O}_H/\text{O}_V = 1.49$ ) was considerably higher than that of commercial C- $\text{RuO}_2$  ( $\text{O}_H/\text{O}_V = 0.94$ ) and  $\text{RuO}_2$  ( $\text{O}_H/\text{O}_V = 1.02$ ).<sup>32</sup> Furthermore, the  $\text{O}_H/\text{O}_V$  value of  $\text{RuO}_2/\text{Nb}_2\text{O}_5$ -0.6 was higher than that of  $\text{RuO}_2/\text{Nb}_2\text{O}_5$ -0.5 (0.68) and  $\text{RuO}_2/\text{Nb}_2\text{O}_5$ -0.7 (1.08). This finding illustrated that the binary electrocatalysts exhibited higher catalytic activity, accompanied by a larger  $\text{O}_H/\text{O}_V$  ratio, among

catalysts with varying amounts of  $\text{Nb}_2\text{O}_5$  introduced (Fig. S14 and Table S4, ESI†). The enhanced hydroxyl adsorption with defects at the active sites modulated the adsorption energy of the oxygen intermediates and enhanced the catalytic activity and stability of  $\text{RuO}_2/\text{Nb}_2\text{O}_5$ -0.6.

## Catalytic mechanism

To investigate the reaction mechanism of the binary  $\text{RuO}_2/\text{Nb}_2\text{O}_5$  electrocatalysts, the pH-dependent tests of various catalysts were performed and compared (Fig. 4a). In contrast to the coupled proton–electron transfer step in the AEM pathway of bare  $\text{RuO}_2$  with good crystallinity, the LOM pathway breaks this scaling relationship, where the proton transfer step becomes the potential-determining step (PDS).<sup>33</sup> Therefore, the pH-dependent kinetics of  $\text{RuO}_2/\text{Nb}_2\text{O}_5$ -0.6 sufficiently reflected the participation of lattice oxygen in the OER procedure, indicating the LOM pathway for the OER. When the relationship was further compared at 1.5 V, a linear relationship was fitted by a linear fit between the logarithm of the current density and the pH values. The proton reaction orders derived from the slope ( $\rho = (\partial(\log i)/\partial\text{pH})_E$ ) were 0.8 and 0.4 for  $\text{RuO}_2/\text{Nb}_2\text{O}_5$  and C- $\text{RuO}_2$ , respectively, confirming the dominant LOM pathway of  $\text{RuO}_2/\text{Nb}_2\text{O}_5$ -0.6 for the acidic OER.<sup>34</sup> In order to probe the PDS of the binary electrocatalysts, isotope experiments with 0.5 M  $\text{H}_2\text{SO}_4$  in the  $\text{H}_2\text{O}$  and  $\text{D}_2\text{O}$  as solvents were performed. The Tafel slope of  $\text{RuO}_2/\text{Nb}_2\text{O}_5$  significantly increased from 84 mV  $\text{dec}^{-1}$  in  $\text{H}_2\text{O}$  to 142 mV  $\text{dec}^{-1}$  in  $\text{D}_2\text{O}$ , suggesting that the deprotonation process was PDS of the binary catalysts,<sup>35</sup> while the Tafel slopes of the commercial  $\text{RuO}_2$  showed a minor change for the isotope experiments, indicating that the AEM pathway was dominant (Fig. 4b).

To further reveal the OER reaction mechanism of the binary catalysts, *operando* Fourier transform infrared (FTIR) spectroscopy was employed to monitor the reaction intermediates. When the applied potential exceeded the reaction onset potential of the C- $\text{RuO}_2$  electrocatalysts ( $> 1.3$  V), a pair of the distinguishable absorption peaks located at  $1050\text{ cm}^{-1}$  and  $1150\text{ cm}^{-1}$  were observed (Fig. 4c). The pair absorption peaks were identified as



Fig. 3 XPS spectroscopies of catalysts. (a) Ru 3p XPS spectra of  $\text{RuO}_2/\text{Nb}_2\text{O}_5$ -0.6,  $\text{RuO}_2$ , C- $\text{RuO}_2$ . (b) Nb 3d XPS spectra of  $\text{RuO}_2/\text{Nb}_2\text{O}_5$ -0.6,  $\text{Nb}_2\text{O}_5$ . (c) O 1s XPS spectra of  $\text{RuO}_2/\text{Nb}_2\text{O}_5$ -0.6,  $\text{RuO}_2$ , C- $\text{RuO}_2$ .

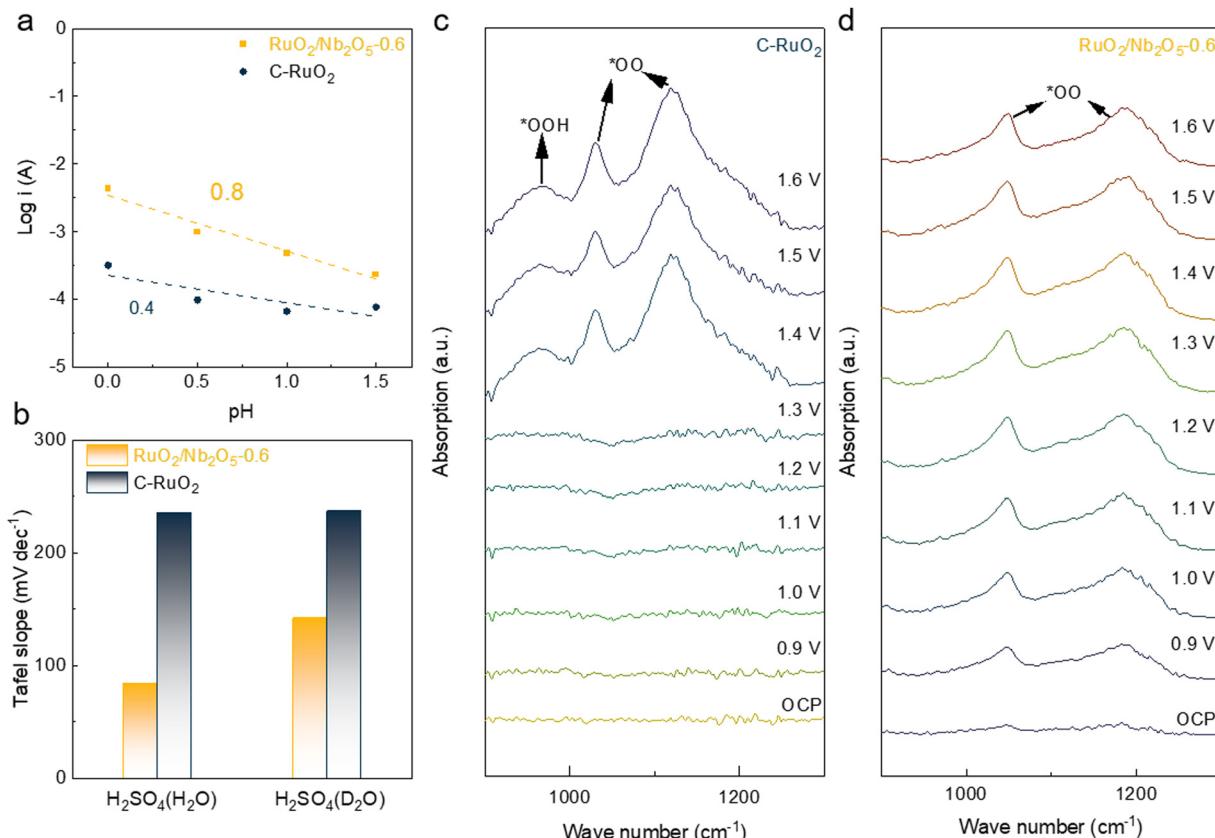



Fig. 4 Electrochemical mechanism tests of catalysts. (a) Current densities of RuO<sub>2</sub>/Nb<sub>2</sub>O<sub>5</sub>-0.6 and C-RuO<sub>2</sub> at 1.5 V versus RHE as a function of the pH values of electrolytes. (b) Comparison of RuO<sub>2</sub>/Nb<sub>2</sub>O<sub>5</sub>-0.6 and C-RuO<sub>2</sub> in 0.5 M H<sub>2</sub>SO<sub>4</sub>, where H<sub>2</sub>O or D<sub>2</sub>O was used as the solvent. (c) Operando FTIR spectra recorded in the potential range of 0.9–1.6 V vs. RHE for C-RuO<sub>2</sub>. (d) Operando FTIR spectra recorded in the potential range of 0.9–1.6 V vs. RHE for RuO<sub>2</sub>/Nb<sub>2</sub>O<sub>5</sub>-0.6.

OO\*, which was an intermediate prior to the release of oxygen in the LOM approach. Generally, the absorption peak at 948 cm<sup>-1</sup> was attributed to OOH\* as a reaction intermediate in the AEM.<sup>7</sup> The dynamically enhanced peak intensity was observed, suggesting that the increase in the applied potential accelerated the generation of the reaction intermediates. The presence of the absorption peaks of OOH\* and OO\* in the C-RuO<sub>2</sub> catalysts was attributed to the coexistence of the LOM pathway and the AEM pathway in the acidic OER (Fig. 4c). However, only OO\* adsorption peaks located at 1050 cm<sup>-1</sup> and 1180 cm<sup>-1</sup> were detected in the FTIR spectra of RuO<sub>2</sub>/Nb<sub>2</sub>O<sub>5</sub>-0.6, suggesting that the catalytic pathway of the binary electrocatalysts was dominated by the LOM pathway for the acidic OER (Fig. 4d). The observation of OO\* peaks at a lower potential of 0.9 V suggested high catalytic OER performance of the binary electrocatalysts with more reactive intermediates generated on the surface of RuO<sub>2</sub>/Nb<sub>2</sub>O<sub>5</sub>-0.6. It has been widely recognized that surface Ru species of RuO<sub>2</sub> are converted to the higher oxidation state through the LOM pathway for the acidic OER, therefore leading to the formation of the soluble ruthenium species and subsequent decay of catalytic activity.

Next, the charge transfer that occurred between catalyst surfaces and electrolyte was investigated by electrochemical impedance spectroscopy (EIS) to understand the roles of Nb incorporated with RuO<sub>2</sub> for enhanced catalytic stability as well

as activity. The Bode point plots of RuO<sub>2</sub>/Nb<sub>2</sub>O<sub>5</sub>-0.6 and commercial C-RuO<sub>2</sub> with potentials from 1.1 V to 1.6 V are shown in Fig. S15 (ESI†), respectively. The characteristic peaks in the high frequency region (10<sup>1</sup>–10<sup>3</sup> Hz) were attributed to the surface oxidation of the catalyst. The characteristic peaks in the low-frequency region (10<sup>-1</sup>–10<sup>1</sup> Hz) reflected the adsorption of reaction intermediates on the surface of the catalyst.<sup>36</sup> For the C-RuO<sub>2</sub> catalysts, the phase angle decreased slowly in the low-frequency range with increasing potential, indicating that C-RuO<sub>2</sub> had insufficient capacity to adsorb intermediates<sup>37,38</sup> whereas the significantly decreased phase angle of RuO<sub>2</sub>/Nb<sub>2</sub>O<sub>5</sub>-0.6 in the low frequency region suggested that the binary electrocatalysts showed less resistance to adsorb intermediates at the same voltage. The peak shape of C-RuO<sub>2</sub> significantly changed over 1.4 V, suggesting the unstable surface of C-RuO<sub>2</sub> with the increased potentials. In contrast, the barely changed characteristic peaks of RuO<sub>2</sub>/Nb<sub>2</sub>O<sub>5</sub>-0.6 in the high-frequency region with the increased potentials revealed more stable surface oxidation states of Ru at higher potentials. The comparative results demonstrated high catalytic activity and stability of the binary RuO<sub>2</sub>/Nb<sub>2</sub>O<sub>5</sub>-0.6 electrocatalysts for the acidic OER.

To further elucidate the enhanced catalyst stability, CV curves were recorded to examine the oxidation states of the surface Ru species during the acidic OER (Fig. 5a). Two sets of

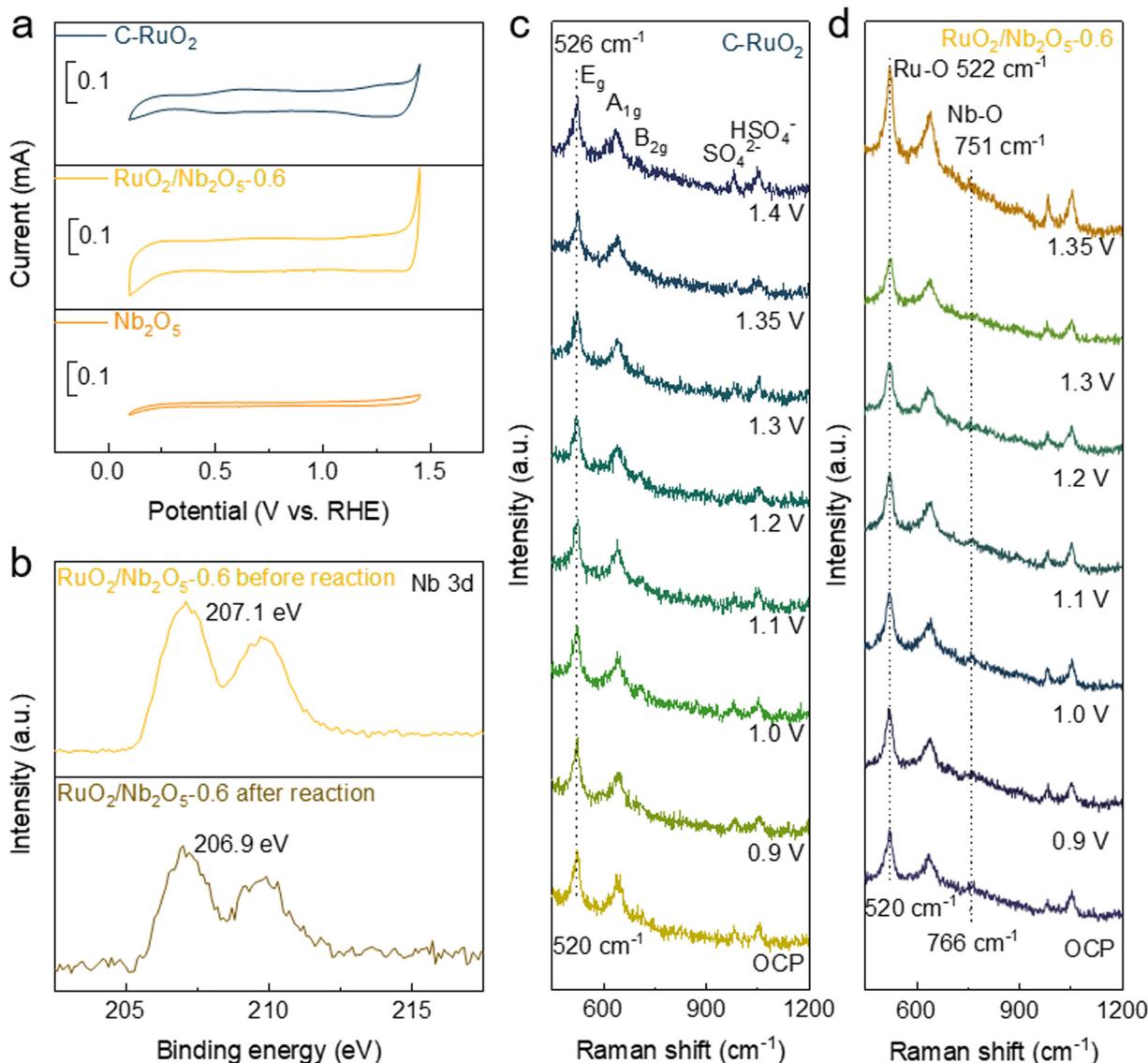



Fig. 5 Electrochemical stability analysis and evidence of oxygen spillover phenomena. (a) CV curves of RuO<sub>2</sub>/Nb<sub>2</sub>O<sub>5</sub>-0.6, Nb<sub>2</sub>O<sub>5</sub> and C-RuO<sub>2</sub> measured from 0.1 to 1.45 V vs. RHE. (b) Nb 3d XPS spectra of RuO<sub>2</sub>/Nb<sub>2</sub>O<sub>5</sub>-0.6 before and after the stability test. Operando Raman spectra recorded in the potential range of 0.9–1.4 V vs. RHE for (c) C-RuO<sub>2</sub> and (d) RuO<sub>2</sub>/Nb<sub>2</sub>O<sub>5</sub>-0.6.

redox peaks located around 0.6 V and 1.25 V were observed for the C-RuO<sub>2</sub> electrocatalysts, which represented Ru<sup>3+/4+</sup> and Ru<sup>4+/6+</sup> redox pairs, respectively.<sup>39</sup> Thus, the surface Ru species of C-RuO<sub>2</sub> could be oxidized into high valent Ru species, leading to the serious over-oxidation of catalysts and formation of soluble Ru species during the acidic OER.<sup>40</sup> Thus, it's not surprising to observe the poor catalytic stability of C-RuO<sub>2</sub>. Comparatively, only the redox peaks of Ru<sup>3+/4+</sup> was observed for RuO<sub>2</sub>/Nb<sub>2</sub>O<sub>5</sub>-0.6, indicating that the introduction of Nb effectively inhibited the over-oxidation of Ru in the catalyst and stabilized the binary electrocatalysts for the acidic OER. Afterwards, the chemical states of two catalysts before and after the acidic OER were analyzed by XPS. For the RuO<sub>2</sub>/Nb<sub>2</sub>O<sub>5</sub>-0.6 catalyst, the binding energy of Ru 3p barely changed after 10 h of reaction at a current density of 10 mA cm<sup>-2</sup>. In contrast, the Ru 3p binding energy of C-RuO<sub>2</sub> increased from 462.8 eV of

the fresh electrocatalysts to 463 eV of the spent ones, indicating the over-oxidation of Ru species of C-RuO<sub>2</sub> (Fig. S16, ESI†). As shown in the XPS spectra of Nb 3d of RuO<sub>2</sub>/Nb<sub>2</sub>O<sub>5</sub>-0.6 before and after the acidic OER, the peaks of Nb were negatively shifted by 0.2 eV, suggesting the formation of oxygen vacancies at the Nb site (Fig. 5b).<sup>41</sup> The electron transfer pathway in the LOM was based on a redox-catalyzed reaction of oxygen, in which lattice oxygen was electrochemically activated in the form of released oxygen intermediates, following the pathway OH<sup>-</sup>-(OO)<sup>2-</sup>-O<sub>2</sub>, essentially a hybridization of neighbouring non-bonded oxygen atoms (O<sup>-</sup>), with no transfer of electrons to the external circuit.<sup>42</sup> Thus, it's logical to predict the occurrence of spillover of O<sup>\*</sup> intermediates from RuO<sub>2</sub> to Nb<sub>2</sub>O<sub>5</sub> and the participation of lattice oxygen in Nb<sub>2</sub>O<sub>5</sub> for the acidic OER, like in the previous reports.<sup>18</sup> In this way, the OO<sup>\*</sup> intermediate was formed on Nb<sub>2</sub>O<sub>5</sub> instead of RuO<sub>2</sub> for the steps of the release of

oxygen, generation of oxygen vacancies and rehabilitation of lattice oxygen. Therefore, the over-oxidation and dissolution of surface Ru species of the binary  $\text{RuO}_2/\text{Nb}_2\text{O}_5$  electrocatalysts could be suppressed, which was consistent with the EIS profile (Fig. S15, ESI<sup>†</sup>) and CV results (Fig. 5a).

To investigate the potential of oxygen spillover in the binary electrocatalysts, oxygen temperature-programmed desorption ( $\text{O}_2$ -TPD) profiles were recorded for  $\text{Nb}_2\text{O}_5$  and  $\text{RuO}_2$  (Fig. S17, ESI<sup>†</sup>).<sup>43</sup> The desorption peak of oxygen from  $\text{RuO}_2$  was observed at a significantly higher temperature of 431 °C compared to 303 °C for  $\text{Nb}_2\text{O}_5$ , suggesting that  $\text{RuO}_2$  requires more energy for  $\text{O}_2$  desorption than  $\text{Nb}_2\text{O}_5$ . The  $\text{O}_2$ -TPD results indicated that the formation of oxygen vacancies on  $\text{Nb}_2\text{O}_5$  was more facile than  $\text{RuO}_2$ . Based on these findings, the thermodynamic feasibility of oxygen spillover involving the transfer of intermediate  $\text{O}^*$  species from  $\text{RuO}_2$  to  $\text{Nb}_2\text{O}_5$  and the participation of lattice oxygen in  $\text{Nb}_2\text{O}_5$  for the acidic OER, was established.

To experimentally confirm the occurrence of oxygen spillover, *in situ* Raman spectroscopy was used to dynamically monitor the surface M–O species of the  $\text{RuO}_2/\text{Nb}_2\text{O}_5$ -0.6 and C- $\text{RuO}_2$  catalysts at different external potentials. The characteristic peaks of Ru–O in C- $\text{RuO}_2$  were located at 520  $\text{cm}^{-1}$ , 640  $\text{cm}^{-1}$  and 705  $\text{cm}^{-1}$ , which represented the  $E_g$ ,  $A_{1g}$  and  $B_{2g}$  vibrational modes of Ru–O, respectively (Fig. 5c).<sup>22,44</sup> Since the characteristic peak of  $E_g$  was more obvious and the peak position was easier to be distinguished, the characteristic  $E_g$  peak of Ru–O of C- $\text{RuO}_2$  was mainly analyzed. As shown in Fig. 5c, the  $E_g$  peak of C- $\text{RuO}_2$  gradually shifted to the higher wavenumber by 6  $\text{cm}^{-1}$  (from 520  $\text{cm}^{-1}$  to 526  $\text{cm}^{-1}$ ) with the increased external applied voltage from the open-circuit potential to 1.6 V, indicating that the surface Ru–O bonds in C- $\text{RuO}_2$  were gradually compressed and the valence state of Ru was elevated progressively with the increased potentials.<sup>45</sup> As for  $\text{RuO}_2/\text{Nb}_2\text{O}_5$ -0.6, the characteristic peak of Ru–O was barely shifted with the increased potential, whereas the characteristic

peak of Nb–O showed a redshift of 15  $\text{cm}^{-1}$  (from 766  $\text{cm}^{-1}$  to 751  $\text{cm}^{-1}$ ), indicating the significantly stretched Nb–O of the binary electrocatalysts (Fig. 5d).<sup>17</sup> The reduced oxidation state of Nb combined with the LSV and CV curves showed that Nb suppressed the elevation of the oxidation state of Ru during the oxygen evolution reaction through the modification of bonding with oxygen. Therefore, compared to C- $\text{RuO}_2$ , the over-oxidation of Ru in  $\text{RuO}_2/\text{Nb}_2\text{O}_5$ -0.6 was noticeably suppressed, leading to the stabilized surface Ru species. Significantly, as the circuit was disconnected after applying 1.6 V for a period of time, the characteristic  $E_g$  peak of Ru–O in  $\text{RuO}_2/\text{Nb}_2\text{O}_5$ -0.6 gradually recovered to the initial state (522  $\text{cm}^{-1}$ ). Compared with the pristine binary electrocatalyst, the characteristic Raman peak of Nb–O also gradually restored to the same position before the reaction (763  $\text{cm}^{-1}$ , Fig. S18, ESI<sup>†</sup>). These shifts further illustrated the structural stability of  $\text{RuO}_2/\text{Nb}_2\text{O}_5$ -0.6 in the acidic OER. Combined with the results of CV curves, XPS and *in situ* FT-IR, *in situ* Raman spectra strongly suggested the reactive oxygen species spilled over from  $\text{RuO}_2$  to  $\text{Nb}_2\text{O}_5$ , consistent with the preserved  $E_g$  of Ru–O and shifted 15  $\text{cm}^{-1}$  of Nb–O in the binary  $\text{RuO}_2/\text{Nb}_2\text{O}_5$  electrocatalysts.

Based on all of the above analysis and experimental evidence, a catalytic pathway is proposed for  $\text{RuO}_2/\text{Nb}_2\text{O}_5$ -0.6 with high catalytic activity and stability through the LOM pathway (Fig. 6). Initially, water molecules are absorbed and activated on the surface Ru sites of the binary electrocatalysts to generate  $\text{OH}^*$  species. After the deprotonation of  $\text{OH}^*$ , the  $\text{O}^*$  intermediates spill over from Ru sites to Nb sites. With the participation of the lattice oxygen of  $\text{Nb}_2\text{O}_5$ ,  $\text{OO}^*$  intermediates are formed on Nb sites, followed by the release of  $\text{O}_2$  associated with the generation of oxygen vacancies and rehabilitation of lattice oxygen on  $\text{Nb}_2\text{O}_5$ . Such a catalytic pathway of  $\text{RuO}_2/\text{Nb}_2\text{O}_5$  effectively suppresses the over-oxidation of Ru species and avoids the formation of soluble high valent Ru species, leading to the high catalytic activity and stability for the acidic OER despite undergoing the LOM mechanism.

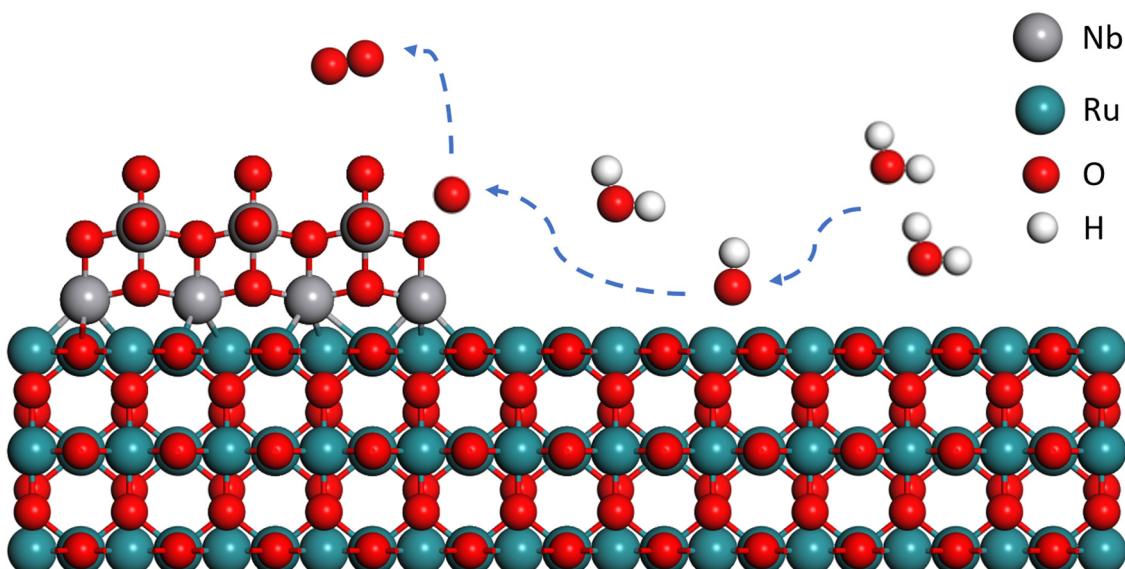



Fig. 6 Schematic overview of the proposed oxygen spillover for the OER on the surface of  $\text{RuO}_2/\text{Nb}_2\text{O}_5$ -0.6 catalysts.

## Conclusions

In summary, we presented the highly active and robust binary  $\text{RuO}_2/\text{Nb}_2\text{O}_5$  electrocatalysts for the acidic OER, delivering a low overpotential of 176 mV at 10 mA cm<sup>-2</sup> and a high stability of at least 750 h in 0.5 M  $\text{H}_2\text{SO}_4$ . Incorporation of  $\text{Nb}_2\text{O}_5$  with  $\text{RuO}_2$  enabled the spillover of active  $\text{O}^*$  intermediate from  $\text{RuO}_2$  to  $\text{Nb}_2\text{O}_5$ . Thus, the participation of lattice oxygen of  $\text{Nb}_2\text{O}_5$  instead of  $\text{RuO}_2$  gave the  $\text{OO}^*$  intermediate for the release of oxygen, which effectively inhibited the over-oxidation of surface Ru species and thereby significantly improved the catalytic stability of the binary electrocatalysts. Extensive experimental investigations verified the proposed oxygen spillover reaction pathway for the enhanced catalytic performance of the binary electrocatalysts. This work provided seminal insights into solving the stability problem of Ru-based catalysts and offered a methodology for the rational design of high performance electrocatalysts for the acidic OER.

## Data availability

The data supporting this article have been included as part of the ESI.†

## Conflicts of interest

The authors declare no competing financial interest.

## Acknowledgements

The authors acknowledge the Basic and Applied Basic Research Foundation of Guangdong Province (2023A1515012288) and the Fundamental Research Funds for the Central Universities (D5000210829). Yongquan Qu acknowledges the Fundamental Research Funds for the Central Universities (D5000210601).

## References

- Q. Wang, Y. Cheng, H. B. Tao, Y. Liu, X. Ma, D. S. Li, H. B. Yang and B. Liu, *Angew. Chem., Int. Ed.*, 2023, **62**, e202216645.
- L. Li, G. Zhang, C. Zhou, F. Lv, Y. Tan, Y. Han, H. Luo, D. Wang, Y. Liu, C. Shang, L. Zeng, Q. Huang, R. Zeng, N. Ye, M. Luo and S. Guo, *Nat. Commun.*, 2024, **15**, 4974.
- X. Rong, J. Parolin and A. M. Kolpak, *ACS Catal.*, 2016, **6**, 1153–1158.
- L. Li, P. Wang, Q. Shao and X. Huang, *Adv. Mater.*, 2021, **33**, 2004243.
- C. Roy, R. R. Rao, K. A. Stoerzinger, J. Hwang, J. Rossmeisl, I. Chorkendorff, Y. Shao-Horn and I. E. L. Stephens, *ACS Energy Lett.*, 2018, **3**, 2045–2051.
- N. Hodnik, P. Jovanović, A. Pavlišić, B. Jozinović, M. Zorko, M. Bele, V. S. Šelih, M. Šala, S. Hočevar and M. Gaberšček, *J. Phys. Chem. C*, 2015, **119**, 10140–10147.
- C. Lin, J.-L. Li, X. Li, S. Yang, W. Luo, Y. Zhang, S.-H. Kim, D.-H. Kim, S. S. Shinde, Y.-F. Li, Z.-P. Liu, Z. Jiang and J.-H. Lee, *Nat. Catal.*, 2021, **4**, 1012–1023.
- R. Y. Fan, Y. S. Zhang, J. Y. Lv, G. Q. Han, Y. M. Chai and B. Dong, *Small*, 2024, **20**, e2304636.
- L. Zhou, Y. Shao, F. Yin, J. Li, F. Kang and R. Lv, *Nat. Commun.*, 2023, **14**, 7644.
- Z. Niu, Z. Lu, Z. Qiao, S. Wang, X. Cao, X. Chen, J. Yun, L. Zheng and D. Cao, *Adv. Mater.*, 2024, **36**, 2310690.
- W. Gou, Y. Wang, M. Zhang, X. Tan, Y. Ma and Y. Qu, *Chin. J. Catal.*, 2024, **60**, 68–106.
- Z. Feng, C. Dai, P. Shi, X. Lei, R. Guo, B. Wang, X. Liu and J. You, *Chem. Eng. J.*, 2024, **485**, 149992.
- Z. Wang, W. A. Goddard and H. Xiao, *Nat. Commun.*, 2023, **14**, 4228.
- Y. Wu, R. Yao, Q. Zhao, J. Li and G. Liu, *Chem. Eng. J.*, 2022, **439**, 135699.
- Y. Xue, J. Fang, X. Wang, Z. Xu, Y. Zhang, Q. Lv, M. Liu, W. Zhu and Z. Zhuang, *Adv. Funct. Mater.*, 2021, **31**, 2101405.
- J. Wang, C. Cheng, Q. Yuan, H. Yang, F. Meng, Q. Zhang, L. Gu, J. Cao, L. Li, S.-C. Haw, Q. Shao, L. Zhang, T. Cheng, F. Jiao and X. Huang, *Chem.*, 2022, **8**, 1673–1687.
- Z. Shi, J. Li, J. Jiang, Y. Wang, X. Wang, Y. Li, L. Yang, Y. Chu, J. Bai, J. Yang, J. Ni, Y. Wang, L. Zhang, Z. Jiang, C. Liu, J. Ge and W. Xing, *Angew. Chem., Int. Ed.*, 2022, **61**, e202212341.
- W. Gou, S. Zhang, Y. Wang, X. Tan, L. Liao, Z. Qi, M. Xie, Y. Ma, Y. Su and Y. Qu, *Energy Environ. Sci.*, 2024, **17**, 6755–6765.
- X. Tan, M. Zhang, D. Chen, W. Li, W. Gou, Y. Qu and Y. Ma, *Small*, 2023, **19**, e2303249.
- J. Okal and M. Zawadzki, *Appl. Catal., B*, 2009, **89**, 22–32.
- K. V. K. Rao and L. Iyengar, *Acta Crystallogr., Sect. A*, 1969, **25**, 302–303.
- A. V. Korotcov, Y. S. Huang, K. K. Tiong and D. S. Tsai, *J. Raman Spectrosc.*, 2007, **38**, 737–749.
- A. L. Paulsen, F. Borup, R. W. Berg and S. Boghosian, *J. Phys. Chem. A*, 2010, **114**, 7485–7493.
- M.-R. Gao, M. K. Y. Chan and Y. Sun, *Nat. Commun.*, 2015, **6**, 7493.
- J. Chen, G. Liu, Y.-Z. Zhu, M. Su, P. Yin, X.-J. Wu, Q. Lu, C. Tan, M. Zhao, Z. Liu, W. Yang, H. Li, G.-H. Nam, L. Zhang, Z. Chen, X. Huang, P. M. Radjenovic, W. Huang, Z.-Q. Tian, J.-F. Li and H. Zhang, *J. Am. Chem. Soc.*, 2020, **142**, 7161–7167.
- J. He, X. Zhou, P. Xu and J. Sun, *Adv. Energy Mater.*, 2021, **11**, 2102883.
- S. Geiger, O. Kasian, M. Ledendecker, E. Pizzutilo, A. M. Mingers, W. T. Fu, O. Diaz-Morales, Z. Li, T. Oellers, L. Fruchter, A. Ludwig, K. J. J. Mayrhofer, M. T. M. Koper and S. Cherevko, *Nat. Catal.*, 2018, **1**, 508–515.
- P. Singh and M. S. Hegde, *Chem. Mater.*, 2009, **21**, 3337–3345.
- J. Fu, K. Yang, C. Ma, N. Zhang, H. Gai, J. Zheng and B. H. Chen, *Appl. Catal., B*, 2016, **184**, 216–222.
- K. Islam, R. Sultana, B. Satpati and S. Chakraborty, *Vacuum*, 2022, **195**, 110675.
- Y. Zhang, Y. Zhang, Z. Zeng and D. Ho, *Mater. Horiz.*, 2023, **10**, 2904–2912.

32 H. Liu, Z. Zhang, J. Fang, M. Li, M. G. Sendeku, X. Wang, H. Wu, Y. Li, J. Ge, Z. Zhuang, D. Zhou, Y. Kuang and X. Sun, *Joule*, 2023, **7**, 558–573.

33 N. Zhang and Y. Chai, *Energy Environ. Sci.*, 2021, **14**, 4647–4671.

34 D. Antipin and M. Risch, *Electrochem. Sci. Adv.*, 2023, **3**, e2100213.

35 W. Li, F. Li, H. Yang, X. Wu, P. Zhang, Y. Shan and L. Sun, *Nat. Commun.*, 2019, **10**, 5074.

36 W. Gou, Z. Xia, X. Tan, Q. Xue, F. Ye, S. Dai, M. Zhang, R. Si, Y. Zou, Y. Ma, J. C. Ho and Y. Qu, *Nano Energy*, 2022, **104**, 107960.

37 R. Šimpraga, G. Tremiliosi-Filho, S. Y. Qian and B. E. Conway, *J. Electroanal. Chem.*, 1997, **424**, 141–151.

38 B. Zhou, Y. Li, Y. Zou, W. Chen, W. Zhou, M. Song, Y. Wu, Y. Lu, J. Liu, Y. Wang and S. Wang, *Angew. Chem., Int. Ed.*, 2021, **60**, 22908–22914.

39 N. Cong, Y. Han, L. Tan, C. Zhai, H. Chen, J. Han, H. Fang, X. Zhou, Y. Zhu and Z. Ren, *J. Electroanal. Chem.*, 2021, **881**, 114955.

40 K. Klyukin, A. Zagalskaya and V. Alexandrov, *J. Phys. Chem. C*, 2019, **123**, 22151–22157.

41 K. K. Rahangdale and S. Ganguly, *Phys. B*, 2022, **626** 413570.

42 X. Wang, H. Zhong, S. Xi, W. S. V. Lee and J. Xue, *Adv. Mater.*, 2022, **34**, 2107956.

43 Y. Wang, J. Wu, G. Wang, D. Yang, T. Ishihara and L. Guo, *Appl. Catal., B*, 2021, **285**, 119873.

44 Y. S. Huang and F. H. Pollak, *Solid State Commun.*, 1982, **43**, 921–924.

45 A. Rahman, S. Mondal, M. Modak, A. Singh, N. S. Thayat, H. Singh, J. K. Clegg, H. K. Poswal, V. Haridas and S. P. Thomas, *Small*, 2024, 2402120.