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The impact of diabetes on global health is increasing, underscoring the

need for early and accurate diagnosis to prevent severe complications.

Nevertheless, conventional diagnostic approaches, such as glycated

hemoglobin testing and oral glucose tolerance tests, often lack

sensitivity or specificity, particularly for detecting the disease at an

early stage. In this exploratory clinical study, we present a promising

alternative, label-free surface-enhanced Raman spectroscopy (SERS),

which enables rapid, non-invasive biochemical analysis of liquid

samples. Using gold nanoparticles as substrates, we applied label-free

SERS to clinical serum samples for diabetes diagnosis. Because label-

free SERS analysis of biological samples yields complex spectra, we

developed a machine learning workflow tailored to clinical samples,

exploring four different machine learning models in combination with

synthetic data augmentation. This approach achieved classification

accuracies of 96% and 94% for the healthy and diabetes groups,

respectively. Our results demonstrate the benefits of integrating label-

free SERS andmachine learningmodels for efficient, accurate diabetes

diagnosis via liquid biopsy, offering a powerful tool to enhance

detection and potentially improve patient outcomes worldwide.
1 Introduction

Diabetes is a group of metabolic disorders marked by high
blood sugar levels (hyperglycemia) due to insufficient insulin
production or impaired insulin action.1 537 million people aged
20 to 79 years old had diabetes in 2021 worldwide, and this
number is expected to rise to 783 million by 2045.2 Chronic
hyperglycemia is associated with long-term damage,
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dysfunction, and failure of several organs, including the eyes,
kidneys, and heart.3 Diabetes is classied into type 1 and type 2.
The former is caused by the autoimmune destruction of b-cells,
which usually leads to complete insulin deciency, while the
latter results from a progressive decline in b-cell insulin secre-
tion, oen occurring alongside insulin resistance.4,5

Early and accurate diagnosis of diabetes is essential to
prevent complications, such as cardiovascular disease, kidney
failure, and retinopathy, which can lead to disability or
premature death.6 However, the effectiveness of the most
frequently used diagnostic assays, namely glycated hemoglobin
(HbA1c) and fasting plasma glucose (FPG) tests, which measure
blood glucose levels, is limited. For example, HbA1c and FPG
tests can present sensitivities below 60% for diabetes diagnosis,
depending on the patient cohort.7 Moreover, they are inade-
quate to detect diabetes at an early stage.8 Alternative protocols
based on enzyme-linked immunosorbent assays and mass
spectrometry, which detect other biomarkers, such as insulin,
C-peptide, adiponectin, and inammatory cytokines, have been
explored for the diagnosis of diabetes; however, they are
intensive in cost and time.9–11 Therefore, there is a real medical
need for developing a novel approach to diagnose diabetes with
high sensitivity and specicity, while being affordable, rapid,
and straightforward.

Raman spectroscopy is a non-invasive analytical method that
provides extensive information about the structure and
composition of biomolecules.12,13 Raman spectroscopy is known
for its ability to generate molecular ngerprints of analytes, and
has been extensively used to investigate biological materials,
such as the molecular composition of plasma samples.14,15

Nevertheless, Raman spectroscopy relies on the inelastic scat-
tering of photons, which is very inefficient, yielding weak
signals and low sensitivities.16 The signal intensity in Raman
spectroscopy can be amplied by placing the analytes in the
near elds of plasmonic materials.17,18 For example, gold
nanoparticles (AuNPs) can enhance the Raman intensities of
molecules located at their surface by more than 108-fold.19 This
approach is known as surface-enhanced Raman spectroscopy
(SERS) and can achieve limits of detection in the zeptomole
© 2025 The Author(s). Published by the Royal Society of Chemistry
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range and (even) single-molecule detection.20,21 Notably, water
does not interfere with SERS measurements, which are quick,
only requiring a few seconds to record a full spectrum. As
a result, SERS has been widely exploited to analyze environ-
mental, chemical, pharmaceutical, and medical samples.22

Most SERS approaches rely on the use of Raman tags and tar-
geting agents to selectively detect specic analytes. Neverthe-
less, label-free protocols, where SERS is used to probe whole
samples rather than characterizing a specic analyte, are gain-
ing momentum, particularly in biomedicine. For example,
label-free SERS has been employed to identify and discriminate
protein biomarkers and disease-associated pathogens.23–26

Although label-free SERS protocols are quick and affordable,
they result in complex Raman spectra, which are very hard to
discern and interpret when the analyzed samples have complex
compositions, such as liquid biopsy samples. Furthermore,
most label-free SERS methods rely on highly rened gold
substrates obtained through nanofabrication techniques,
which improve measurement reliability but limit widespread
use.27 While colloidal AuNPs do allow SERS measurements, they
tend to yield spectra with smaller intensities, challenging the
analysis and classication of complex samples based on spec-
troscopical features.28,29 Developing methods that can provide
robust diagnostic information with AuNPs would be highly
advantageous, since they can be easily synthesized via colloidal
one-pot protocols, even in low-resource environments. Hence,
analysis methods are necessary to identify spectral character-
istics that can discriminate samples and obtain diagnostic
information from label-free SERS biosensing with colloidal
AuNPs.

Machine learning (ML) is becoming a fundamental tool in
biosensing and diagnosing large datasets, identifying patterns
and relationships between healthy and disease groups, and
predicting patient conditions.30 For example, random forest
algorithms have been used to analyze gene expression data,
identifying gene signatures linked to various cancer types and
highlighting sequence candidates found in circulating tumor
DNA for liquid biopsy-based diagnosis.31 ML models have also
been used to handle single-cell sequencing data32 and to detect
patterns in immune cell populations and cytokine levels for
more accurate classication of autoimmune conditions,
improving patient outcomes through timely interventions.33

Moreover, ML has expanded the functionality of Raman spec-
troscopy, providing information otherwise inaccessible due to
sample complexity, such as label-free single-cell analysis and
incubation-free determination of tuberculosis drug resistance
strains.34,35 Because the sample size denes the prediction
quality of ML during the training phase, data augmentation
strategies are oen necessary to overcome the limitations of
data scarcity.36–38 In the context of assessing diabetes using
SERS liquid biopsy, we hypothesized that ML algorithms
combined with data augmentation could identify spectral
characteristics to obtain clinically relevant diagnostic informa-
tion with AuNPs.

In this study, we demonstrate that integrating label-free
SERS and ML models can be used to accurately diagnose dia-
betes with serum samples of patients. Augmentation with
© 2025 The Author(s). Published by the Royal Society of Chemistry
synthetic data improved the performance across the different
models, reaching classication accuracies up to 96% and 94%
for the healthy and diabetic groups, respectively. This work
offers a new approach to rapidly diagnose diabetes, as well as
potentially other metabolic diseases.

2 Experimental section
2.1 Synthesis of AuNPs

AuNPs were synthesized using the Turkevich method, a widely
used procedure for producing colloidal gold through the
chemical reduction of gold salts with trisodium citrate (99%
Na3C6H5O7, Sigma-Aldrich, USA).39–43 First, hydrogen tetra-
chloroaurate (99% HAuCl4, Sigma-Aldrich, USA), the gold
precursor, was dissolved in 20 mL of deionized water to create
a 1 mM gold salt solution. Meanwhile, 12.5 mg of trisodium
citrate, serving as a reducing and capping agent, was dissolved
in 50 mL of deionized water. This solution was then heated in
a round-bottom ask and continuously stirred with a magnetic
stirrer.

Once the temperature reached 100 °C, 1 mL of the prepared
gold salt solution was added to the citrate solution, changing
the color to pale yellow. Subsequently, ve 1 mL aliquots of the
gold salt solution were added to the boiling trisodium citrate
solution at 20 minute intervals while maintaining continuous
stirring. By the end of this process, the solution turned dark red.

Aer this, heating and stirring were stopped, allowing the
solution to cool to room temperature. The resulting solution,
containing the synthesized AuNPs, was stored at 4 °C for future
use.

2.2 Characterization of AuNPs

Transmission electron microscopy (TEM) was employed to
characterize the size andmorphology of the AuNPs. Initially, the
AuNPs were centrifuged at 9000 rpm for 10 min and then
resuspended in deionized water. The resuspended solution was
drop-cast onto a 200-mesh carbon-coated copper grid (Plano
GmbH, Germany). The grids were allowed to air dry overnight at
room temperature before examination with a Hitachi TEM
system operating at 100 kilovolts. The composition of the
AuNPs was further conrmed using energy-dispersive spec-
troscopy (EDS). Additionally, the optical properties of the AuNPs
were evaluated using an Innite Pro microplate reader (Tecan,
Switzerland).

2.3 Preparation of blood serum samples

52 blood serum samples were collected from Nishtar Medical
University, Multan, Pakistan. This collection included 10
samples from healthy patients and 42 samples from individuals
with conrmed diabetes. An anonymized description of the
patients is provided in Table S1. Samples were collected from
both female andmale patients. None had comorbidities or were
under medication, as blood was obtained at the time of initial
clinical diagnosis. The Institutional Ethical Review Board at the
Nishtar Medical University approved the sample collection and
use for developing new sensing technologies. Informed consent
Nanoscale Adv., 2025, 7, 7504–7513 | 7505
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was obtained from all subjects. The clinical study was registered
in clinicaltrials.gov (http://clinicaltrials.gov) (NCT06862778).
The study focused on serum, a component of blood obtained
through centrifugation aer removing cells and clotting
factors. The serum is free of cellular elements and primarily
consists of proteins and other biologically active compounds,
making it a more suitable sample for targeted analysis.44 The
serum samples were further treated with 100 kDa ltering
devices (Amicon ultra centrifugal lters, Sigma-Aldrich, USA),
for 30 minutes at 6500 rpm.
2.4 SERS measurements

Each serum sample (20 mL) was combined with an equal volume
of AuNPs in an Eppendorf tube. The resulting mixtures were
ultrasonicated at 28 kHz and 150 W for 30 minutes to ensure
homogeneous mixing between the AuNPs and the serum
samples. Aer mixing, the samples were incubated for two
hours at 4 °C.

Next, 20 mL of the prepared samples were placed onto an
aluminum slide for measurement following a previously
established protocol.45,46 The spectra were recorded using an
Optosky Raman Microscope Spectrometer (model ATR8300BS),
which was equipped with a 785 nm diode laser as the Raman
excitation source. The excitation light was focused onto the
sample using a 20× objective lens, with a laser power set to 250
mW to optimize the signal-to-noise ratio. A 30 second integra-
tion period was used for each spectrum. Fieen spectra were
collected for each sample at room temperature, with the Raman
shi range set between 300 cm−1 and 1600 cm−1 to capture
relevant molecular vibrational information.

Fieen spectra per sample were recorded to obtain the mean
spectral plot for each sample. This approach reduces noise and
improves the signal-to-noise ratio, better representing the
characteristic vibrational bands in the samples.
2.5 Data pre-processing

The raw data from the SERS experiments were processed using
MATLAB R2023a (The MathWorks, USA) and standard chemo-
metric techniques that utilized custom-developed algorithms.
The pre-processing steps involved removing the aluminum
substrate signal, performing baseline correction, normalizing
the data vectors, and applying smoothing through Savitzky–
Golay ltering (Fig. S1). The ltering parameters were set to
a 17th-order polynomial with a 14-point window width.
2.6 Multivariate data analysis

The changes in the SERS spectral features of the samples were
analyzed using multivariate data analysis techniques, speci-
cally principal component analysis (PCA) and mean spectral
plots. PCA is a statistical method that simplies multivariate
data analysis by reducing a large number of correlated variables
into a smaller set of uncorrelated variables. This technique
helps identify patterns and relationships within the dataset.
The dimensionality of the SERS data was reduced to highlight
key principal components that distinguish between healthy
7506 | Nanoscale Adv., 2025, 7, 7504–7513
samples and those with diabetes, while preserving the vari-
ability of the data.47
2.7 Machine learning

We employed four ML models for SERS spectral classication:
K-nearest neighbors (KNN), articial neural networks (ANN),
support vector machines (SVM), and quadratic discriminant
analysis (QDA), each chosen for its unique strengths. KNN (with
a K value of 5) was selected for its simplicity and effectiveness
with small to moderate datasets, adapting well to diverse data
distributions.48 ANN excelled at modeling complex, non-linear
relationships, utilizing architectures with rectied linear unit
(ReLU) and sigmoid functions, and beneting from careful
tuning for efficiency.49 SVM is effective in high-dimensional
spaces and adaptable through linear or RBF kernels.50 We
optimized SVM parameters such as regularization (C) and
kernel coefficient (gamma) to enhance themodel accuracy. QDA
is effective in modeling distinct covariance structures for each
class.51 For QDA, we used regularization to ensure stable results
in varying class distributions. Notably, these classication
models were also selected because they show outstanding
performance with small datasets.52,53 ML analysis was con-
ducted by using the entire SERS spectra as input features for
model training and evaluation. Each sample consisted of 15
spectra with 1499 features, corresponding to the number of
vibrational modes observed in each spectrum. No dimension-
ality reduction, including PCA, was performed before training.
This approach maintained full spectral information for classi-
cation using ML models. The synthetic minority over-
sampling technique (SMOTE) is an oversampling method
designed to address class imbalance in datasets.54 SMOTE
generates synthetic samples for the minority class to balance
the dataset, rather than just duplicating instances. It identies
minority instances and their k-nearest neighbors, creating new
samples through interpolation between them.55 To ensure
a good balance between healthy and diabetes samples, 480
healthy data points were generated with SMOTE to match the
number of data points between both groups.
3 Results and discussion

AuNPs were synthesized using the Turkevich method, which
involves the chemical reduction of gold salts with citrate. The
resulting AuNPs were spherical and had an average diameter of
56 ± 5 nm (Fig. 1a and b). Energy-dispersive X-ray spectroscopy
mapping conrmed that the particles were composed of gold
(Fig. 1c). Additionally, the AuNPs exhibited an extinction band
centered around 529 nm (Fig. 1d), which is consistent with the
reported position of the localized surface plasmon resonance of
spherical AuNPs.56,57

Next, we employed the AuNPs to perform the SERS analysis
of the healthy and diabetic liquid biopsy samples. A total of 52
blood serum samples, consisting of 10 samples from healthy
volunteers and 42 samples from diabetic patients, were ob-
tained from the Nishtar Medical University Multan (Pakistan).
Before use, the samples were ltered with 100 kDa ltering
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 Characterization of AuNPs. (a) Transmission electron microscopy micrographs, (b) size distribution, and (c) micrographs with energy-
dispersive X-ray spectroscopy signal of gold (Au weight (wt)%) highlighted in red of AuNPs. (d) Extinction spectra of AuNPs in solution.
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devices to isolate lowmolecular weight biomolecules, as most of
the potential biomarkers responsible for diabetes are under 100
kDa.58 The AuNPs and ltered serum samples were mixed
continuously for 30 minutes at 4 °C, before being deposited on
aluminum substrates, and their Raman spectra recorded. 15
spectra were recorded for each sample to obtain a better
representation of their characteristic vibrational bands. To
identify spectral differences between healthy and diabetic
patient samples, we determined the mean spectra of all the
samples within a group (Fig. 2a). The difference in mean spec-
trum between healthy and diabetic patient samples revealed
signicant variations across multiple peaks (Fig. 2b), which
tend to be associated with biomolecular composition alter-
ations. However, because the serum is a complex matrix with
many different components displaying overlapping peaks,
assigning each peak to a biomolecule or a group is challenging.

To further differentiate the two groups, we carried out PCA,
which reduced the dimensionality of the high-dimensional
datasets by transforming the original variables into a smaller
set of uncorrelated variables known as principal components.59

Fig. 3a presents the PCA plot of all measured spectra, and shows
a fair separation between groups. The horizontal and vertical
axes correspond to the rst (PC-1) and second (PC-2) principal
components, which explained 40.4% and 14.4% of the total
Fig. 2 SERS characterization of healthy and diabetic patients. (a) Mean R
Difference in mean spectrum between the two groups (healthy– diabete
mean spectra and the pale areas represent one standard deviation of th

© 2025 The Author(s). Published by the Royal Society of Chemistry
variance, respectively. Hence, the rst principal component
accounted for the largest variance, representing the most
important patterns in the SERS spectra. All healthy samples
were located on the positive side of the horizontal axis (PC-1),
with values above 0.15, whereas most diabetic patient samples
(75%) had values smaller than that. 25% of the diabetic patient
data points, however, partially overlapped with the healthy data
region on the PC-1 axis, likely due to serum variability factors,
such as diet, blood glucose levels, and degree of diabetes. To
better understand the differences between the two groups, we
analyzed the PCA loading plots (Fig. 3b), which showed clear
differences, particularly along PC-1. For instance, strong varia-
tions were observed in the 448 and 720 cm−1 peaks, which tend
to be associated with cholesterol and nucleic acid.60,61 The PCA
score analysis for the rst two components (Fig. 3c and d)
showed that despite the partial overlap between the healthy and
diabetes groups, they were statistically different in PC-1 with
large effect sizes (Cohen's d > 1.4 and p < 0.001). Those differ-
ences are enough to overall distinguish both groups based on
PCA coordinates, however, they are likely to yield limited
sensitivity and specicity when using PCA for the diagnosis of
new samples.

Next, we explored whether ML could improve the diagnostic
capabilities of our SERS approach. Four different models
aman spectra of all samples within a group as determined by SERS. (b)
s) with main differential peaks highlighted. The sharp lines represent the
e measurements.

Nanoscale Adv., 2025, 7, 7504–7513 | 7507
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Fig. 3 Spectral differences between healthy and diabetic patient samples based on SERS measurements. (a) PCA of healthy and diabetic patient
samples. The principal component 1 and 2 describe 40.4% and 14.4% of the total variance, respectively. The plot presents 52 samples with 15 data
points (spectra) per sample. (b) Loadings of the first and second principal components (PC-1 and PC-2, respectively). Average PCA scores of (c)
the first and (d) the second principal components. The colored bars and black squares represent the means and the interquartile ranges of the
data. *** indicate groups with large effect sizes (Cohen's d > 1.4, two-tailed t-test).
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commonly used in the analysis of sensing data were explored,
namely KNN, ANN, QDA, and SVM. For each model evaluation,
80% of the data from the healthy and diabetic patient groups
were randomly selected for training, with the remaining 20%
being reserved for testing. The dataset was split into training
and testing sets before any pre-processing, such as normaliza-
tion. This approach prevents data leakage by ensuring the test
set does not inuence training, preserving the integrity of the
evaluation and providing an unbiased assessment of the
performance of the models. The normalization parameters,
such as mean and standard deviation, were calculated using
only the training data, and then applied to both the training and
test sets. The performances of themodels were evaluated with 5-
fold cross-validation, averaging the results to provide a robust
estimate of model performance. Furthermore, since ML model
performance strongly depends on data size, and our sample
pool was imbalanced with a greater number of diabetic patient
samples compared to healthy ones (42 vs. 10), we also explored
a data generation method, named SMOTE. This technique
helps to reduce the bias that models may develop toward the
majority class when faced with imbalanced data.62 The data
augmentation with SOMTE was applied exclusively to the
training data within each fold of the cross-validation procedure
to prevent data leakage. Hence, the test sets (untouched real
7508 | Nanoscale Adv., 2025, 7, 7504–7513
data) were kept completely independent and unaffected by the
SMOTE process, ensuring that the performance assessment of
the models reect their true generalization capabilities without
any information leakage. Hence, 480 synthetic healthy data
points were generated using SMOTE to balance the two groups.
As shown by PCA (Fig. S2), the synthetic data broadly occupied
the same regions of feature space as the original healthy data
but did not perfectly overlap, suggesting that the generated data
captured the underlying distribution without simply memo-
rizing individual records.

In the absence of synthetic data, the KNNmodel achieved an
area under the curve (AUC) of 0.93 in the receiver operating
characteristic (ROC) curves (Fig. 4a), the highest value among
the different models, which indicated robust classication
performance. The ANN, QDA, and SVM achieved poorer
performances with AUC values of 0.84, 0.89, and 0.51, respec-
tively. These results highlighted the large variability in perfor-
mance across models, with SVM particularly struggling with the
(imbalanced) data sets. Fig. 4b further breaks down the
performance metrics, including accuracy, precision, sensitivity,
and F1-score. KNN performed well in all four categories, with
values ranging between 0.76 and 0.93. Interestingly, although
ANN presented relatively good AUC values, it displayed the
lowest performance metrics, with values ranging between 0.48
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4 Receiver operating characteristic (ROC) curves of the different models, and their matrix scores (a) ROC curves and area under the curve
(AUC) values for all models without data generation with SMOTE. The curves display true positive rates (TPR) against the false positive rates (FPR).
(b) Matrix scores for all ML models without data generation with SMOTE. (c) ROC curves and their AUC values for all ML models with data
generation with SMOTE. (d) Matrix scores for all MLmodels with data generation with SMOTE. Error bars represent one standard deviation across
cross-validation folds. For each model, 80% of the dataset (8 healthy and 34 diabetic patients) was used for training, and 20% (2 healthy and 8
diabetic patients) was reserved for testing, from a total of 52 samples.
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and 0.50. A high AUC and poor matrix scores, as observed for
the ANN model, can indicate class imbalance. This situation
arises when the model performs well overall but struggles with
the minority class, such as the healthy samples.63 QDA, on the
other hand, presented relatively good performance metrics
(between 0.75 and 0.85), consistent with its good AUC. Lastly,
SVM presented poor metric performances except for F1-score,
which was very high (0.94). Next, we explored the impact of
including synthetic data on the performance of the models.
Notably, all models' performances improved with the generated
data, achieving AUC values above 0.90, and KNN was again the
best-performing model with an AUC value of 0.97 (Fig. 4c).
Furthermore, SMOTE consistently narrowed the 95% con-
dence intervals across models (Table S2), indicating enhanced
stability and generalizability. KNN was also the model with the
best performance metrics, as shown in Fig. 4d. Although
including synthetic data with the SMOTE method improved all
metrics, it had the strongest effects on accuracy and precision,
with values above 0.80 for all models. Overall, combining data
generation with SMOTE and the KNN model achieved the
highest AUC and demonstrated superior values across perfor-
mance metrics, making it the best choice for enhancing diag-
nostic accuracy in imbalanced datasets. Furthermore, these
results also highlighted the importance of addressing class
imbalance to improve the reliability and effectiveness of the
models.
© 2025 The Author(s). Published by the Royal Society of Chemistry
To better assess the impact of data generation on the model
performances, particularly in terms of generalization, we
compared the AUC scores between the training and test sets
(AUC mean differences). Aer 50 iterations, in absence of
synthetic data, all models showed mean differences below 0.1,
suggesting no signicant overtting (Fig. S3). The values
decreased as synthetic data was introduced for training, indi-
cating better generalization. The KNN model with SMOTE-
generated data was the best combination, with an AUC mean
difference value of 0.018, indicating excellent generalization
(Fig. S4). Notably, for SVM, although the AUC rose sharply from
0.51 to 0.91 with data generation, the mean training–testing
AUC difference remained nearly unchanged (0.096 vs. 0.093).
This reects that the added data improved both training and
testing performance to a similar extent, yielding a substantial
gain in absolute accuracy but little change in the relative
generalization gap.

Finally, Fig. 5 displays the confusion matrices for the four
models without and with synthetic data under 5-fold cross-
validation. Consistent with the previous analyses, including
synthetic data improved the overall performance of all models.
The best-performing model without and with data generation
was KNN. Its classication accuracy for healthy and diabetic
patient samples was 74% and 97%without data generation. The
inclusion of generated data with SMOTE improved the accuracy
in the classication of healthy samples to 96% and slightly
decreased the accuracy for diabetic patient samples to 94%,
Nanoscale Adv., 2025, 7, 7504–7513 | 7509

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5na00905g


Fig. 5 Confusion matrices from 5-fold cross-validation for all different models without and with synthetic data. Normalized scores for the
different models, (a) KNN, (b) ANN, (c) QDA, and (d) SVMmodels, without and with data generated with SMOTE. Because the confusion matrices
are row-normalized, the values along the diagonal correspond directly to the recall for reach class.
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which resulted in better overall diagnostic performance. These
accuracy results outperformed those of gold standard methods,
such as HbA1c and fasting plasma glucose tests, which typically
yield sensitivities of up to 80% and AUC values ranging from
0.80 to 0.92.7,64 Although the results with the other models fol-
lowed similar trends, their accuracies were consistently lower
than that of KNN. Interestingly, for ANN, the ROC analysis
indicated relatively strong overall discriminative ability (AUC of
0.84, Fig. 4a) without data generation. In contrast, the confu-
sion matrix showed poor class-wise accuracies (TNR of 0.54 and
TPR of 0.48, Fig. 5b). This apparent discrepancy reects the
threshold-independent nature of AUC versus the threshold
dependence of confusion matrices, suggesting that although
the model could separate classes effectively across thresholds,
the applied cut-off was suboptimal and limited its classication
performance. Nevertheless, this study was constrained by the
limited number of patient samples, which may restrain the
robustness of the predictive model. Therefore, the ndings
should be considered exploratory, and future studies with larger
patient cohorts will be necessary to assess the generalizability of
this approach.

Taken together these results demonstrated that SERS and
ML could be used to diagnose diabetic samples with high
accuracy (above 94%). Among the different models, KNN
consistently performed the best. Furthermore, including
synthetic data generated with the SMOTE method improved the
performance of all models, as it addressed the class imbalance
and particularly improved classication accuracy for the
minority class (healthy) samples.
7510 | Nanoscale Adv., 2025, 7, 7504–7513
4 Conclusions

In summary, this exploratory clinical study demonstrates the
integration of label-free SERS with MLmodels for the diagnosis of
diabetes via liquid biopsy analysis. Four ML models were evalu-
ated, namely KNN, ANN, QDA, and SVM, with KNN consistently
outperforming the others across most performance metrics. To
enhance classication performance, synthetic data were generated
using the SMOTE method, resulting in improved model accuracy.
Notably, KNN with SMOTE-augmented data achieved classica-
tion accuracies of up to 96% for healthy samples and 94% for
diabetes samples. These ndings indicate that the combination of
label-free SERS and ML, particularly when augmented with
synthetic data, holds promise for the rapid and non-invasive
diagnosis of diabetes and potentially other metabolic diseases.
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