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quantification of cerebrospinal fluid extracellular
vesicles via AFM and machine learning
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Morphology of extracellular vesicles (EVs) from cerebrospinal fluid is an important property that could

uncover brain-related conditions. However, native morphology could get distorted during imaging, such

as with atomic force microscopy (AFM) in air, which enables relatively simple visualisation and automated

morphology assessment. Therefore, we compared 24 different preparation methods for the same

sample of EVs according to the resulting size, height, aspect ratio and shape distributions obtained from

the AFM images. We defined 5 different shape categories (round, flat, concave, single-lobed, and

multilobed) and neglected other features that did not fit in either category and were considered

artefacts. Artefacts affected the morphometric data (size, height, aspect ratio ranges and distributions),

so their neglection was necessary for accurate morphometry. As this required a cumbersome and time-

consuming manual search through all AFM images, we developed a computer program that facilitates

the individual observation of each particle, enables manual shape identification and exports the resulting

size and shape distribution from each AFM image. Since manual EV categorisation in the program still

required significant time and proved to be quite subjective, we also employed machine learning for

vesicle and shape recognition. A convolution neural network model was trained on a dataset of particles,

for which 4 independent researchers provided consistent shape categorisations (F1 score of 85 ± 5%)

and was successfully used to compare the 24 methods of preparation. Our analysis indicated that

fixation had a very important role in both capturing and protection of EVs on a mica-based substrate,

while critical point drying performed much better in retaining their morphology than

hexamethyldisilazane. All tested functionalisations enabled good capture and visualisation of EVs, but (3-

aminopropyl)triethoxysilane could cause flattening of EVs and NiCl2 was more prone to formation of

round artefacts during direct air-drying. Generally, ethanol gradient dehydration followed by critical point

drying best preserved the EV morphology, while chemical dehydration with dimethoxypropane resulted

in well-balanced shape distributions with lower aspect ratios. The highest aspect ratios were obtained by

ethanol dehydration and critical point drying on NiCl2-coated mica, for which all morphometric data

agreed very well with the near-native EV morphology observed in liquid AFM images on the same type

of substrate. These findings represent a promising first step towards utilising AFM images of EVs for

diagnostic purposes.
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1. Introduction

Extracellular vesicles (EVs) are membranous biological nano-
structures that contain proteins, lipids, carbohydrates, nucleic
acids and even mitochondria in their lumen (without a func-
tional nucleus) with different lipids and proteins, including
glycoproteins, tetraspanins and surface receptors, in the phos-
pholipid bilayer.1 They are formed either by the endocytic
pathway or by direct budding from the membrane, resulting in
three populations: apoptotic EVs (released by fragmentation of
cells undergoing apoptosis), ectosomes/microvesicles formed
by outward budding of the plasma membrane and exosomes
(released through endocytic pathways from multivesicular
endosomes by fusion with the plasma membrane). Further-
more, EVs undergo topological transitions and can be inter-
nalised through surface binding, membrane fusion,
phagocytosis, macropinocytosis, and clathrin-, caveolae-, and
adsorptive-mediated endocytosis.2,3 This leads to signicant
heterogeneity in size, morphology, and biochemical cargo. EVs
are cell source-specic and can participate in several important
events: (i) intercellular communications in normal biological
processes, e.g., cell death,4 and in pathologies; (ii) signalling;
and (iii) bidirectional transport of therapeutic agents/bioactive
molecules across the blood–brain barrier.5,6 Unfortunately,
most of these mechanisms remain poorly understood.2 Due to
the presence of EVs in biouids, they could enable a tissue-free
biopsy with minimally invasive disease monitoring and diag-
nosis.7 If a clear connection between current EV populations in
a biouid and a pathophysiological condition is discovered, EVs
will become reliable biomarkers for early disease detection and
prevention. EVs from cerebrospinal uid (CSF) could be used as
biomarkers of certain neurological diseases.8–11 However, the
diagnostic potential of EVs remains untapped as their effective
isolation and separation from other biological nanoparticles,
such as lipoproteins, as well as their reliable identication, are
still challenging.1,6

The International Society of Extracellular Vesicles (ISEV)
recommends protein content-based EV identication and
distinction from contaminants aer isolation,12,13 electron
microscopy (EM) and atomic force microscopy (AFM) for
assessing their morphological properties.14 EM has traditionally
been employed for morphology investigations. However, in the
last decade, there has been a growing interest in the application
of AFM, which emerged as a valuable technique for measuring
three-dimensional (3D) topography and morphology, size
distribution, and biomechanical properties of nano-sized
samples.14–17 This method operates by exploiting the interac-
tion between the tip of a cantilever and the sample surface,
enabling generation of a three-dimensional image of the
sample surface. To preserve the so and fragile structure of EVs,
the dynamic, tapping (oscillating) mode is preferred for
imaging. Before imaging, isolated EVs are adhered to a rela-
tively at surface using electrostatic interactions, chemical
bonds, physical adsorption, hydrophobic interactions, or other
methods.18 However, the same electrostatic forces that immo-
bilise the EVs to the surface can also distort their shape, which
© 2025 The Author(s). Published by the Royal Society of Chemistry
makes post-imaging data analysis essential.19 Grains or parti-
cles protruding out of the at substrate, which should
predominantly represent EVs in a well-isolated sample, can be
readily identied from AFM images. Subsequently, their
volume, size, area, and other morphometrics, such as the
average aspect (height/radius or height/diameter) ratio,20 can be
calculated and displayed automatically, but such analysis does
not provide information regarding their shape and topography.
Nonetheless, through meticulous manual examination of each
grain across multiple AFM images obtained in a liquid envi-
ronment, we recently identied various 3D shapes of EVs from
CSF in their near-native state (round, at, single-lobed, multi-
lobed, elongated bulging, concave and partially open). These
ndings may correlate with various internal morphologies
previously observed by cryo-TEM.21,22

Here we continue this investigation by visualisation of dried
samples by conventional and more attainable AFM in air, which
is faster and easier to use (thus more appropriate for inexperi-
enced users) and also enables batch processing of multiple
samples.18 This approach presents two primary challenges: (i)
sample preparation, primarily involving the entrapment of EVs
on a substrate and preservation of their 3D morphology during
the drying process; (ii) the slow, lengthy and subjective deter-
mination of EV shape distribution. We are addressing these
challenges by comparing different mica functionalisations for
attachment of EVs, various dehydration and drying methods,
and by automation of the morphometry analysis and shape
classication from the obtained AFM images. We developed
a computer program for faster individual particle/grain presen-
tation and easier shape classication and then applied machine
learning (ML) for EV shape recognition. ML can interpret, clas-
sify, and identify patterns in the complex and heterogeneous
data, which could improve medical diagnostics based on liquid
biopsy platforms and nanostructure-based optical readouts.23

Applying ML in time-resolved uorescence correlation spectros-
copy,24 Raman spectroscopy,25 or total internal reection uo-
rescence proling of micro ribonucleic acids from EVs has
already helped identify various samples of cancer origin.26,27

Moreover, a combination of ML and principal component anal-
ysis was used for evaluation of the dynamic morphological
features of exosomes via cryo-TEM-imaging.28 There have been
only a few attempts to apply convolutional neural network (CNN)
ML on AFM images of biological cells16,29 but here we show for
the rst time the use of CNNs to differentiate and classify EVs
from AFM images into one of ve possible morphology cate-
gories. A variety of approaches, methods, models, and datasets
were evaluated, with future perspectives outlined.

2. Materials and methods
2.1. Cerebrospinal uid

The sample used in this study consisted of chromatographically
isolated EVs from human CSF aer a traumatic brain injury
(TBI). Collection was conducted under aseptic conditions, in
accordance with hospital protocols in the intensive care unit at
the General Hospital (Pula, Croatia), utilising ventriculostomy
as part of therapeutic intervention for intracranial pressure
Nanoscale Adv., 2025, 7, 7780–7797 | 7781
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monitoring and management. A pool of CSF from four patients
(three male patients aged 24, 68 and 73, and one female, aged
71), all with no known comorbidities, was created, collected and
stored at −80 °C. All experiments were approved by the Ethics
Committee of Pula General Hospital (number: 4943/10-1, 17
July 2019). Informed consent was obtained from a family
member for all TBI patients.
2.2. Extracellular vesicles from cerebrospinal uid

Following a previously published protocol,22 5 mL of pooled CSF
samples was loaded onto a gravity-driven size-exclusion chro-
matography (SEC) column (1.5 × 50 cm) equipped with a ow
adaptor and a 30 mm bottom frit (Bio-Rad Laboratories,
Hercules, CA, USA). The stationary phase consisted of Sephar-
ose CL-6B (GE Healthcare, Danderyd, Sweden), and the mobile
phase was phosphate-buffered saline (PBS; Gibco, Thermo
Fisher Scientic, Waltham, MA, USA). The column was initially
washed with distilled water and equilibrated with PBS. Subse-
quently, 35 fractions of 2 mL each were collected in low-protein-
binding tubes (Eppendorf, Hamburg, Germany) following the
initial 5 mL void volume.

For western blot analysis, 48 mL of the pooled CSF and EV
fractions were boiled at 95 °C for 10 minutes with the addition
of 5× Laemmli buffer (1 M Tris–HCl pH 6.8, 50% glycerol [v/v],
20% SDS [w/v], 1% bromophenol blue [w/v], and 2-mercaptoe-
thanol) and then electrophoresed on 15% SDS polyacrylamide
gel electrophoresis (SDS-PAGE, Bio-Rad) using rst running
buffer (25 mM Tris, 192 mM glycine, and 0.1% SDS, pH 8.3) at
90–150 V. Proteins were transferred to a 0.45 mm PVDF
membrane (Merck Millipore Ltd, Tullagreen, Carrigtwohill, Co.
Cork, Ireland) at a constant voltage of 17 V for 1 h. The
membranes were then blocked with 5% milk in TBS-T (Tris-
buffer saline supplemented with 0.1% Tween 20) for 60
minutes and incubated overnight at 4 °C on a shaker with rabbit
monoclonal antibodies against CD9 (D8O1A, #13174) diluted
1 : 200 and albumin (#4929) diluted 1 : 3000. Membranes were
washed three times for 10 minutes in TBS-T and incubated for
60 minutes with a secondary anti-rabbit IgG horseradish
peroxidase-linked antibody diluted in 5% bovine serum
albumin blocking buffer (#7074) 1 : 500 for CD9 and 1 : 1000 for
albumin. Aer additional washes in TBS-T, the signal was
visualized using SignalFire Elite ECL Reagent (#12757, Cell
Signaling Technology, Danvers, MA, USA) and imaged with
a laser imager (LI-COR Biosciences, Lincoln, NE, USA).

Following the identication of CD9-positive fractions (5–7),
additional analyses were conducted on CSF and pooled EV
fractions 5, 6 and 7 with rabbit monoclonal antibodies against
CD81 (E2K9V, #52892), TSG101 (E6V1X, #72312), and mouse
monoclonal antibodies against Alix (3A9, #2171) diluted 1 : 200,
and ApoA1 (5F4, #3350) diluted 1 : 1000. Aer overnight incu-
bation, previously mentioned secondary anti-rabbit, as well as
anti-mouse IgG (#7076) horseradish peroxidase-linked anti-
bodies in 5% bovine serum albumin were applied in the same
manner at a concentration of 1 : 500. The images were obtained
using the same technique. All antibodies were purchased from
Cell Signaling Technology.
7782 | Nanoscale Adv., 2025, 7, 7780–7797
2.3. Dynamic light scattering (DLS) and zeta potential

The measurements were conducted using a ZetaPALS instru-
ment (Brookhaven Instruments, NY, USA). Prior to analysis, the
samples were diluted 1 : 1 in ltered phosphate-buffered saline
(PBS) to achieve the appropriate concentration for DLS (particle
size) and phase analysis light scattering (zeta potential)
measurements.
2.4. Preparation of EVs for visualisation by AFM

2.4.1 Mica functionalisation. Mica grade V-1, 12 mm in
diameter and 0.15 mm thick (Structure Probe, Inc., West
Chester, PA, USA) was freshly cleaved, and functionalised by
using ltrated (Chromal RC-20/15, 0.2 mm, 15 mm, Macherey-
Nagel, Deutschland) NiCl2, a-poly-L-lysine (PLL) or (3-amino-
propyl)triethoxysilane (APTES) as follows. A freshly prepared
50 mL, 10 mM solution of NiCl2 (Sigma-Aldrich, St. Louis, MO,
USA) was added on mica, le for 5 min at room temperature,
washed 3 times with water (HiPerSolv CHROMANORM, HPLC-
grade, BDH Prolabo, UK) and dried under nitrogen ow.19 For
PLL (Sigma Aldrich, UK), 50 mL of 0.001% solution was added
to the mica, incubated for 30 min and washed 3 times with
ultrapure water. For APTES liquid deposition (APTES-l), 100 mL
of a 0.02% APTES aqueous solution was applied to the mica
and incubated for 3 minutes in a moist chamber, and then
washed 3 times with ultrapure water and phosphate buffer.
The sample was immediately added and further processed.30

For APTES vapor deposition (APTES-v), a mixture of 30 mL of
0.02% APTES and 10 mL of 99.6% triethylamine (VWR Inter-
national, PA, USA) was dropped onto a Petri dish and placed
beneath the hood of an empty desiccator that was ushed with
nitrogen. Mica was added inside a Petri dish in the vicinity of
the drop and aer a 5 minute nitrogen ow, the desiccator was
closed and le overnight.31 For 3D root mean square rough-
ness (Sq, in nm) analysis, xative droplets (PFA : GA (3% :
1.5%) in PBS) were applied and air-dried on mica and mica
substrates functionalised with various methods (prepared in
the same manner).

2.4.2 Capture and xation of EVs on mica substrates. EV-
positive eluates aer SEC (fractions 5–7) were pooled and
equally divided into 24 parts (EV samples). 4 samples (50 mL)
were applied onto 4 differently functionalised mica substrates,
incubated for 30 minutes at room temperature, and rinsed 3×
with PBS and le to directly dry in air, while the remaining 20
samples rst underwent xation in a 1 : 1 ratio with a PBS
solution containing 6% paraformaldehyde (PFA, 32% aqueous
solution, Electron Microscopy Sciences, Hateld, PA, USA) and
3% glutaraldehyde (GA, 25% aqueous solution, Spi Chem, West
Chester, PA, USA) at room temperature for 10 minutes.32,33 A 50
mL aliquot of each xed sample was added to a functionalised
mica substrate (5 substrates for each of the 4 functionalisations
altogether), incubated for 30 minutes at room temperature and
rinsed 3× with PBS and 3× with ultrapure water. 4 samples
(each captured on a different kind of functionalised mica) were
then dried in air at room temperature, while the other 16
samples were subjected to other more delicate ways of dehy-
dration and drying, as described in the following sections.
© 2025 The Author(s). Published by the Royal Society of Chemistry
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2.4.3 Dehydration of extracellular vesicles. Two methods of
dehydration were applied: dehydration in an ethanol (EtOH)
gradient and dehydration with 2,2-dimethoxypropane (2,2-
DMP). EVs were dehydrated with a series of EtOH solutions
(99.98%, Gram-Mol d.o.o., Croatia), diluted with ultrapure
water (30%, 50%, 70%, 80%, 90%, and 99.98%), leaving the
sample for 10 minutes in 1 mL of each dilution in a 12-well
plate. Using 2,2-DMP (Alfa Aesar, Germany), the sample was
dehydrated in 1 mL of acidied 98% 2,2-DMP (Alfa Aesar, Ger-
many) for 10 minutes at room temperature.34 Following dehy-
dration, which produced acetone andmethanol, the sample was
rinsed twice in 100% acetone (Kemika, Croatia).

2.4.4 Drying of extracellular vesicles. Aer one of the two
dehydration methods, each of the 16 remaining undried
samples underwent one of the twomethods of controlled drying
to get 4 possible combinations for each of the 4 different mica
functionalisations. For drying with 1,1,1,3,3,3-hexa-
methyldisilazane (HMDS, GPR RECTAPUR, VWR International,
Belgium) in a gradient fashion, the dehydration solution was
gradually replaced by HMDS (from 25% to 100%) with 20
minute soaking in-between, and the sample was le to dry
overnight in a desiccator aer the nal solution. For drying at
the critical point of CO2, the sample was placed in a K850 dryer
(Quorum Technologies Ltd, UK), and soaked and rinsed three
times to completely replace the dehydration solution with
liquid CO2. CO2 was then eliminated as the supercritical uid at
+35 °C and 86.2 bar within 35 minutes. The dried samples were
then stored in a desiccator until AFM imaging.
2.5. Imaging with an atomic force microscope (AFM)

Samples of EVs on mica were imaged using an AFM (Dimension
Icon, Bruker, MA, USA) in air tapping mode. The diameter of the
cantilever (6.5 nm) had previously been measured using the
ImageJ program (Rasband, W.S., U.S. National Institutes of
Health, MD, USA) from images of the cantilever (ScanAsyst-Air,
Bruker), which were obtained from the Centre for Micro- and
Nanosciences and Technologies, University of Rijeka, Croatia,
by scanning electron microscopy (JEOL Field Emission JSM-
7800F, Japan). The AFM scanning speed was 0.97 Hz, with
scanning areas of 10 mm in one direction. Due to the inverse
relationship between the amplitude setpoint and the force
applied by the tip to the sample, a setpoint amplitude of 150 nm
was selected. At this amplitude, the peak force achieved was
214.4 pN, which is considered mild and reduces the risk of
sample damage or tip wear. The probe approached the sample
at a frequency of 2 kHz. Each sample was imaged at multiple
locations, and topographic images were generated. Scanning
areas of 1 × 1 mm were captured for calculation of Sq. EVs were
also imaged in liquid (PBS) on mica functionalised with NiCl2.
100 mL of sample was placed on mica for 15 min and analyzed
using the ScanAsyst (Bruker) probe in liquid in tapping mode.

Topographic images of extracellular vesicles were analysed
using Gwyddion 2.6 soware (Czech Metrology Institute, Czech
Republic) in accordance with the protocol used in the work of
Skliar and Chernyshev,19 but with the modication of skipping
the surface reconstruction step (Section S1). A roughness tool
© 2025 The Author(s). Published by the Royal Society of Chemistry
was used to evaluate 3D parameters of control surfaces (Sq) as
a mean square roughness of height irregularities (otherwise
known as the root mean square of height). Further grain anal-
ysis applied a height threshold of 20 nm, with additional
ltering for a maximum value lower threshold of 20 nm and
projected area lower threshold set at 1250 nm2. Grains touching
the edge were excluded from the analysis. Extracted data from
Gwyddion included grain centre coordinates (x and y),
maximum Martin diameter (max. D), mean height and
maximum Z (maximum height, max. H).

2.6. Manual analysis of EV morphology with the help of
a custom computer program (EVIAN)

Grain shapes were analysed using a custom-developed Python
program, EVIAN (Extracellular Vesicle Image ANalysis),35 which
was utilised for the manual selection of EVs from the grains (by
excluding grains that appeared to be artefacts) and for detailed
EV shape classication into round, at, multilobed, single-
lobed and concave, or neglecting particles that did not t
these categories. The program reads all measurements (x, y, z
coordinates) from the Gwyddion le, as well as grain centres
and max. D from the data exported aer grain analysis in
Gwyddion. Based on these data, the program crops a square
frame around each particle with dimensions equal to themax. D
and displays the measurements within this frame as a 2D z-
map, a 3D rotatable contour, and z-curves in 2D slices through
the centre along constant x, y, or both diagonals as well as max.
H/max. D. The user can then classify the particle's shape as
round, at, multilobed, single-lobed and concave, or choose to
exclude the particle from further analysis. Following each
classication, the program partitions the particle data accord-
ing to the selected shape and provides the corresponding frac-
tions for each category, alongside with EV size, height and
aspect ratio range. The program code is included in the SI along
with instructions for EVIAN installation and a manual for AFM
image processing (Section S1). To ensure reproducibility, clas-
sication was independently conducted by four researchers.
The dataset used for machine learning comprised all particles
from the 24 AFM images that were classied identically by all
four researchers.

2.7. Machine learning and automated analysis of EV
morphology and statistical analysis

The automated classication of EVs was achieved through
a deep convolutional neural network (CNN) model,36 which was
trained on a dataset of 231 unanimously labelled EVs from the
24 AFM images. Prior to model training, some image pre-
processing was required. To reduce computational complexity
while preserving key morphological features, original images
were rescaled to 10 × 10 pixels using bilinear interpolation
(upscaling from 5 × 5 to 10 × 10; downscaling from 22 × 22 to
10 × 10; Fig. S1a and b, respectively). In addition, each image
was rotated (90°, 180°, and 270°) as well as translated by one
pixel in each direction to augment the training data set (Fig. S1c
and d, respectively). Next, pixel intensities were normalised
between 0 and 1 to reduce the overall variation in the data and
Nanoscale Adv., 2025, 7, 7780–7797 | 7783
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avoid model overtting. As this leads to loss of the information
about the particle aspect ratio, max.H/max. D was introduced as
an additional parameter for the training process. The Synthetic
Minority Over-sampling TEchnique (SMOTE) was employed for
handling relatively small datasets and imbalanced class distri-
bution.37 Model training was carried out using stratied 5-fold
cross-validation, and a grid search was employed to optimize
the hyperparameters, including batch size, number of epochs,
and choice of optimizer. The dataset was randomly split into
ve equally sized folds, preserving class distribution. For each
fold f, a model was separately trained on the remaining four
folds, and then evaluated on the holdout fold f. The process of
randomly splitting the data and performing cross validation
was repeated ten times, to account for the validation process
randomness and to observe model robustness. Thus, we trained
and evaluated a total of 50 predictive models independently.
The CNN architecture comprisedmultiple layers: the input layer
accepted 10 × 10 single-channel images, followed by a 2D
convolutional layer (32 lters, 3 × 3 kernel size, ReLU activa-
tion), and a 2 × 2 max pooling layer. This was followed by
another convolutional layer (64 lters, 3 × 3 kernel size, ReLU
activation) and another max pooling layer. Aer attening the
output, a dense layer with 64 neurons and ReLU activation was
applied, followed by a nal somax output layer corresponding
to the six morphological classes. Hyperparameter tuning was
performed using a grid search to identify the optimal parame-
ters, such as batch size (10, 32, and 64), number of epochs (50,
100, 150, and 200), and optimizer (Adam, root mean square
propagation, and stochastic gradient descent with momentum).
The best performing model was selected based on its accuracy
and weighted F1 score during the 5-fold stratied cross-
validation process. Performance was evaluated using the
weighted F1 score and the average confusion matrix over the 5-
fold cross-validation process. The nal model architecture was
selected based on the optimal hyperparameters derived from
the grid search. Aer ML, the best performing model performed
EV shape recognition and classication on all 567 grains from
24 AFM images (just like all four researchers manually). Addi-
tionally, AFM images of EVs for three selected drying methods
on NiCl2-coated mica (air drying, ethanol gradient + CPD and
DMP + CPD) and liquid AFM on the same substrate were ana-
lysed in the same way (two 10 × 10 mm for each, 8 AFM images
altogether). Non-parametric Mann–Whitney U was used for
comparison of EV max. D, max. H and aspect ratio distributions
for these four samples.

3. Results and discussion
3.1. Identication of EVs in SEC eluates

The source of EVs was a pool of CSF collected from patients with
TBI using an external ventricular drainage system. EVs were
isolated from the pooled CSF (5 mL) by in-house gravity-driven
SEC (Fig. 1a). Western blot analysis was then performed on the
35 eluates to conrm the presence of EVs through detection of
their transmembrane protein marker CD9 and elimination of
contaminants by monitoring the presence of albumin. A strong
CD9-positive signal was observed in fractions 5 to 7 and 18 to 22
7784 | Nanoscale Adv., 2025, 7, 7780–7797
(Fig. 1b). However, while fractions 5–7 were free of contami-
nants, the later fractions showed a very strong albumin signal.
This phenomenon has been observed previously and is likely
due to non-specic CD9-antibody binding to albumin which
can act as a binding agent at high concentrations.22 Conse-
quently, fractions 5 to 7, which showed a strong and specic
CD9 signal, were selected to create an EV-enriched pool (6 mL),
referred to as the CD9+ EV pool (Fig. 1b, red triangles).

In accordance with the Minimal Information for Studies of
Extracellular Vesicles (MISEV) guidelines,12,13 we further
conrmed the presence of EVs in the EV pool using four
different EV markers and compared it to the CSF pool (Fig. 1c).
CD9 and CD81 were detected in both samples, whereas internal
EV markers, such as Alix and TSG101, were weakly expressed in
the initial CSF sample but absent in the puried EV fractions.
This was further corroborated by the absence of signals for
albumin and apolipoprotein A1 (ApoA1), common non-EV
contaminants, in the pooled EV fractions (Fig. 1c).

Additionally, size distribution analysis (based on scattering of
light) of the pooled EVs revealed a size range from 141.7 to
243.2 nm, with the majority of particles exhibiting hydrodynamic
diameter between 140 and 180 nm (Fig. 1d). This size range
aligns with the established size of EVs, which typically spans
from ∼30 to several hundred nm.22,38 The zeta potential
measurements of the pooled EVs ranged from −34 mV ± 1 mV,
indicating a stable colloidal suspension. These values are
consistent with previous reports, which suggest that EVs typically
exhibit negative zeta potentials due to the presence of negatively
charged phospholipids and proteins on their surface.39

In summary, the SEC purication method effectively
concentrated EVs from the CSF, as evidenced by the lack of
common contaminants and the clear presence of EV-specic
markers. The isolated vesicles exhibited typical size and zeta
potential values associated with biologically active EVs, further
conrming the robustness of the isolation procedure.

Previous studies have employed ultracentrifugation for EV
isolation, which, although effective, frequently co-isolates non-
EV contaminants, such as lipoproteins.13 By contrast, our use of
SEC demonstrated a purer EV population. This nding is
consistent with our previous work40 and with others reporting
that SEC reduces protein contamination, thereby improving the
quality of downstream analyses.41,42
3.2. Sample preparation for AFM and manual analysis of EV
morphology

In this study we compared four different functionalisations of
mica and six different sample drying methods. First, we exam-
ined whether mica functionalisation and the use of xatives
contributed to increased surface roughness. As shown in
Fig. S2, the root mean square surface roughness (Sq) increased
(up to 1.73 ± 0.05 nm, with features as high as 20 nm, in the
case of NiCl2, Fig. S2b) in relation to bare mica (with Sq= 0.28±
0.02 nm, Fig. S2a) for all functionalisations except PLL, for
which it even slightly decreased (Fig. S2d). These results are
consistent with the literature.43–45 Interestingly, addition of the
xative (PFA : GA; 3% : 1.5%) decreased the Sq for NiCl2 and
© 2025 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5na00665a


Fig. 1 Isolation of extracellular vesicles from cerebrospinal fluid using size-exclusion chromatography (a), with western blot analysis on CD9 and
albumin across fractions (b), protein marker validation of the CSF pool and EV pool (c), and size distribution of particles in the EV pool by dynamic
light scattering (d).
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APTES-l (Fig. S2c and i), had virtually no effect in the case of
APTES-v (Fig. S2g) and increased it for PLL (Fig. S2e). This is
most likely due to different NiCl2 crystal growth in the presence
of xatives, conformational changes of lysine chains in the case
of PLL and crosslinking of amino groups in APTES with the help
of the xative.46,47While the nal functionalised surfaces exhibit
© 2025 The Author(s). Published by the Royal Society of Chemistry
a similar pattern for PLL, APTES-l and APTES-v, distinct parti-
cles in the size range of EVs can be observed in the case of NiCl2.
Such artefacts could easily be mistaken for EVs during AFM
image analysis.19 To avoid this as much as possible, we set
a threshold of 20 nm for the minimal height when detecting
particles/grains from the recorded AFM images.
Nanoscale Adv., 2025, 7, 7780–7797 | 7785
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We applied EVs in PBS (used as a mobile phase in SEC) onto
the four types of functionalised mica substrates and dehydrated
and dried the samples under different conditions, which yiel-
ded altogether 24 distinct preparation protocols and 24
different specimens for observation by AFM (Table 1). 4 samples
were directly applied to mica substrates without any prior xa-
tion (marked with – in the second column of Table 1), while the
other 20 were dropped onto the substrates only aer xation in
a PFA : GA 3% : 1.5% mixture (+ sign in the second column of
Table 1). This combination of xatives was used based on its
demonstrated efficacy in preserving mitochondrial
morphology.32 Other xative compositions from PFA and GA
and xation protocols prior to or aer attachment onto the
substrate can be encountered in preparations of non-adherent
cells, liposomes, bacteria and vesicles for AFM
imaging.18,33,48–51 Hence, there is room for further optimisation
of this preparation step, especially when applying immune-
based detections.18

Although it is known that it can collapse the EV outer
structure, simple drying of samples in air is still the preferred
method. Here we also included other ways of dehydration and
drying (Table 1), which mitigate the damaging effects of
Table 1 Extracellular vesicle sample preparation protocols for AFM
visualization and grain analysis with the Gwyddion programa

No. Fixation Functionalisation Dehydration Drying

1 — NiCl2 — Air
2 — PLL — Air
3 — APTES-v — Air
4 — APTES-l — Air

5 + NiCl2 — Air
6 + PLL — Air
7 + APTES-v — Air
8 + APTES-l — Air

9 + NiCl2 EtOH CPD
10 + PLL EtOH CPD
11 + APTES-v EtOH CPD
12 + APTES-l EtOH CPD

13 + NiCl2 DMP CPD
14 + PLL DMP CPD
15 + APTES-v DMP CPD
16 + APTES-l DMP CPD

17 + NiCl2 EtOH HMDS
18 + PLL EtOH HMDS
19 + APTES-v EtOH HMDS
20 + APTES-l EtOH HMDS

21 + NiCl2 DMP HMDS
22 + PLL DMP HMDS
23 + APTES-v DMP HMDS
24 + APTES-l DMP HMDS

a PLL: poly-L-lysine; APTES-v: (3-aminopropyl)triethoxysilane vapor
deposition; APTES-l: (3-aminopropyl)triethoxysilane liquid deposition;
EtOH: ethanol; CPD: critical point drying of CO2; HMDS:
hexamethyldisilazane; DMP: 2,2-dimethoxypropane.

7786 | Nanoscale Adv., 2025, 7, 7780–7797
osmotic pressure (during washing with pure water to prevent
PBS salt crystal growth on the samples) and high water surface
tension.18,52

Given the large number of preparation protocols and the
requirement to image a sufficiently large area to capture an
adequate number of EVs for meaningful morphological anal-
ysis, combined with the relatively slow imaging speed of AFM,16

the resolution of AFM images was relatively low. They were 512
× 512 pixels in size and covered 10 mm × 10 mm (100 mm2) of
specimen area, which means that the cantilever scanned in
steps of 19.5 nm, so a particle of such diameter would consist of
only one pixel. To address this limitation, we selected another
lter (in addition to the 20 nmminimal height) that considered
z20 nm as the minimum radius of a spherical particle that
would be detected as a grain in Gwyddion, which set the lower
threshold for projected area to 1250 nm2. Based on these lters,
the program automatically detected grains in each of the 24
AFM images and their number, and their sizes expressed as
max. D, mean heights and max. H could be easily exported.

However, to examine each grain morphologically in Gwyd-
dion, it would require signicant effort and time. Therefore, we
wrote a custom Python program that reads the Gwyddion le,
cuts out, zooms and displays each detected grain and enables
manual shape categorisation. Hence, we named it EVIAN
(Extracellular Vesicle Image ANalysis).

Fig. 2 demonstrates how a vesicle looks like in a 10 × 10 mm
image in Gwyddion (indicated with an arrow, Fig. 2a) and then
when cropped and displayed in EVIAN (Fig. 2b). The latter
displays max. H/max. D value, and visualises each grain as a 2D
map of Z values (Fig. 2b(i)), a 3D contour that can be rotated
(Fig. 2b(ii)) and as cross-sections in four distinct Z-planes
(Fig. 2b(iii)).

In our previous investigation of EVs from CSF, we observed
and named their various 3D shapes by AFM for the rst time.22

Here we aimed to rene these denitions to enable more
distinct and objective counting of the shapes. Based on the
analysis of 2D maps, Z-proles, aspect ratios and 3D plots,
following the shape models presented in Fig. S3, four investi-
gators classied each particle into one of six shapes: round,
concave, single-lobed, multilobed, at, or neglected. The clas-
sication criteria were dened as follows: multilobed particles
had at least three peaks of approximately equal height; concave
particles had two peaks with a distinct valley; at particles di-
splayed monotonous Z-curves; round particles had a max. H/
max. D ratio $0.2; and single-lobed particles had one prom-
inent peak with a height$5%. Particles that did not meet these
criteria were classied as neglected. Following these guidelines,
four independent researchers blindly analysed and classied
the grains from all 24 AFM images (altogether 567 grains),
which means that they could not relate the images to the 24
preparation methods. Table 2 shows the EV number, size (max.
D) and max. H range of grains for each preparation protocol
aer analysis in Gwyddion and aer analyses in EVIAN.

Considering the number of grains detected in Gwyddion
(Table 2), we can eliminate protocols 1–4, which involve only
dropping, incubating, washing and drying in air, as they all
resulted in a notably lower number of grains, most probably due
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 2 Atomic Force Microscopy (AFM) analysis of extracellular vesicles (EVs). (a) AFM topography image in Gwyddion showing detected grains
(red) and their distribution across the surface. The arrow points to the grain that is displayed individually with the use of EVIAN below (b). The
assigned ordinal number (20) of the selected grain and total number of detected grains (68) in the 10 × 10 mm AFM image, as well as the aspect
ratio, are shown on top. Underneath the program plots: (b(i)) Heatmap representation of the selected grain (EV), capturing the intensity distri-
bution across the surface area. (b(ii)) 3D surface contour of the EV showing morphological features, such as height variations. (b(iii)) Cross-
section of the EV along different axes (x, y, +d, and −d), providing detailed height (z) values.
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to damage of the integrity and structure of EVs during the
drying process. By comparing to samples 5–8, which were also
air-dried but underwent xation before dropping onto the mica
substrate and drying, we can generally observe an increase in
the number of grains, particularly for NiCl2 (5) and APTES-l (8)
© 2025 The Author(s). Published by the Royal Society of Chemistry
functionalisation, which provided larger surface roughness
(confront Fig. S2) and thus better surface coverage with a func-
tionalising agent. Generally, in the case of NiCl2, the enhanced
bonding is due to positively charged mica, while with APTES,
the aldehyde groups of yjr xative bond together the primary
Nanoscale Adv., 2025, 7, 7780–7797 | 7787
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Table 2 Grain analysis of AFM images in Gwyddion and EVIAN on a 100 mm2 surface showing the total number (N), maximum Martin diameter
range, and maximum height range

No.

Gwyddion EVIAN

Total N
Maximum Martin
diameter range (nm)

Maximum height
range (nm)

Total N
range

Maximum Martin
diameter range (nm)

Maximum height
range (nm)

1 3 80–270 23–60 2–3 84–270 23–60
2 6 60–277 24–45 3–4 85–277 24–45
3 6 67–169 23–51 2–3 101–169 23–51
4 14 56–295 21–79 9–12 102–295 23–79
5 24 123–488 28–99 16–24 123–488 28–99
6 6 63–406 21–65 2–5 82–406 23–65
7 8 123–388 28–66 6–8 123–388 28–66
8 68 56–417 20–81 45–54 75–417 20–84
9 30 56–584 21–121 17–25 77–584 21–121
10 40 56–434 24–104 27–30 75–434 26–104
11 20 70–428 22–88 13–18 70–428 21–88
12 32 56–562 23–77 18–25 75–562 25–77
13 39 56–667 23–87 23–30 67–667 24–87
14 28 56–386 23–52 15–19 79–386 26–52
15 38 56–275 21–48 16–24 82–275 22–48
16 56 56–288 21–44 28–39 70–288 21–44
17 8 85–234 21–61 2–8 85–234 21–61
18 9 60–147 22–48 3–6 67–147 22–48
19 20 60–306 22–93 11–16 80–306 25–93
20 68 60–283 21–38 38–59 75–283 22–38
21 7 67–647 26–75 4–5 94–647 26–75
22 4 63–89 22–29 0–2 80–89 26–29
23 25 56–312 23–84 15–22 80–312 24–84
24 8 67–126 21–34 3–6 70–126 22–34
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amino groups of APTES and amino groups on the surface of EVs
belonging to membrane proteins or lipids with a phosphatidyl-
ethanolamine headgroup.53 Similarly, the number of detected
grains was notably lower aer combination of chemical dehy-
dration and drying (DMP + HMDS, preparation methods 21–24),
possibly due to some interference of the two chemicals with the
mica functionalisation, except in the case of APTES-v func-
tionalisation (23). HMDS did not appear to be effective with
NiCl2 and PLL surfaces, even when using an ethanol gradient
(samples 17 and 18), while the remaining 10 protocols (9–16, 19
and 20) yielded a sufficient number of particles for analysis. All
particle numbers further decreased aer morphological classi-
cation in EVIAN, during which certain particles were neglected
as artefacts (columns in the right half of Table 2). However, we
should bear inmind that we assumed here that the variability in
particle number is mainly a consequence of strength of their
binding to the substrate and preservation of morphology, but it
could likely arise also from differences in sample handling, EV
heterogeneity within the EV pool and technical limitations
during AFM imaging.

The max. D of the detected grains ranged from approxi-
mately 60 to 600 nm, falling within the typical size range of EVs
and well above our selected size threshold, while the max. H
values ranged from 20 to 120 nm. However, if we compare these
values with the values obtained aer EV classication in EVIAN,
we can see that the range of max. D shied towards larger values
(around 70–670 nm) as the lowest sizes increased while the
largest stayed the same. This suggests that the majority of
7788 | Nanoscale Adv., 2025, 7, 7780–7797
artefacts that were neglected during this process were in the
smaller size range. Consequently, analysis solely based on
Gwyddion grain detection can result in EV size distributions
that are inaccurately skewed toward smaller values. Such a shi
has been observed before, when the sizes of EVs from CSF were
determined by different methods and AFM yielded a smaller
mode size.22 The values adjusted aer neglecting artefacts in
EVIAN align more closely with the size range (141.7 nm to 243.2
nm) detected by PALS in this investigation. Nevertheless, it is
also plausible that, due to low resolution of AFM imaging,
smaller grains were more frequently recognised as artefacts. A
similar effect was observed for the max. H values, although not
to the same extent as in the size distributions. Additionally, due
to discrete lateral shis inherent in AFM image acquisition and
relatively low resolution, certain max. Dmay be identical across
different samples.

The aspect ratio (height/diameter or height/radius) has been
considered an important parameter in the previous morpho-
metric investigations of EVs, e.g., for the determination of the
relationship between the size, deformation degree, and
mechanical properties of EVs from the liquid biopsy of multiple
myeloma patients,54 prediction of the host from three different
cancer cells29 and comparison between tumour-derived and
normal cell line EVs.55 Therefore, we calculated it for each rec-
ognised grain in this study as max.H/max. D. Throughout the 24
sample preparation methods, the particle aspect ratios span
from around 0.06 to around 0.7 (Fig. 3), which is in agreement
with previous studies.54 Vorselen et al.17 obtained 0.5–0.75
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 Morphometry analysis: aspect ratio (maximum height/maximum Martin diameter) ranges for 24 different methods: (a) data after grain
analysis in Gwyddion and (b) non-neglected particles after analysis by four investigators using EVIAN. Legend for methods: without fixation + air-
dried (1 – NiCl2, 2 – PLL, 3 – APTES-v, 4 – APTES-l); fixed + air-dried (5 – NiCl2, 6 – PLL, 7 – APTES-v, 8 – APTES-l); fixed + EtOH + CPD (9 –
NiCl2, 10 – PLL, 11 – APTES-v, 12 – APTES-l); fixed + DMP + CPD (13 – NiCl2, 14 – PLL, 15 – APTES-v, 16 – APTES-l); fixed + EtOH + HMDS (17 –
NiCl2, 18 – PLL, 19 – APTES-v, 20 – APTES-l); fixed + DMP + HMDS (21 – NiCl2, 22 – PLL, 23 – APTES-v, 24 – APTES-l).
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values for red blood cell EVs from 3 donor samples. Such
hemispherical shapes, with H/D values around 0.5, are also
typical for liposomes.20 On the other hand, Yokota et al.56

detected lower aspect ratios (around 0.20 H/D) for tethered EVs
from different cell lines (Sk-Br-3 and HEK293) on nanospots of
the polyethylene glycol–lipid conjugate in a chip. Comparison
of aspect ratio ranges before (Fig. 3a) and aer elimination of
artefacts in EVIAN (Fig. 3b) reveals notable narrowing towards
smaller values for all methods except 1, 4, 5, 7, 9–12, 17 and 24.
Methods involving xation, dehydration in ethanol gradient
and CPD (9, 10 and 12) stand out with the widest range of aspect
ratios (the only three methods providing aspect ratios above
0.5), with the exception of method 11 (APTES-v functionalisa-
tion), which exhibits one of the narrowest and lowest aspect
ratio ranges among methods yielding at least 15 EVs/100 mm.
On the other hand, method 12 (xative + ethanol gradient + CPD
on APTES-l mica) also yielded the lowest minimum aspect ratio
value (around 0.06), which could also be a sign of attening.
This indicates that APTES functionalisation might be
© 2025 The Author(s). Published by the Royal Society of Chemistry
responsible for attening of EVs, presumably due to strong
interactions with APTES molecules on the surface of mica.

This is further evidenced in the morphological classication
by the four investigators, presented in Fig. 4, with the shape
distribution for each preparation method shown in different
colours (orange = round, yellow = single-lobed, violet =

concave, blue=multilobed, grey= at, and green= neglected).
Variations in classications among investigators were noted,
likely due to subjective interpretation and difficulty in catego-
rizing certain shapes. Nevertheless, we can draw some conclu-
sions by comparing the 12 methods that yielded on average at
least 15 EVs/100 mm (5, 8, 9–16, 20 and 23) aer elimination of
artefacts through EVIAN. Method 20 (APTES applied as liquid
solution and EtOH + HMDS gradient drying) stands out with the
largest fraction of at shapes, about which all four investigators
agreed. A very evident fraction of at shapes can also be di-
scerned for method 11 (APTES deposited as vapours and drying
through the EtOH gradient and CPD). This is in agreement with
the lower aspect ratio that was also characteristic for both
Nanoscale Adv., 2025, 7, 7780–7797 | 7789
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Fig. 4 Shape classification of extracellular vesicles using the in-house developed EVIAN program in Python: distribution of particles based on
shape across differentmethods as classified by four investigators. Legend formethods: without fixation + air-dried (1–NiCl2, 2– PLL, 3– APTES-
v, 4 – APTES-l); fixed + air-dried (5 – NiCl2, 6 – PLL, 7 – APTES-v, 8 – APTES-l); fixed + EtOH + CPD (9 – NiCl2, 10 – PLL, 11 – APTES-v, 12 –
APTES-l); fixed + DMP + CPD (13 – NiCl2, 14 – PLL, 15 – APTES-v, 16 – APTES-l); fixed + EtOH + HMDS (17 – NiCl2, 18 – PLL, 19 – APTES-v, 20 –
APTES-l); fixed + DMP + HMDS (21 – NiCl2, 22 – PLL, 23 – APTES-v, 24 – APTES-l).
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methods (Fig. 3b). Such attening might be a consequence of
too strong adhesion of EVs to the amino-functionalised mica, as
has been observed before for high concentrations of APTES.57

HMDS might contribute to this effect too, since such attening
was themost obvious whenHMDS was used. On the other hand,
7790 | Nanoscale Adv., 2025, 7, 7780–7797
the low aspect ratios for method 8 seem to have arisen more
from single-lobed structures, possibly due to deformations
during simple air drying. Otherwise, round and/or single-lobed
shapes dominated in most of the samples, while at, concave
and especially multilobed structures were inminority. Method 5
© 2025 The Author(s). Published by the Royal Society of Chemistry
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(NiCl2 + xative and air-drying) yielded the largest fraction of
round particles and a very low fraction of concave, at or
neglected particles.

We can see that different preparation methods can give
many different size and shape distributions for the same
sample of EVs without even introducing any variations in the
isolation method. Therefore, a standardised and reliable
sample preparation is key for successful morphological anal-
ysis, consistency and reproducibility. Moreover, variability in
shape classication is evident for four independent researchers
who analysed the same images. To resolve this, we need to
better dene the shape classes, and use better resolution and
larger areas that would capture larger, statistically more repre-
sentative samples.

Shape denition is challenging with complex three-
dimensional and ambiguous particles. Certain structures will
oen be at the edge, overlapping the different shape class
characteristics. Kapoor et al. applied similar logic as in this
study and successfully categorized different shapes of EVs from
cryo-TEM images to single spherical, tubular and double,
choosing eccentricity as a quantitative metric for dening shape
but also the diameter, and major and minor axes.58

Challenges also remain in achieving reproducibility and
accuracy in EV research. Higher resolution imaging can
enhance the accuracy of morphological assessments, aiding in
the distinction of subtle differences between EV subpopula-
tions. However, the trade-off between resolution and acquisi-
tion time should be carefully considered.59 And not only the
imaging efficiency, but shape categorisation efficiency should
also be considered. The use of a computer program EVIAN for
selection, displaying and manual classication notably short-
ened the time of morphological analysis but with higher reso-
lution and an increased number of particles, this would still
become overly time consuming. It could be greatly improved if
we switched from manual to automated shape classication.
That is why we created a training set for ML from 231 grains, for
which all 4 investigators selected exactly the same shape
designation. It contained 56 round, 16 single-lobed, 15 concave,
3 multilobed, 26 at and 115 neglected particles.
3.3. Machine learning in EV classication by morphology

The machine learning outcome is illustrated by a confusion
matrix, which evaluated the model's ability to correctly recognise
each EV shape (Fig. 5a). The model excelled at identifying round
EVs and artefacts (the “neglect” class), likely due to their distinct
morphological characteristics and the most abundant presence
in the dataset. In contrast, the multilobed class, which had only
three instances in the dataset, exhibited the highest misclassi-
cation rate, oen being confused with other classes. This can be
attributed to both the small sample size and the morphological
similarities between themultilobed and other classes. Hence, the
model's performance is consistent with the class distribution in
the dataset, which is typical in cases of class imbalance in the
training dataset, despite the efforts to mitigate this through data
augmentation and SMOTE.37 Interestingly, the concave and at
particles, though not as well-represented as round and neglected,
© 2025 The Author(s). Published by the Royal Society of Chemistry
were classied with relatively high accuracy. This suggests that
these morphologies possess distinguishing features that the
model was able to learn effectively, even with fewer training
examples. In total, 50 predictive models were trained and evalu-
ated independently. The best-performing model, identied
through grid search with a batch size of 32, 150 training epochs,
and the Adam optimizer, demonstrated an average test accuracy
of 85.28% and a weighted F1 score of 85.44%, with a standard
deviation of 5.07% and 4.75%, respectively. This consistency in
performance highlights the robustness of the model across
different data splits. The ability of the model to neglect the
artefacts very well is particularly promising for retrieving correct
EV size distributions from AFM images, even more closely than
whenmanual analysis approximated thosemeasured by DLS and
previous measurements with other methods on similar samples
of EVs from CSF.22,40

The best performing model was then used to analyse the
same 567 grains from the 24 AFM images as the four investi-
gators. Fig. 5b shows thus obtained EV shape distributions for
the 24 methods. It is in very good agreement with the manually
generated distributions. Among images with at least 15 EVs/100
mm, distributions of samples 8, 9, 11 and 23 agree best with the
results of Investigator 1; samples 10 and 12 with Investigator 2;
14–16 with Investigator 3; 5, 13 and 20 with Investigator 4. The
automated analysis by the CNN model36 also detected the
largest fraction of at structures in the case of APTES-l + xative
+ ethanol gradient + HMDS (method 20) and the highest
frequency of round particles in the case of NiCl2 functionali-
sation with air-drying aer xation (method 5). In the majority
of samples, the histograms of max. D were peaked between 100
and 150 nm, which is very much in agreement with DLS,
especially if also considering the increased apparent size in DLS
due to hydration (Fig. S4). Most max. H distributions exhibit
a maximum between 20 and 40 nm (Fig. S5). The majority of
particles for methods 8, 10, 13–16, 20 and 23 are below 50 nm
high, while there is a non-negligible fraction of particles with
larger heights for the other 4 protocols (5, 9, 11 and 12, Fig. S5).
The most common aspect ratio was 0.2–0.3 for methods 5, 8, 16,
20 and 23, for which these distributions were narrow, as in the
case of protocol 11, which yielded even lower (0.1–0.2) max. H/
max. D ratios, conrming the attening effect (Fig. S6). The
distributions for methods 13–15 were similar but slightly wider,
while they appeared almost normal for methods 10 and 12, with
modes at 0.3–0.4 and the range extending from 0.1 to 0.6
(Fig. S6). Method 9 stands out exhibiting two modes, with the
second one above 0.4, and the range extended up to 0.7.

Generally, taking all morphometrics (dimension ranges and
distributions, aspect ratio ranges and distributions and shape
distributions) together, we can conclude that drying from HMDS
(methods 17–24) is not a good option for preparation of EVs for
visualisation by AFM, as it either causes detachment of EVs from
the functionalised surface (methods 17–19, 21, 22 and 24), at-
tening (method 20) or deformations leading to ambiguous
shapes (method 23). By contrast, dehydration of xed EVs in
ethanol gradient followed by CPD (methods 9, 10 and 12) seems
the most optimal preparation protocol, as it yielded EVs with the
highest aspect ratios, a solid number of captured EVs, a relatively
Nanoscale Adv., 2025, 7, 7780–7797 | 7791

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5na00665a


Fig. 5 The confusion matrix in panel (a) displays the classification performance of the machine learning model, with values averaged across 10
iterations of 5-fold cross-validation, showing true and predicted particle shapes. Panel (b) presents the distribution of particles based on shape, as
classified by the machine learning model, across 24 different methods. Legend for methods: without fixation + air-dried (1 – NiCl2, 2 – PLL, 3 –
APTES-v, 4 – APTES-l); fixed + air-dried (5 –NiCl2, 6 – PLL, 7 – APTES-v, 8 – APTES-l); fixed + EtOH + CPD (9 –NiCl2, 10 – PLL, 11 – APTES-v, 12
– APTES-l); fixed +DMP+CPD (13–NiCl2, 14– PLL, 15– APTES-v, 16– APTES-l); fixed + EtOH+HMDS (17–NiCl2, 18– PLL, 19– APTES-v, 20–
APTES-l); fixed + DMP + HMDS (21 – NiCl2, 22 – PLL, 23 – APTES-v, 24 – APTES-l).
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low fraction of neglected particles, a low fraction of concave
shapes and either round or single-lobed as the most frequent
shape. Moreover, while APTES functionalisation needs some
further optimisation in terms of the functionaliser amount and
technique of functionalisation, as they sometimes resulted in
poor EV capture and attening, NiCl2 coating gave the most
intriguing and somewhat puzzling results, with air drying
rendering rounder structures, ethanol gradient with CPD
predominantly leading to single-lobed structures with expected
7792 | Nanoscale Adv., 2025, 7, 7780–7797
EV size and the highest aspect ratios, and chemical dehydration
with DMP, followed by CPD, resulting in particle shape and size
distributions very similar to those aer the other
functionalisations.

To resolve whether round nanoparticles get lost during
additional dehydration and drying steps or they emerge as
a result of air drying, and to further enhance the objectivity of
the preparation protocol comparison, we analysed two times
larger area for methods 5 (NiCl2, xative and air-drying), 9
© 2025 The Author(s). Published by the Royal Society of Chemistry
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(NiCl2, xative, ethanol gradient and CPD) and 13 (NiCl2, xa-
tive, DMP and CPD) and added liquid AFM (no dehydration and
drying) for EVs on NiCl2-coated mica as a reference of their
“true” (near-native) dimensions and shapes (Fig. 6). We used
the CNN model for artefact elimination and shape classica-
tion. All three dried samples exhibited slightly smaller most
frequent max. D than the non-dried sample (100–150 nmmode,
while it was 150–200 nm for the non-dried sample, Fig. 6(i)), but
the differences in the size distributions were not statistically
signicantly different. By contrast, all four methods revealed
the most abundant max. H between 30 and 40 nm. However,
method 5 was statistically signicantly different from the liquid
AFM method in the height distribution (p = 0.013 by the two-
tailed Mann–Whitney U test, Fig. 6(ii)). The deviation of this
method from liquid AFM was even more evident in the aspect
ratio distributions as there was less than 0.5% probability (p =

0.0028) that method 5 and liquid AFM data came from the same
sample. Although all four aspect ratio distributions were peaked
at 0.2–0.3, EVs with aspect ratios above 0.5 existed only in the
Fig. 6 Comparison of morphometric characteristics (maximum Martin
(maximum height/maximum Martin diameter) distribution (iii) and shape
methods (5 (a), 9 (b), 13 (c) and liquid AFM (d)). One asterisk (*) denotes
image (p < 0.05) and two asterisks (**) denote a statistically significant
Mann–Whitney U analysis.

© 2025 The Author(s). Published by the Royal Society of Chemistry
non-dried sample and dried sample based on method 9, which
even exhibited another maximum at 0.4–0.5 (Fig. 6(iii)). More-
over, the shape distribution of method 9 also most closely
resembled the one of the non-dried sample (it is the only one of
the three dried samples for which round is not the most
common shape), although all three AFM air methods overex-
pressed round shapes with regards to near-native liquid AFM
morphology (Fig. 6(iv)). On the other hand, the max. H distri-
bution of method 13 agreed best with the liquid AFM data
(Fig. 6(ii)). Hence, we can conclude that crytical point drying is
crucial for preserving the near-native morphology of EVs in
examination by AFM in air and both chemical or ethanol
gradient dehydrations function well, but the ethanol gradient
better preserves particles with a higher aspect ratio. There is
room for optimisation in NiCl2 functionalisation, which seems
to cause some round artefacts or rounding of EVs. It is not yet
known whether the various observed morphologies distinctively
differ in certain biochemical properties. Furthermore, EVs can
undergo different topological changes affected by the presence
diameter distribution (i), maximum height distribution (ii), aspect ratio
distribution (iv)) of EVs on NiCl2-coated mica prepared by 4 different
a statistically significant difference in comparison with the liquid AFM
difference in comparison with the liquid AFM image (p < 0.005) after

Nanoscale Adv., 2025, 7, 7780–7797 | 7793
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of different molecules.3 Future addition of immune-based
detections aer reliable morphology determination and quan-
tication should resolve this. Nevertheless, using immunolab-
eling with functionalised Au nanoparticles based on the
proteins identied by western blotting, Harrington et al.60

discovered that only spherical nanostructures contained the
exosome-associated protein. This indicated that the nano-
spheres could be involved in neurotransmission and signal
transduction/regulatory activities within CSF, whereas nano-
sized blobs and strands have an important connective/
adhesive role in neurite development. Only the spheres with
80–100 nm diameters were immunolabelled with antibodies
against acetylcholine, which indicates that only the bigger EVs
are involved in neurotransmission. Sharma et al.61 detected
a single molecule of transmembrane protein CD63 on the
surface of EVs from saliva with an antibody-coated tip and
antibody-labelled gold beads enabling the detection of specic
membrane markers for specic diseases. Furthermore,
comparison of topographic images of UC-isolated exosomes
from the saliva of healthy individuals and the saliva of oral
cancer patients revealed that normal exosomes exhibited
a circular, homogeneous, bulging structure and diameter of 40–
80 nm, while cancer-originating exosomes were bigger, with
a broader distribution of 20–400 nm and manifested irregular
morphologies, aggregation and clustering. Also, cancer exo-
somes indicated a possible increased surface CD63 density.62

All in all, we can say that we successfully provided an auto-
mated platform for classifying and quantifying EVs from AFM
images and the model achieved high accuracy and F1 scores
overall. Nevertheless, we can see several possibilities for
improvement.

First, the limited number of instances in certain classes,
such as multilobed, suggests that more labelled data are needed
to improve shape categorisation accuracy. In future work,
acquiring additional EV samples, particularly for underrepre-
sented classes, will be critical for improving the performance of
this model.

Moreover, while data augmentation and SMOTE were effec-
tive in balancing the class distribution and enhancing model
stability more advanced augmentation techniques – such as
generative adversarial networks – could be explored to create
more realistic synthetic samples. This would further reduce the
impact of class imbalance and improve the model's ability to
generalize rare EV morphologies.

Finally, the current model architecture could be further
optimized by expanding investigations to a broader range of EV
morphologies, particularly underrepresented classes, analysing
AFM images in a higher resolution and in a liquid/native envi-
ronment, and exploring alternative deep learning approaches,
such as transfer learning or more complex network architec-
tures, to enhance feature extraction and improve classication
performance.

4. Conclusion

This investigation has demonstrated that the sample prepara-
tion protocol can inuence the morphology of EVs. Ethanol
7794 | Nanoscale Adv., 2025, 7, 7780–7797
gradient dehydration followed by critical point drying best
preserved the EV morphology with the highest aspect ratios
when applied on NiCl2-coatedmica, for which all morphometric
data agreed very well with the near-native EV morphology
observed in liquid AFM images.

The structure of EVs cannot be unambiguously and easily
resolved by manual morphological analysis, even with the
assistance of a computer program to display individual particles
and export their morphological classications. Such a task soon
becomes either too demanding and time consuming for reliable
data collection or results in a dataset too small to draw trust-
worthy conclusions. Here, we obtained a sufficiently large
dataset to train and develop a CNN to distinguish between the
various EV morphologies that we observed and dened. Aer
training, the model achieved a high level of accuracy, with an F1
score of 85 ± 5%. It is particularly important that the CNN
demonstrated a strong ability to disregard artefacts captured
during non-topological automatic grain detection and analysis
in Gwyddion. This enables more accurate determination of
sizes and size distributions of EVs based on AFM images. The
successful integration of ML in this context signies a key
advancement in the analysis of EV morphology, mitigating the
subjectivity and time inefficiency of manual categorisations.
CNNs will be able to process a much larger amount of data in
a notably shorter time. Consequently, reproducibility and
accuracy will improve, which will greatly enhance the imple-
mentation of the AFM images in liquid biopsies, facilitating
non-invasive monitoring. In this manuscript, we present a tool
for future research that will (i) facilitate and greatly improve the
standardisation of sample isolation and preparation protocols
to better preserve the native morphology of EVs and (ii) incor-
porate additional features, such as biomechanics and immuno-
based proling. By correlating morphology, topology and other
physical properties with specic biomolecular signatures, the
genesis and biological role of each EV class could be elucidated.
Inability to monitor the brain's cellular and metabolic state at
micro- and nano-levels continuously is a major limitation in TBI
treatment and discovery of brain-related diseases. Here, the
presented results and inventions are an important step towards
precise and proactive diagnostics and treatment in the future.
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Data availability

Data for this article, including AFM images, dynamic light
scattering and zeta potential data, machine learning, auto-
mated analysis of EV morphology, statistical analysis, Gwyd-
dion data, and western blot/immunoblot images are available at
Dabar at https://urn.nsk.hr/urn:nbn:hr:184:359174.63

The code for the EVIAN program for manual classication of
vesicles (or other notable features) imaged by AFM can be found
at https://github.com/David-Fabijan/EVIAN with DOI https://
doi.org/10.5281/zenodo.17245737.35 The version of the code
employed for this study is 0.9.

The study was conducted according to the guidelines of the
Declaration of Helsinki, and approved by the Ethics Committee
of General Hospital Pula, Pula, Croatia (number: 4943/10-1, 17
July 2019). Informed consent was obtained from a family
member for all TBI patients and cannot be made available due
to ethical condentiality requirements.

Additional data are available from the corresponding author
upon reasonable request.

Data generated and analysed during this study are included
in this published article and its supplementary information (SI)
les. Supplementary information is available. See DOI: https://
doi.org/10.1039/d5na00665a.
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