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Spherical neptunium oxide nanoparticles in the 40—-200 nm size range
are synthesized through a homogeneous precipitation approach.
These particles and their suspensions are characterized with various
spectroscopic and microscopic analyses. This work bridges a gap in
available size regimes for structure—property relationships in nuclear
materials.

In the beginning of the atomic era, neptunium did not receive
as much attention as its actinide neighbors, uranium and
plutonium. Focus on neptunium manifested more in hindsight
as a major activity-contributor in nuclear waste.** In the last
decade, neptunium research has been reinvigorated with its
central role in **®*Pu production for space exploration®** and
advanced reactor technology prospects.®” In these applications,
neptunium is often in its NpO, powder chemical form and it
maintains morphological and size characteristics from the
production method. The particle size and shape affect the
material handling (e.g., dispersibility, filterability, and packing
in a consolidated form like pellets or billets). More fundamen-
tally, particle size affects optical and electronic properties, as
well as surface-based reactivity.® In this work, we distinguish
“particles” from “grains” or “crystallites,” which may refer to
sub-particle units. Mastering synthetic engineering of different
actinide particle size regimes and morphologies is necessary for
studying structure-property relationships and tuning material
properties for innovative applications.

Bulk precipitation and calcination methods result in NpO,
with a range of particle sizes, largely >1 um, and often lack
morphological control.®** For example, in the oxalate precipi-
tation process, factors such as neptunium and oxalic/nitric acid
concentrations, temperature, mixing, and order of addition all
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affect the Np oxalate product.’* Conditions are selected to
optimize processing scale product yield and filterability, which
corresponds with larger particle size.*>*® On the smaller end of
the spectrum, Np oxide nanocrystals produced from carbonate
matrix dilution'” and thermolysis of a nitrate salt precursor'® are
reported as 2-5 nm in size. Some Np colloids (i.e., an unspeci-
fied hydrated neptunium hydr(oxide) phase) have been
measured as 50-60 nm in size,'® though this is much larger than
other tetravalent actinide colloids (typically 2-20 nm), and may
be indicative of aggregation.>*** Actinide colloids are notori-
ously challenging to manipulate in solution and their ill-defined
composition and amorphous form is not ideal for further pro-
cessing or applications. Larger, sub-micron NpO, particles can
form via thermolysis of an organometallic molecular
precursor® or hydrothermal oxalate conversion.*® However,
these processes involve inert atmosphere and/or high pressure
and temperature operations. We are interested in a facile
synthesis of large spherical NpO, nanoparticles (50-100 nm) to
help fill the gap of accessible NpO, particle sizes (Fig. 1). To
minimize dispersibility hazards associated with NpO, particles,
we focus on suspension-based manipulation and control of the
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Fig.1 Summary of reported NpO, size regimes via different synthetic
routes.
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particle feedstock throughout synthesis and consolidation.
Particles of approximately 100 nm were targeted as a size that
could both form homogeneous suspensions and be centrifuged
to isolate the solid phase. Spherical particles specifically offer
ideal characteristics, such as efficient packing, flow, and
thermal properties.> Hexamethylenetetramine (HMT) has an
existing role for spherical particle production in the nuclear
industry for gelation processes (e.g., uranium microsphere
kernels for TRISO fuels).>*® Recently, we reported a modified
homogeneous precipitation synthesis of CeO, particles with
HMT that meets our objective criteria.>® Herein, we share the
transuranic extension to Np chemistry and subsequent mate-
rials characterization.

Neptunium oxide nanoparticles (NPs) were synthesized
using a homogeneous precipitation with HMT and ammonium
hydroxide in a solvent mixture of ethanol and water at room
temperature. The Np was introduced as an electrochemically-
reduced Np(wv) stock in dilute nitric acid (Fig. S1 and S27).
Additional synthetic details are provided in the ESI.f The HMT
serves as a spherical particle templating agent and pH moder-
ator, while the ammonium hydroxide raises the pH to induce
particle nucleation through hydrolysis of Np(wv). Typically,
under these conditions with Ce, the decomposition of HMT is
sufficient to raise the pH without the addition of ammonium
hydroxide. However, the more acidic initial solution required to
prevent preemptive hydrolysis of Np(wv) interferes with the HMT
decomposition process and thus ammonium hydroxide is
necessary. In the synthesis, the pH was adjusted stepwise to
minimize localized interfacial effects of the base introduction
(Fig. 2). Nucleation of tan-colored particles is visibly evident
when the pH reaches 2.0 & 0.1. Particle flocculation is visible by
pH 4.6 £ 0.1, followed by particle settling in the vial. For
areaction solution adjusted to pH 4.9 + 0.1, the pH raised to 5.1
+ 0.1 from HMT decomposition overnight. Sampling of the
supernatant after centrifugation indicates the precipitation is
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Fig. 2 Titration of the Np NP reaction solution conducted on
0.01 mmol Np (~2.4 mg Np) scale with 10 equivalents of HMT. Inset
are photos at different pH points. Dispersed tan particle nucleation is
evident (pH 2-4.3), followed by flocculation (pH 4.6), and settling (pH
4.9).
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quantitative within experimental uncertainties above pH 4.7 +
0.1 (further described in ESIt).

Nanoparticles were harvested, washed, and manipulated in
ethanol (Fig. S3f). Dynamic light scattering (DLS) measure-
ments on dilute Np NP samples indicate monodisperse to near-
monodisperse suspensions of 40-200 nm particles (Fig. 3A).
The polydispersity index (PDI) for particles synthesized at pH
4.9 was 0.10 + 0.03(20). For reference, the HMT-mediated
particles are more size restrained than particles synthesized at
pH 7.2 with NH,OH only (PDI = 0.21 £ 0.03) (Fig. S4t). Data
collected on freshly synthesized and 11 day old particle batches
indicate feedstock size distribution and dispersion consistency
when aged short-term in ethanol (Fig. S51). After proper
washing (detailed in SI), dilute Np NP suspensions approach
stability (i.e., resistance to settling) in ethanol, demonstrated by
a zeta potential value of 18.5 + 4.3(2¢) mV (Fig. 3B). Generally,
suspensions with zeta potentials of + 30 mV are regarded as
“stable”.?°

UV-vis spectra of the Np NPs in ethanol suspension are
dominated by particle scattering in the near-UV range (<450
nm) (Fig. S6t). However, magnification of the 500-800 nm
region reveals broad spectral features most prominent at
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Fig. 3 Dynamic light scattering data (A) and zeta measurement (B) of
Np NPs synthesized at pH 4.9. (C) UV-vis spectra of the Np NPs in
ethanolic suspension and as a dried solid compared to previous report
of Np nanocrystals and a reference of the Np(v) aguo complex.
Spectra were scaled for comparison.
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745 nm that are distinct from the aquo Np(iv) complex (Fig. 3C).
Original Np(iv) hydrolysis work describes a broad band around
700-760 nm and loss of sharp transitions.” These features
persist in the solid state and align well with Husar et al.’s"
previous report of resuspended Np nanocrystals. Conversion to
Tauc plots of the solid-state spectra enabled a direct band gap
estimation of 2.72 £ 0.02(2¢) eV (Fig. S77), which is consistent
with the tan color. Our value is slightly lower than the 2.85 eV
measured on a NpO, thin film by McCleskey et al.** Typically
nanomaterials have band gaps shifted higher than that of their
bulk material, though we are not aware of a true bulk band gap
measurement for NpO,.** As particle size decreases, the relative
contributions of surface chemistry to material properties
increases. Thus, the presence of adsorbed solvent, redox
behavior, crystal lattice strain, or other surface-sensitive prop-
erties may have more significant contributions to optical/
electronic features in nanomaterials. Our deviation may also
arise from the material not undergoing any thermal treatment
(e.g., remaining hydrated and/or being poorly crystalline), while
McCleskey et al.** high fired their NpO, thin film at 1000 °C. In
amorphous compounds, band gaps arise from the short-range
order with more diffuse energy states than crystalline
compounds with long-range order.*® Given the differences in
the material synthesized here and that of McCleskey et al.,** the
band gaps are in reasonable agreement.

Scanning electron microscopy on transuranic particles of
this size regime is challenging to execute and approaches
resolution limits of the available instrumentation. Micrographs
reveal near spherical particulate of around 10-40 nm (Fig. S87),
which is smaller than the hydrodynamic diameter observed in
suspension, 60-200 nm. Disparity in suspension-based versus
solid-state particle size estimations are common and can arise
from solvent effects and sampling size.** For example, in our
preparation the DLS sample contained 30x more particles than
the SEM stub. Energy dispersive X-ray spectra (EDS) confirms
the presence of Np in the particles and also identifies high
carbon content (Fig. S91). The absence of a nitrogen signal
suggests HMT does not linger as a residue at the particle surface
from its role as a templating agent. Instead, the carbon content
may originate from several sources including, adsorbed
ethanol, residue from the diamond polishing compound used
to prepare the stub, and the common phenomenon of electron-
beam-induced carbon deposition during analysis.*

For phase identification, the particles were analyzed by
powder X-ray diffraction (PXRD), but no diffraction peaks were
observed (Fig. S107). This contrasts with the Ce NPs synthesized
similarly which show poorly crystalline peaks of the CeO,
structure, but the Ce particles are about twice the size of the Np
particles.”® The phase was further characterized by Raman
spectroscopy (Fig. 4). The only band at 453 cm ™" is assigned to
the characteristic I',5 stretching mode, also known as the Ty,
phonon in fluorite actinide dioxide compounds. No longitu-
dinal optic modes are evident. We do note the susceptibility of
the phase to damage under the laser (Fig. S11t); samples
exposed to excess laser no longer exhibit the 453 cm™" band.
Sampling parameters were selected carefully to mitigate this
effect, though this was challenging with the low signal from the
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Fig. 4 Raman spectrum of Np NPs. Inset is an image taken through
the 50x Raman microscope objective.

nanomaterial. It is possible that localized annealing from the
laser exposure produced the NpO, signal and it is not intrinsic
to the “as synthesized” material, especially considering the
amorphous structure. Regardless, the I',5 is 13 cm ™! lower than
usually observed in bulk NpO, (466 cm™').>® This red shift is
consistent with what has previously been observed for nano-
ThO, compared to bulk ThO, (3 cm™*); these ThO, samples had
undergone similar thermal treatment.’” We suspect the larger
shift in our Np sample arises from the comparison of our
hydrated material to high-fired NpO,.

We have described the size and shape-controlled synthesis of
spherical neptunium oxide particles through a homogeneous
precipitation approach. The synthesis has a high yield as well as
monodisperse and moderately stable suspension properties,
lending itself well to future use as a suspension-based particle
feedstock. While the phase is not crystalline NpO, “as synthe-
sized”, this can be common with particles achieved by solvent-
based, ambient to mild temperature methods.”® For example,
internal gelation processes produce hydrous metal oxide
microspheres.”® Our approach, which delves into the nanoscale,
appears to have a similar result. We have demonstrated the
ability to manipulate the nanoparticles and avoid aggregation,
which is essential to their functionality; subsequent formal
conversion to crystalline NpO, through heat treatment is
possible. Furthermore, feedstocks commonly undergo thermal
processing once consolidated to dry the product, remove any
organic content, and densify the form (e.g., sintering of pressed
pellets). Accessibility to particles of these characteristics for
nuclear materials has implications that span fundamental to
applied actinide science.
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