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Nickel-hydroxides have garnered significant attention for energy storage applications owing to their unique
interfacial characteristics and tunable structural properties. Despite this potential, precise morphological
control of 3D/2D nanostructures remains a major challenge. In this study, we report a morphology-
directed synthesis of nickel hydroxide (NH) nanostructures using two different halogen-containing
precursors: ammonium iodide (Al) and ammonium chloride (ACl). The resulting Al-NH and ACI-NH
samples exhibit distinct morphologies and physicochemical characteristics, influenced by the nature of
the halide ions. Their electrochemical performance was systematically evaluated using both three-
electrode and asymmetric button-cell configurations. Among the two electrodes, the ACI-NH electrode
achieved a higher specific capacity of 795 C g™t at 1.5 A g%, compared to 601.5 C g for Al-NH, and
retained 97% of its capacity over 6000 cycles at 24 A g~'. This improvement is attributed to the

Received 17th May 2025 increased surface area of ACI-NH (16.3 m? g~%) versus Al-NH (9.58 m? g%). Furthermore, a asymmetric
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device assembled with AI-NH and ACL-NH electrodes delivered a specific capacitance of 106.5 F g*1 at

DOI: 10.1039/d5na00488h 1.5 A g%, an energy density of 37.8 Wh kg~* at a power density of 1975.3 W kg™, and maintained 78%
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1. Introduction

The growing global demand for sustainable energy solutions
has intensified the search for efficient energy storage technol-
ogies. Among these, supercapacitors have emerged as prom-
ising candidates due to their rapid charge-discharge capability,
high power density, and long cycle life, making them ideal for
applications such as electric vehicles and portable electronics.™*
Their performance is largely governed by the choice of electrode
material, which directly influences energy storage mechanisms
and charge transport efficiency.’

Nickel-based layered double hydroxides (LDHs), particularly
nickel hydroxide (NH), are widely studied pseudocapacitive
materials owing to their high theoretical capacitance and fast
redox kinetics involving the Ni**/Ni** transition.** However, the
practical application of NH is often hindered by limitations in
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capacity retention over 8500 cycles.

electrical conductivity and sluggish ion diffusion. Recent
research suggests that these challenges can be addressed by
tailoring the material's morphology to enhance surface area,
electrolyte accessibility, and electron pathways.®® Tran et al.®
synthesized flower-like NiO via a hydrothermal method using
nickel nitrate and urea, followed by calcination. By adjusting
the Ni-to-urea ratio, solvent system, and adding CTAB, they
achieved uniform particles with a high surface area (62.97 m>
g™ "). Ethanol reduced ion diffusion, while CTAB regulated
particle growth, enhancing structural uniformity. Hoque et al.*®
highlighted that the solvent conditions and pH significantly
influence precursor solubility, ion diffusion, and ultimately the
morphology of NH nanoparticles, producing forms like spheres
or plates. Ping et al.™ further demonstrated that controlling the
spin state of Ni** enables the growth of large 2D a-NH crystals.
These findings suggest that optimizing synthesis parameters,
such as solvent type, pH, and precursor selection, can enhance
surface area, ion mobility, and electrochemical performance,
offering a strategic route for designing advanced nanomaterials
for energy uses.

Recent synthesis methods like hydrothermal and sol-gel
techniques enable precise control over NH morphology.*>**
Templating approaches help form porous structures that
enhance ion transport, while incorporating conductive mate-
rials such as graphene or carbon nanotubes improves electrode
conductivity and supercapacitor performance.** Liu et al®

© 2025 The Author(s). Published by the Royal Society of Chemistry
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designed a 3D MnCo-LDH@NH core-shell structure on nickel
foam, achieving high durability and a capacitance of 2320 Fg™"
at 3 A g . Yan et al.*® synthesized flower-like NH on graphene
via a microwave-assisted method, forming an asymmetric
device that delivered 218.4 F g~ " and 77.8 Wh kg™" at 1.6 V, with
94.3% retention over 3000 cycles. These studies emphasize the
critical role of morphology in enhancing electrochemical
performance, a key focus of the present work.

Despite ongoing advances, the influence of halogen-based
precursors on the morphology and electrochemical perfor-
mance of NH remains underexplored. This study aims to fill
that gap by synthesizing 3D/2D structured nickel hydroxides
using two different halogen precursors ammonium iodide (AI)
and ammonium chloride (ACl) via hydrothermal methods. By
comparing the resulting structural, surface, and -electro-
chemical properties of AI-NH and ACI-NH, this research offers
insight into how halogen-mediated morphology control can
optimize NH-based electrodes for high-performance energy
storage devices.

2. Experimental details
2.1 Preparation procedure of NH

Initially, nickel hydroxide (NH) was synthesized using different
halogens (Cl, I) through the following procedure: 4 mM of
Ni(NO3),-6H,0 was dissolved in deionized H,O, followed by
stirring. Next, 6 mM of either ammonium iodide (AI) or
ammonium chloride (ACl) and urea were added at 5 minute
intervals over 20 minutes. The resulting pale-green solution was
then moved into Teflon-cased autoclaves and maintained at
160 °C for 10 hours. After cooling to 25 £+ 1 °C, the obtained
powders were collected, thoroughly washed with ethanol and
water, and dried at 80 °C overnight for further characterization.
The samples were labeled as AI-NH and ACI-NH. Fig. 1 illus-
trates the schematic representation of the AI-NH and ACI-NH
materials. The experimental procedures, electrochemical anal-
ysis, and device fabrication details are provided in the SI file.
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3. Results and discussion
3.1 Structure and morphology

The o-NH structure exhibits wider interlayer spacing, with
diffraction peaks at lower angles (approximately 26 = 12°), while
B-NH has narrower interlayer spacing, characterized by
a primary (001) diffraction peak near 26 = 19°."”*® The diffrac-
tion peaks of a-NH are broader and weaker due to its disordered
structure, especially in the high-angle region. In contrast, 3-NH
displays sharper and more intense peaks, reflecting a highly
ordered crystalline structure with larger grain sizes. Fig. 2(a)
reveals that the diffraction peaks are sharper and more intense
for B-NH, with multiple peaks clearly visible in the high-angle
region (33°, 38°, 52°, 59°)."7** As the 26 angle increases, addi-
tional diffraction peaks become evident at 260 = 33°, 38°, 52°,
59°, and 62°, corresponding to the (100), (101), (102), (110), and
(111) facets, respectively. This indicates a higher degree of
crystallinity and a more regular hexagonal crystalline structure
for B-NH. The absence of interspersed water molecules or
anions between its layers contributes to its orderly and
symmetric arrangement. These well-defined peaks confirm the
regular stacking within the crystal structure and the high degree
of crystallinity in B-NH.

The FTIR data in Fig. 2(b) reveal a distinct prominence of the
two peaks at approximately 530 cm ™' and 3640 cm ™, as evident
from the analysis. The vibrational peak near 530 cm ™' is usually
credited to the stretching vibration of the Ni-O bond,** and
variations in its intensity/width mainly reflect differences in
crystallinity, nanosheet thickness/orientation, and defect
density between ACI-NH and AI-NH; they should not be inter-
preted as direct halide-induced strengthening of intrinsic Ni-O
bonds. The sharp O-H stretching band observed near ~3640
em ' indicates relatively weak hydrogen bonding, as strong
hydrogen-bonding interactions would broaden the band and
shift it to lower wavenumbers.”* This peak is also present in
materials with I-precursors, but its intensity is usually weaker
and the peak shape broader, indicating more defects in the

Add 4mM Ni(NO;),"6H,0 or 6mM NH,I

Stirring 20 mins

@

Dry at 80°C 12H

Transferred into Teflon-lined autoclaves

fnf <

Washed by ethanol/water and centrifuge

Fig. 1 Schematic representation of the synthetic procedure of Al-NH and ACI-NH materials.
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crystal structure of the AI-NH. The peak located at 1362 cm ™"

corresponds to the surface carbonate/residual nitrate while the
H-O-H bending mode of interlayer/adsorbed water typically
appears near ~1630 cm . Fig. 2(c) provides a comprehensive
illustration of the molecular structures of the NH materials,
emphasizing the arrangement and connectivity of nickel and
hydroxide ions within the framework. The depiction reveals the
layered structure characteristic of NH, where nickel ions are
coordinated with hydroxide ions, forming a stable and orderly
lattice. This molecular arrangement is significant as it deter-
mines the material's properties, such as its ability to facilitate
ion exchange, electrical conductivity, and surface reactivity.

A thorough examination of the SEM images (Fig. 3) and
elemental mapping highlights the structural characteristics of
the samples. The AI-NH sample (Fig. 3(A)) exhibits a nano-
flower-like structure characterized by layered, flaky sheets that
are loosely packed and interconnected. These sheets display
sharp edges and irregular stacking, with surface features such
as wrinkles and folds, which potentially increase the availability
of active sites. In contrast, the ACI-NH sample (Fig. 3(B)) reveals
a compact, flower-like morphology, showcasing a hierarchical
arrangement with layers densely clustered into spherical
formations. This structure is notably more cohesive and denser
compared to AI-NH, suggesting reduced porosity but improved
mechanical durability. The spherical clusters also display well-
defined boundaries, indicating consistent particle size and
material distribution. Additionally, the porosity, visible as gaps
between the layers, offers potential pathways for enhanced
mass transfer and diffusion. The SEM mapping and elemental
analysis (Fig. 3(A) and (B)) provides a detailed comparison of the
nickel content in the two samples, highlighting significant
variations.
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(a) XRD profiles and (b) FTIR spectra of Al-NH and ACI-NH sample; and (c) molecular structure of NH materials.

The HRTEM images and associated elemental mapping
(Fig. 4(a-e)) of the ACI-NH sample reveal the presence of
numerous nanoscale protrusions on the surface. The HRTEM
images display a distinct fibrous or needle-like morphology,
forming a highly interconnected network. These protrusions
not only increase the material's specific surface area but also
improve its wettability within electrolytes, thereby enhancing its
specific capacity. Fig. 4(f) presents the SAED pattern, which
displays distinct dot patterns indicative of the sample's crys-
talline nature. This observation is further supported by the
broad peaks observed in the XRD analysis, confirming the
material's crystallinity. Elemental mapping (Fig. 4(g-1)) further
validates the uniform distribution of essential elements,
including nickel, within the nanostructure. This homogeneous
dispersion suggests successful incorporation of these elements,
with the dense, fibrous features observed in the HRTEM likely
corresponding to regions with higher nickel concentration,
thereby enhancing the material's functional performance.

Based on the XPS data presented in Fig. 5(a), the presence of
nickel (Ni) and oxygen (O) elements can be discerned, while
further analysis of individual peaks of the B-NH structure. The
Ni 2p spectra of B-NH typically exhibit two prominent peaks,
namely Ni 2p;, and Ni 2p,,, with binding energies approxi-
mately located at 855 eV and 872 eV (Fig. 5(b)), respectively.?>**
The primary peak corresponding to Ni 2p;, manifests the
characteristic features of Ni**, while the shoulder peaks or
satellites arise from shake-up satellites and multiplet splitting,
commonly observed around 860 eV and 879 eV (Fig. 5(b)).* The
main O 1s peak for B-NH typically occurs at approximately
530 eV (Fig. 5(c)), indicating the presence of Ni-O bonds. The
composition of the material can be further confirmed by
comparing the relative intensities and positions of the Ni 2p

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 FESEM images of AI-NH (A) and ACI-NH (B) samples.

and O 1s peaks. Additionally, quantifying the atomic percent-
ages of Ni and O using XPS spectroscopy reveals a close to 1: 2
ratio, confirming that the Ni-O/OH surface chemistry.

3.2 Formation mechanism of AI-NH and ACI-NH
nanoflowers

The morphology of the B-NH nanoflower structure is notably
influenced by the introduction of CI™ and I" ions, as these
halogens present as counter-ions in the precursor/solution and
act as growth-directing species during the synthesis process.
SEM imaging reveals that ACI-NH displays a more aggregated
nanoflower morphology, whereas AI-NH exhibits a relatively
dispersed structure. This distinction is attributed primarily to
differences in halide-Ni** complexation strength, facet-selective
adsorption, and ionic-strength effects during nucleation and
growth Chlorine ions (C1™) have a smaller ionic radius (~1.81 A)
and higher electronegativity (3.16), acting in solution and at
crystal surfaces. This surface mediation promotes the forma-
tion of a tightly packed nanoflower structure, enhancing

© 2025 The Author(s). Published by the Royal Society of Chemistry
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material aggregation at the microscale. Additionally, C1™ ions
modulate local supersaturation and surface charge during
hydrothermal growth, which retards growth on specific facets
and yields thinner nanosheets that assemble more compactly.
Conversely, iodine ions (I7) have a larger ionic radius (~2.20 A)
and lower electronegativity (2.66), and their weaker complexa-
tion/adsorption leads to lower nucleation density and larger
nanosheets with more open layer spacing and structural
swelling, resulting in a more dispersed morphology. The weaker
interaction, also reduces templating/aggregation hindering the
formation of tightly clustered nanoflowers. Additionally, the
iodine-mediated growth reduces mutual attraction between
nanostructures, further contributing to the dispersed
morphology. The enhanced interconnection of nanosheets,
higher electrochemically accessible surface area, and reduced
tortuosity enhance the effective electronic/ionic transport in -
NH.**?* Charge transport proceeds via redox-coupled polaron
hopping through the Ni-O framework; better crystallinity and
percolation increase orbital overlap/connectivity, lowering
internal resistance. In contrast, poorer interflake connectivity

Nanoscale Adv., 2025, 7, 7726-7739 | 7729
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Fig.4 (a—e) FE-TEMimages, (f) SAED pattern, (g and h) bright field scattered images and HAADF, (i) combined mapping elemental image, and (j—

1) elemental mapping images of ACL-NH sample.

and higher defect density obstruct. electron pathways and di-
minishing conductivity. The electrochemical performance of
NH is driven by the redox reactions of Ni**/Ni**. Higher nickel
content increases active sites for these reactions, expediting the
electrochemical processes and enabling more uniform electron

7730 | Nanoscale Adv., 2025, 7, 7726-7739

transfer and ion migration. The oxidation of Ni*" to Ni** during
charging and the subsequent reduction back to Ni*" during
discharging contribute to the formation of NiOOH, enhancing
the material's activity and specific capacity. Additionally,
shorter electron/ion pathways in denser assemblies reduce the

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 5 XPS spectra of (a) survey scan, (b) Ni 2p; and (c) O 1s of ACI-NH sample; (d) valence band spectrum of AlI-NH and ACI-NH sample.

distance for charge transfer between neighboring nickel sites,
accelerating reaction kinetics. The denser better-connected
nanosheet assemblies with improved crystallinity reduce lattice
defects and vacancies, accommodating volume changes during
charge-discharge cycles and extending the material's cycling
lifespan. Furthermore, the f-NH structure with enhanced with
improved crystallinity/morphology exhibits greater resistance to
phase transitions, ensuring lattice stability and minimizing
irreversible damage. This compact arrangement also reduces
electrolyte erosion and dissolution losses, contributing to
improved cycling stability and material durability.

Fig. 6 presents the surface area and pore size distribution of
the ACI-NH and AI-NH samples as determined through BET
analysis, which provides critical insights into their structural
and adsorption properties. Fig. 6(a and b) depicts the nitrogen
adsorption and desorption isotherms for ACI-NH and AI-NH.
The isotherms reveal a distinct difference in adsorbate-adsor-
bent interactions. Notably, the absence of a pronounced knee in
the curves for AI-NH indicates extremely weak interactions
between the material surface and nitrogen molecules, reflecting
a less favorable adsorption environment. The specific areas of
ACI-NH and AI-NH were measured to be 16.3 m*> g~' and

© 2025 The Author(s). Published by the Royal Society of Chemistry

9.58 m> g, respectively. The higher surface area of ACI-NH
compared to AI-NH highlights its superior adsorption proper-
ties, which are critical for enhancing electrochemical perfor-
mance. In the B-NH crystal structure, Ni** function as key active
sites for redox reactions, while OH ™~ provide the electrochemical
environment. The greater nickel content in ACI-NH contributes
to an increased density of active sites, enhancing its capacity for
redox reactions. This improvement directly correlates with
a higher capacity and overall material efficiency. Additionally,
the elevated nickel content in ACI-NH reinforces Ni-OH bonds
and reduces lattice defects, resulting in a more ordered and
stable crystal structure. This structural order mitigates lattice
stress during charge-discharge cycles, improving the material's
stability and cycling lifespan. Fig. 6(c and d) present the pore
size distribution curves of ACI-NH and AI-NH. The pore size of
ACI-NH, at 13.6 nm, is smaller than AI-NH (23.5 nm), contrib-
uting to its higher surface area and added active sites for
electrochemical responses. This smaller pore size, coupled with
uniform distribution, enhances ion adsorption and transport
efficiency, making ACI-NH the best-performing material for
electrochemical uses.

Nanoscale Adv., 2025, 7, 7726-7739 | 7731
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3.3 Electrochemical performances

CV is an essential technique for analyzing the electrochemical
characteristics of supercapacitors, providing valuable insights
into their charge storage mechanisms, capacitive behavior, and
reaction kinetics.?® Fig. 7 illustrates the CV profiles of AI-NH and
ACI-NH electrodes in 1 M KOH at varying scan rates from 0 to
0.6 V. Both samples display similar current responses, which
increase with higher scan rates. As depicted in Fig. 7(a and b),
the CV curves of both electrodes reveal distinct oxidation and
reduction peaks, indicative of pseudocapacitive behavior.
However, deviations from the typical “duck-shaped” CV profile
are observed, particularly at the reduction and oxidation peak
around 0.3 V and 0.4 V, respectively. Fig. 7(c) compares the
performances of AI-NH and ACI-NH electrodes, showing that
the ACI-NH electrode achieves the highest current response,
indicating enhanced charge transfer capability.

The combined analysis of Fig. 8 and 9 highlights the superior
electrochemical performance of ACI-NH compared to AI-NH.
Specifically, Fig. 8(a-c) consistently show higher peak current
values for ACI-NH across identical scan rates. This indicates
that ACI-NH exhibits enhanced electrochemical activity and
a greater charge storage capacity under equivalent conditions.
Additionally, the material demonstrates improved electron and
ion transport, contributing to better conductivity and ion
diffusion properties. The association between the logarithm of
peak current (log I,ca) and scan rate (logv) delivers valuable

7732 | Nanoscale Adv., 2025, 7, 7726-7739
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insights into the kinetic behavior of the electrode processes and
the underlying energy storage mechanisms. In the logarithmic
coordinate system, the association of peak current at scan rate
can be expressed as:*

log I, = blogv + log(a) (1)

The peak current (I,) is related to the scan rate (v) by a power-
law relationship, where b is the slope and a is a constant. The b-
values of 0.55 for AI-NH and 0.51 for ACI-NH fall between the
ideal values for surface-controlled capacitive processes (b = 1.0)
and diffusion-controlled intercalation processes (b = 0.5). The
slightly higher b-value of AI-NH (0.55) implies a marginally
greater contribution from surface-driven capacitive reactions
compared to ACI-NH, which could facilitate faster charge
transfer at elevated scan rates. Conversely, ACI-NH, with a b-
value of 0.51, shows stronger dependence on diffusion-limited
kinetics, suggesting that ion transport within the electrode
structure governs its rate performance.

Fig. 9 shows the charge-storage contributions of AI-NH and
ACI-NH electrodes, separating capacitive and diffusion-
controlled processes. Across the tested scan rates, diffusion-
driven reactions dominate, particularly at lower sweep rates.
As the scan rate rises from 1 mV s~ * to 8 mV s~ * (Fig. 9(a and b)),
the diffusion-controlled share declines noticeably from about

© 2025 The Author(s). Published by the Royal Society of Chemistry
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84.4% to 65.7% for AI-NH and from 92.9% to 82.3% for ACI-NH
highlighting the reduced influence of bulk ion transport when
the timescale for diffusion becomes limited. At intermediate
scan rates (2 mV s~ ') (Fig. 9(c and d)), both electrodes display
battery-like behavior, where faradaic diffusion remains the
principal charge-storage pathway but is complemented by
surface-controlled capacitive reactions. This mixed mechanism,
with a dominant diffusion component supported by a smaller
yet important capacitive share, offers the dual benefit of the
high-capacity characteristic of faradaic storage and the high-
rate capability associated with capacitive processes.

Fig. 10(a and b) illustrates the potential versus time graphs
for the AI-NH and ACI-NH electrodes during GCD cycles. These
curves represent the variation in potential of the electrodes
throughout the charge and discharge processes. Both electrodes
demonstrate comparable behavior; however, the discharge time
of the ACI-NH electrode is significantly longer than that of the
AI-NH electrode, as shown in the comparison of GCD curves in
Fig. 10(c). This extended discharge duration suggests an
enhanced ability of the ACI-NH electrode to store and release
energy, indicative of its superior electrochemical activity. This
enhanced performance may be credited to favorable charac-
teristics such as high capacity and low internal resistance.”*>¢
The specific capacity values for both electrodes are inversely
proportional to the current density, as shown in Fig. 10(d). This
trend reflects a charge storage mechanism that combines
capacitive behavior with diffusion-limited processes. At
1.5 Ag~ ', the ACI-NH electrode achieved a capacity of 795 C g *,

outperforming the AI-NH electrode, which recorded a specific
capacity of 601.5 C g~ '. When the current density was amplified
to 4 A g ', the capacity dropped to 484 C g~ ' for the ACI-NH
electrode and to 276 C g ' for the AI-NH electrode. These
results demonstrate the superior ionic and electronic transport
properties of the ACI-NH electrode, as evidenced by its consis-
tently higher capacity across all tested current densities. This
enhanced electroactivity is likely owing to the electrode's
improved surface structure and higher active site availability,
which facilitate better charge storage and transfer capabilities
compared to the AI-NH electrode.

The Nyquist plots for the AI-NH and ACI-NH electrodes,
shown in Fig. 11(a), reveal distinct electrochemical character-
istics. The hemispherical arc represents the charge transfer
resistance (R.), which is associated with the resistance
encountered during ion transfer or transmission processes
within the electrode. In contrast, the linear region at lower
frequencies reflects diffusion-controlled processes and may also
indicate additional electrochemical phenomena contributing to
the overall impedance behavior. The estimated R, values for the
AI-NH and ACI-NH electrodes are 36.82 and 15.21 Q, respec-
tively. Fig. S1 and Table S1 present the corresponding equiva-
lent circuit along with the extracted EIS fitting parameters. The
significantly lower R . value for the ACI-NH electrode suggests
a more efficient ion transfer mechanism compared to the AI-NH
electrode. This enhanced ion transfer efficiency could be
accredited to the structural and compositional advantages of
the ACI-NH electrode, such as improved ionic conductivity,
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Fig. 8 Peak current vs. scan rate for (a) AlI-NH, (b) ACI-NH; and (c) comparison of log peak current vs. log scan rate for AI-NH and ACI-NH

samples.
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better electrode-electrolyte interface characteristics, and higher
surface area with accessible active sites. The reduced resistance
in the ACI-NH electrode implies superior electrochemical
performance, enabling faster charge and discharge cycles and
more efficient energy storage. Fig. 11(b) illustrates the working
stability and coulombic competence of the ACI-NH electrode
over 6000 cycles. The results indicate minimal capacity degra-
dation throughout the extended cycling process, maintaining
nearly 97% retention. This exceptional stability demonstrates
the electrode's robust performance and highlights its potential
suitability for incorporation into advanced energy storage
devices.

3.4 Button-cell asymmetric device (BAD) performance

To further evaluate the practical applicability of the AI-NH and
ACI-NH materials, a button-cell asymmetric device (BAD),
denoted as AI-NH||ACI-NH, was fabricated. The construction
details of the BAD are presented in Fig. 12(a). CV analysis was
accomplished at 50 mV s~ " across voltage windows, from 0.6 V
to 1.6 V (Fig. 12(b)), as well as at varying sweep rates as of 5 mV
s~ to 500 mV s~ ' within a fixed 1.6 V voltage (Fig. 12(c)). The
results reveal a minor reduction peak around 1.4 V, with no
significant oxidation peak, suggesting weak redox reactions.

7734 | Nanoscale Adv, 2025, 7, 7726-7739

This indicates that charge storage in the BAD is mixed faradaic/
capacitive, with only a small fraction of active sites contributing
to pseudocapacitive behavior. Additionally, the device's perfor-
mance was assessed under current densities from 1.5 A g~ to
4 A g7' (Fig. 12(d)). The estimated capacitance, as shown in
Fig. 12(e), decreased from a maximum of 106.5Fg 'at1.5Ag "
to approximately 40 F g~ " at 4 A g ', reflecting the dependency
of capacitance vs. current density. Fig. 13(a and b) demonstrates
the excellent energy and power densities of the BAD, delivering
37.8 Wh kg™' and 1975.3 W kg™', correspondingly, with
a discharge time of 69 seconds at 1.5 A g~ '. As shown in the
Nyquist plot (Fig. 13(c)), the estimated R, and R, values for BAD
are 1.35 and 106 Q, respectively. Additionally, the near-vertical
line in the low-frequency region confirms ideal capacitive
behavior and efficient ion diffusion. Together, these features
demonstrate the device's excellent electrochemical perfor-
mance, driven by its optimized conductivity and fast charge
transport capabilities. Fig. 13(d) highlights the cycling stability
of the BAD, tested over 8500 cycles at 13.6 A g '. The device
demonstrates remarkable stability, retaining 78% of its initial
specific capacitance even after prolonged cycling, further
emphasizing its durability and suitability for advanced storage
uses.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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4. Conclusions

This research explores the effectiveness of using halogen-based
precursors to synthesize double-layered nickel hydroxides (NH)
for energy storage devices. The study confirms that halogen ions
play a critical role in shaping the morphology, surface charac-
teristics, and electrochemical properties of AI-NH and ACI-NH
electrodes. Notably, the ACI-NH electrode demonstrated supe-
rior performance, reaching a specific capacity of 795 C g~ * at
1.5 A g ' and maintaining 97% of its capacity after 6000 cycles.
This enhanced activity is attributed to its increased surface area
and refined structure, which promote efficient ion and electron
movement. Performance testing of a asymmetric button-cell
device constructed with AI-NH and ACI-NH electrodes further
validated these results, delivering a capacitance of 106.5 Fg " at
1.5 A g™ ', an energy density of 37.8 Wh kg™ ' at 1975.3 W kg™,
with 78% capacitance retention over 8500 cycles. These
outcomes emphasize the impact of halogen-assisted

© 2025 The Author(s). Published by the Royal Society of Chemistry
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morphological tuning on improving electrode efficiency. Over-
all, this study delivers valuable guidance for designing high-
performance, long-lasting electrodes through strategic
precursor selection for future supercapacitor uses.
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