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Predicting the protein corona on nanoparticles
using random forest models with nanoparticle,
protein, and experimental features
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Nanoparticles (NPs) present in any biological environment form a “corona” of proteins on the NP surface.
This protein corona, rather than the bare NP, determines the biological response to the protein—NP
complex. Experiments, especially proteomics, can provide an inventory of proteins in the corona, but
researchers currently lack a method to predict which proteins will interact with NPs. The ability to
predict the protein corona would aid the design of NPs by decreasing the time and cost of experiments.
We describe the development and use of random forest regression and classification models to predict
protein abundance and enrichment, respectively, on the surface of NPs using a dataset of NP, protein,
and experimental features. These models were trained using data generated in-house through the
synthesis and functionalization of NPs with varied core material, surface ligand, diameter, and zeta
potential. NPs were incubated with fetal bovine serum, a common protein source for cultured cells, to
form a corona, which was characterized by proteomics. Both models identified protein abundance in the

serum used to form the corona as the most significant predictor of corona proteins. NP zeta potential
Received 30th April 2025 d hvdrod ic di t d th ti tant NP fact Th d f t .
Accepted 23rd July 2025 and hydrodynamic diameter emerged as the most importan actors. The random forest regression
model was used to test the ability to predict the protein corona of NPs that were excluded from the
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Introduction

Humans interact with nanoparticles (NPs) directly, in the form
of nanomedicines,"” or indirectly, through industrial and
environmental exposures.®*® During these interactions,
proteins adsorb on the surface of NPs, forming a protein
“corona.”>"’** The specific proteins that adsorb on the NP
surface determine the biological response to the NPs.*%1%1937
While previous research,”**® including our own,*'7*>% has
worked to determine how individual NP features such as
diameter and zeta potential influence the formation of the
protein corona, the ability to predict the composition of the
protein corona based on NP and protein features is lacking.
The ability to predict the protein corona would fill an
important gap in the design and use of new nanomaterials.
Much previous work,">1%192325262829,31,37  including our
own,***+?7:3032736 hag shown that the protein corona, rather than
the bare NP, determines how cells bind, internalize, and
respond to the protein-NP complexes. For example, previous
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experiments using 105 gold NPs with three different gold cores
(15 nm, 30 nm, 60 nm) and 67 different ligands (small mole-
cules, polymers, peptides, surfactants) showed that the protein
corona was a predictor of cellular association and pointed
towards the importance of hyaluronan-binding proteins in the
corona.** Predicting the protein corona would provide the first
step in predicting the cellular response.

Recent work has brought the tools of machine learning (ML)
to the challenge of protein corona prediction. For example,
previous work has predicted the protein corona formed on
single-walled carbon nanotubes using a random forest classifier
(RFC).* The RFC model was trained on a dataset of human
cerebrospinal fluid and blood plasma proteins, characterized by
proteomics and physicochemical features derived from protein
sequences in UniProt. The model was then used to predict the
adsorption of human cerebrospinal fluid and blood plasma
proteins on the same single-walled carbon nanotubes. This was
a significant result showing that the RFC model was effective in
predicting which proteins would adsorb on single-walled
carbon nanotubes. The model also identified key protein
features that were associated with a higher binding affinity for
single-walled carbon nanotubes. These protein features
included a high content of solvent-exposed glycines and a high
percentage of non-structure associated amino acids, those
amino acids not associated with helices, sheets, or turns. The
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model was also generalizable to other nanomaterials, such as
polystyrene NPs (pNPs). Another RFC model was used to predict
the protein corona formed from human serum proteins adsor-
bed on nanostructures formed from DNA.** A separate study
using a RFC model examined yeast protein enrichment on silver
NPs (10 nm and 100 nm) as a function of protein, NP, and
solvent features using a previously published database of yeast
protein enrichment on silver NPs.** This model illustrated the
ability to utilize existing proteomic data to train new ML
models, indicating the potential power of data sharing and data
scraping. As data sharing becomes increasingly common,
researchers have access to large quantities of proteomics data
from other research groups, enabling the generation of large
datasets that capture multiple protein and NP features for use
in model development. This use of external data was again
demonstrated using a random forest regression (RFR) model
with 652 different NPs (silver, gold, iron oxide, titanium dioxide,
silicon dioxide, liposomes, and polystyrene) with coronas
formed from human serum, bovine serum, or human plasma.**
The scraped and analyzed data featured a combination of
qualitative factors such as NP type and shape, surface modifi-
cations, and dispersion mediums, and quantitative factors such
as NP diameter and zeta potential. The RFR model was
successful in predicting the composition of the protein corona
across NPs and protein sources, suggesting the viability of
scraped data to train regression models.

We describe the development and use of two different ML
models, RFR and RFC, to predict protein corona composition
based on a combination of NP features, protein features, and
experimental features. In comparison, previous research using
ML to predict the protein corona focused on protein features or
a combination of protein features and NP features with proteins
as the dominant factor.***' Our models provide a new focus on
NP features and experimental features. The RFR model predicts
individual protein abundances in the corona as a quantitative,
continuous value. The RFC model predicts whether a specific
protein is enriched or depleted relative to its abundance in the
serum, a categorical value. In addition to building on previous
protein corona models,**** random forest models were selected
as they provide a connection between model outputs and
physical interpretation of the results.

We developed the RFR and RFC models in parallel to
compare their performance. To ensure uniform data handling,
all of the data used in our models was generated in-house using
a semi-automated workflow of corona formation, purification,
and characterization using a liquid-handling robot along with
a low-cost proteomics protocol to characterize these
samples.*>** To train and test our ML models, we generated 11
NPs with varying features (core material, surface ligand, diam-
eter, and zeta potential) to probe the relationship between NP
properties and the protein corona. Proteomics was used to
characterize protein coronas on the 11 NPs following incuba-
tion with fetal bovine serum (FBS; 10% and 100%). We selected
FBS as the protein source for our protein-NP samples as it is
a common nutrient source for cells in culture, well-documented
in protein sequence databases, and frequently used in other
protein corona studies.***® Protein features (e.g. secondary
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structure, percentage of polar amino acids) were derived from
protein sequence data. Experimental features included NP and
protein incubation concentrations and separation method. This
combination of NP, protein, and experimental features gener-
ated an input dataset of 84 total features that was used to train
and validate predictions for RFR and RFC models.

We find that both the RFR and RFC models had high
performance metrics. The RFR model identified 61 significant
features and the RFC model identified 16 significant features
for corona prediction. Thirteen features were shared between
the two models, with protein abundance in FBS selected as the
most significant feature. NP zeta potential and hydrodynamic
diameter were the next most important features. We then tested
the ability of these models to predict the protein corona of
previously unseen NPs using the RFR model. The resulting R*
values for corona prediction ranged from 0.45-0.88.

These results suggest that both regression and classification
models can serve as computational tools to predict protein-NP
interactions. The ability to predict a protein corona based on NP
features, which are relatively inexpensive to determine
compared to full biological experiments, and protein features,
which are tabulated in existing databases, would reduce the cost
and the time of current experimental methods. Previous work
has shown that corona formation can lead to mis-targeting of
NPs,* masking of targeting ligands, and altered bi-
odistribution of NPs.** In comparison to these negative
outcomes, NPs can also be designed to select for specific corona
proteins with beneficial properties such as targeted drug
delivery to specific organs.******* In the long term, we hope that
a detailed NP characterization will allow for the prediction of,
for example, the toxicity of new nanomaterials with fewer cell
and animal experiments. This would reduce costs and increase
throughput in the development and use of new nanomaterials.

Experimental
Synthesis and functionalization of magnetic NPs (mNPs)

Iron oxide magnetic NPs (mNPs) were synthesized using previ-
ously published protocols.***® In brief, 40 mL of ethylene glycol
(#324558, Sigma-Aldrich, St. Louis, MO), 1.3 g FeCl;-6H,0
(#236489, Sigma-Aldrich), 0.52 grams of trisodium citrate
(#S4641, Sigma-Aldrich), and 2.4 grams of sodium acetate
(#S2889, Sigma-Aldrich) were mixed in an Erlenmeyer flask (100
mL) with a magnetic stir bar. The addition of deionized (DI)
water at this step is used to control the diameter of the NPs. The
addition of 4 mL DI water resulted in small NPs (82 nm, Table
1). Without the addition of water, large NPs (182 nm, Table 1)
are produced. The Erlenmeyer flask was covered with foil and
stirred (1 h). This solution was transferred into a Teflon-lined
stainless steel reaction flask (100 mL) and heated to 200 °C
for 10 hours. The reaction flask was allowed to cool to room
temperature (RT). The resulting NPs were washed three times
with ethanol to remove contaminants from previous steps. A
magnet was used to remove the NPs from suspension during
washes. The washed NPs were suspended in a minimal amount
of ethanol (1 mL), transferred to a 1.5 mL centrifuge tube, and
dried under a stream of nitrogen overnight.
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Table 1 Characterization of NP core material, diameter (drgm and dh,), polydispersity index (PDI), and zeta potential (ZP)

NP Core Ligand drem (Nm) dp (nm) PDI ZP (mV)
Citrate-mNPg mNP Citrate 82 £ 36 149 + 3 0.11 £+ 0.01 —42 + 6
Citrate-mNP;, mNP Citrate 182 + 48 229 £11 0.19 £ 0.02 —49 +4
PEI-mNPg mNP Polyethyleneimine 82 + 36 226 + 62 0.22 £ 0.08 29+ 4
PEI-mNP;, mNP Polyethyleneimine 182 + 48 282 + 78 0.25 + 0.09 39+4
PVP-Au-mNPg Gold-mNP Polyvinylpyrrolidone 98 + 60 271 £ 17 0.31 £+ 0.04 —12+4
PVP-Au-mNPy, Gold-mNP Polyvinylpyrrolidone 244 £ 62 316 + 85 0.22 &+ 0.04 -11+3
PEI-Au-mNPg Gold-mNP Polyethyleneimine 98 + 60 229 +17 0.19 £ 0.03 12+ 3
PEI-Au-mNPy, Gold-mNP Polyethyleneimine 244 £ 53 291+ 9 0.15 + 0.04 12+1
PEG-Au-mNP, Gold-mNP Polyethylene glycol (5k) 244 + 53 610 £ 90 0.38 + 0.04 -3+£3
COOH-pNP Polystyrene Carboxylate 200 + 10 221+ 2 0.02 + 0.01 —63+9
PEG-pNP Polystyrene Polyethylene glycol (2k) 200 + 23 266 + 7 0.13 + 0.06 -7+3

The mNPs were functionalized using previously published
protocols.*® To achieve an adsorbed coating of PEI, dry iron
mNPs (5 mg mL™") were added to polyethyleneimine (PEI;
0.1 mM (aq, #408727, Sigma-Aldrich)). The mixture was shaken
(1 h) on a rotary shaker at RT. The mixture was washed three
times with water using a magnet to separate the iron mNPs. The
PEI coating was verified by a positive zeta potential.

Gold nanoseeds were synthesized following a previously
published protocol.***” In brief, 44 mL of DI water, 3 mL of
100 mM sodium hydroxide (aq, #58045, Sigma-Aldrich), and
1 mL of 50 mM tetrakis-(hydroxymethyl) phosphonium chloride
(#404861, Sigma-Aldrich) were mixed in an Erlenmeyer flask
(100 mL). After mixing for 5 minutes with a magnetic stir bar,
1.5 mL of 25 mM gold(m) chloride trihydrate (#520918, Sigma-
Aldrich) was added. After the addition of the gold salt, the
solution turned a deep red, signifying the formation of gold
nanoseeds.

The PEI-mNPs were coated with gold nanoseeds by adding
the PEI-mNPs (1 mg mL ') to a solution of gold nanoseeds (50
mL, 10 nM). The gold nanoseeds were grown into a gold shell to
get a more complete surface coating. The growth of the gold
shell was stabilized by adding NPs functionalized with gold
nanoseeds (25 pg mL™") to polyvinylpyrrolidone (PVP; 9.85 mg
mL ", #PVP40, Sigma-Aldrich). After vortexing, hydroxylamine
(75 pg mL™', #159417, Sigma-Aldrich) and gold(m) chloride
trihydrate (75 pg mL ™", #520918, Sigma-Aldrich) were succes-
sively added. The color of the solution took on a bluish-purple
tint within minutes of adding the gold mixture. The resulting
PVP-Au-mNPs were separated using a magnet, washed three
times with DI water, and resuspended in DI water. The gold
shell growth was confirmed using transmission electron
microscopy (TEM), as described in NP characterization.

To obtain NPs with a positive zeta potential and vary the
ligand of the NPs, PVP was exchanged for PEI by shaking the
PVP-Au-mNPs (1 mg mL™") in PEI 0.1 mM (aq) for 1 hour.
Following ligand exchange, the NPs were removed from
suspension using a magnet, washed four times with DI water,
and resuspended in DI water. Ligand exchange was confirmed
by the zeta potential of the resulting NPs.

To obtain a near-neutral surface charge and vary the ligand
of the NPs, PVP was displaced with thiolated polyethylene glycol
(PEG) by shaking the PVP-Au-mNPs in a thiol PEG solution
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(10 mM, A3029-1/M-SH-5000, JenKem Technology, Plano, TX)
for 1 hour. Following ligand exchange, the NPs were removed
from suspension using a magnet, washed four times with DI
water, and resuspended in DI water. Ligand exchange was
confirmed by the zeta potential of the resulting NPs.

PEGylation of polystyrene NPs (pNPs)

Commercially available pNPs (200 nm, carboxylate-modified,
#C37486, Thermo Fisher Scientific, Waltham, MA) were conju-
gated with PEG using N-(3-dimethylaminopropyl)-N'-ethyl-
carbodiimide (EDC) hydrochloride. pNPs were first washed by
diluting 10-fold with DI water and separating via centrifuge. To
conjugate with PEG, 100 uL of 4 mg mL ™' washed pNP were
added to 200 puL methoxy-PEG-amine 2k (50 mg mL ™", #A3071,
JenKem Technology) in 4-morpholineethanesulfonic acid
hemisodium salt (MES; 25 mM, #M0164, Sigma-Aldrich). The
NP PEG mixture was vortexed and shaken on a rotary shaker for
5 minutes before adding 40 pL of N-(3-dimethylaminopropyl)-
N'-ethylcarbodiimide hydrochloride (EDC; 45 mg mL ™", #E7750,
Sigma-Aldrich). The mixture was rotary shaken for 30 minutes
before being washed three times with phosphate-buffered
saline (PBS) via centrifugation (18 000 rcf, 15 min) to remove
excess PEG and EDC. PEGylation was confirmed by zeta
potential.

NP characterization

NP diameter was measured with TEM and dynamic light scat-
tering (DLS). TEM was carried out using either a Tecnai G
TWIN TEM (FEI, Hillsboro, OR) at the Shared Materials
Instrumentation Facility at Duke University or using the Supra
25 FESEM (Zeiss, Oberkochen, DEU) at the UNC Microscopy
Services Laboratory. All samples were prepared by drop casting
on 400 mesh copper grids (#CF400-Cu, Electron Microscopy
Sciences, Hatfield Township, PA) and drying at RT for 12-18 h.
NP diameters were measured using Image].”® Average and
standard deviations are reported for all measurements.
Hydrodynamic diameter, polydispersity index, and zeta
potential of the NPs (10-100 pg mL ™" in PBS diluted 1 : 100 in DI
water) were measured using DLS (Zetasizer, Malvern Instru-
ments, Worcestershire, England). Measurements were carried
out with three distinct samples. Each measurement was

© 2025 The Author(s). Published by the Royal Society of Chemistry


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5na00425j

Open Access Article. Published on 29 July 2025. Downloaded on 1/23/2026 3:20:39 PM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Paper

performed for 12-30 runs. The average and standard deviation
are reported for all measurements. Electrophoretic mobility was
converted to zeta potential wusing the Smoluchowski
approximation.

Liquid handling robot

A liquid handling robot (OT-2, Opentrons, Brooklyn, NY) with
a magnetic baseplate was used to automate protein corona
formation and isolation, as described previously.**** Protocol
scripts were written in Python using Opentrons API v2.12.
Pipette tips (300 pL, single and multi) and tip racks were
purchased from Opentrons to verify compatibility and calibra-
tion. The locations of each reagent and sample were designated
in the script and appropriately positioned before running the
robot. Most experiments used a 96-well plate with three or six
replicates, as specified in the text. Two wells were used for
background subtraction within a row of eight wells.

Protein corona formation and quantification

A protein corona was formed by incubating NPs (2.4-5 mg
mL ') in 10-100% solutions of FBS (#10437028, Thermo Fisher
Scientific) diluted in PBS. The incubations were performed at
RT on a microplate shaker for 30 minutes. Coronas formed on
the mNPs were generated and purified by the liquid handling
robot using magnetic pull-down separation steps. The pNP
samples, which are not magnetic, were processed manually. To
remove unbound proteins, the NPs were “washed.” Each wash
step consisted of a magnetic pull-down or centrifugation (18 000
rcf, 15 min), removal of the supernatant, and then resuspension
in an equal volume of PBS. When done manually, three wash
steps were performed, while when done with the liquid
handling robot, six washes were performed. This number of
washes has previously been confirmed to remove the excess
proteins in the solution.””** The hard corona is defined as the
protein that remains bound to the NPs with minimal protein
detected in the supernatant, as described previously.*>**

Protein concentration was measured with the Pierce 660 nm
Protein Assay Reagent (referred to as a 660 nm assay; #2260,
Thermo Fisher Scientific) with the addition of Ionic Detergent
Compatibility Reagent (#22663, Thermo Fisher Scientific)
according to the manufacturer's instructions. The concentra-
tion of protein present in the hard corona was determined by
removing the proteins from the NPs by incubating with sodium
dodecyl sulfate (SDS) buffer (5% w/v, #L3771, Sigma-Aldrich) for
30 minutes at RT. Protein concentration was then determined
by measuring absorbance at 660 nm using a plate reader
(SpectraMax iD3, Molecular Devices, San Jose, CA). A residual
amount of protein is resistant to SDS removal independent of
the duration of SDS incubation, as shown previously.*

Experimental features

Three experimental features (NP concentration, protein incu-
bation concentration, method of free protein removal) were
tracked to investigate how these features would impact the
protein corona. NP concentrations ranged from 2.4-5 mg mL ™.
Protein concentrations ranged from 10-100% solutions of FBS
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diluted in PBS (100% FBS corresponds to 40 mg mL ). Two
methods were used to separate NPs from unbound protein:
magnetic separation was used for mNPs and centrifugation (18
000 rcf, 15 min) was used for pNPs.

Proteomic analysis

Samples for proteomics were digested using a modified S-Trap
mini column (Protifi, Farmingdale, NY) protocol. Proteins
were removed from the NP surface by incubating with SDS
buffer for 30 minutes. Protein concentration was determined
using the 660 nm assay. Samples were pooled to load
a minimum of 25 pg of protein on each S-Trap. Two modifica-
tions were made to the S-trap protocol: dithiothreitol (DTT;
#R0861, Thermo Fisher Scientific) and iodoacetamide (IAM;
#11149, Sigma-Aldrich) were used as the reducer (20 mM) and
alkylator (40 mM), respectively. DTT and IAM are commonly
used for proteomics and are recommended substitutions.
Following the completion of the S-trap protocol, the resulting
digested proteins were lyophilized and stored at —20 °C until
proteomic analysis.

Proteomic analysis was carried out in the Proteomics and
Metabolomics Core Facility, part of the Duke Center for Geno-
mics and Computational Biology, as described previously.**** In
brief, digested samples were analyzed using LC-MS/MS with =
25 mg of digested protein injected. MicroFlow LC was per-
formed with an ultra-performance liquid chromatography
(UPLC, 1 mm x 100 mm, M-Class, Waters Corporation; 80
uL min~') column and a 17 minutes total elution time. The
column was run with an acetonitrile gradient (5-40%) with
0.1% formic acid. Peptide fragments were analyzed using in-
line tandem mass spectrometry (Orbitrap Fusion Lumos,
Thermo Fisher).

We analyzed the LC-MS/MS data using MaxQuant (v2.5.2.0,
Max Planck Institute, Munich, Germany), an open-source soft-
ware designed to qualitatively and quantitatively analyze mass
spectrometry data.*** The raw LC-MS/MS spectra were
searched, using their integrated Andromeda search engine,
against the Swiss-Prot Bovine (6046 proteins) canonical protein
knowledge base from UniProt, accessed on May 22nd, 2024.°* A
custom contaminants file was used, which contained a relevant
subset of the Common Repository of Adventitious Proteins
(cRAP) database.® For protein and peptide quantification and
identification, default MaxQuant parameters were used: a 0.01
false discovery rate, a minimum peptide length of 7 amino
acids, a maximum peptide length of 25 amino acids, oxidation,
acetyl groups as variable modifications, and carbamidomethyl
as a fixed modification. The Intensity method in MaxQuant was
used for abundance quantification calculations.

The resulting proteomic data was analyzed and filtered in
Perseus (v2.0.11, Max Planck Institute). Proteins were excluded
if considered contaminants, quality control standards, or only
identified by site. Data normalization was performed in Python
(v3.11, Python Software Foundation, Beaverton, OR). A quanti-
tative internal standard was not used for these experiments. To
correct for any change in performance or differences in protein
loading, each sample was normalized to itself by dividing by the
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mean of the interior 80% of the protein intensities.®® Each
sample was scaled to have the same average. We report these
values as percent normalized abundance. Fold change for each
protein was calculated by taking the log base 2 of the normal-
ized corona abundance divided by serum abundance. The mass
spectrometry proteomics data have been deposited to the Pro-
teomeXchange Consortium via the Proteomics Identification
Database (PRIDE) partner repository with the dataset identifier
PXD053700 and 10.6019/PXD053700.* In total, 92 proteins were
identified in the sample of FBS used to form the coronas. This is
likely due to the overwhelming signal from albumin in the FBS,
which limits the detection of lower abundance proteins. In
comparison, 369 proteins were identified in the corona samples
including the 92 also identified in FBS. Formation of a corona
serves as an enrichment step allowing the identification of more
unique proteins than in FBS alone.

Data organization and processing for ML

For use in ML, the physical properties of the NPs and proteins
are described as features. Our database consists of features
grouped into three categories: protein features (Table S1), NP
features (Table S2), and experimental features (Table S3). Entry
(accession number), sequence, length, and mass of proteins
were sourced from the basic canonical protein information for
Bos taurus (Taxonomy Identifier 9913) from the Swiss-Prot
knowledge base from UniProt.** The entry feature was used to
identify and label the proteins within our samples. NetSurfP3.0
was used to calculate additional protein features. This natural
language processing model predicts the protein structure and
returns results for each amino acid by feeding in sequence
information for each protein.®*®® The sequence information
accessed from UniProt was used with NetSurfP3.0 to predict
exposed amino acids, secondary structure, accessible surface
area, hydrophobicity, and polarity for each protein sequence.
Results for each protein were obtained using a Python script
adapted from published code to capture the complete pro-
teome.** In comparison to this previous code, we omitted
calculations of the proportion of a specific amino acid exposed
on the protein surface relative to the total number of that amino
acid in the protein, as our model uniquely incorporates NP
properties as features, and we aimed to focus on calculations
that emphasize the relative composition of the protein surface.
By using the percent exposed amino acid of a specific amino
acid divided by the total exposed calculation, we specifically
investigated how NP features influence the protein corona, as
only the exposed amino acids interact with the NPs, providing
a more accurate representation of these interactions. The Bi-
oPython Protein Analysis library (v.1.8.1) calculated the
remaining protein features based on sequence data, such as
percent amino acid composition, aromaticity, instability index,
flexibility metrics, GRAVY score, and secondary structure.®” The
BioPython Protein Analysis module and NetSurfP predictions
cannot account for proteins that have abbreviations for groups
of amino acids in their sequence or that contain the amino acid
selenocysteine. To account for these instances, the sequence
data was cleaned by replacing the unspecified amino acids with
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the most common amino acid, leucine, and replacing seleno-
cysteine with cysteine. The physicochemical features of the
proteins were combined with the proteomic protein abundance
data (69 features, Table S1), NP features (12 features, Table S2),
and experimental features (3 features, Table S3). NP ligand and
core material were One-Hot encoded. These features produced
a dataset containing 84 features for training the RFR and RFC
models described below. The code is available on GitHub
(https://www.github.com/nvijgen/
ProteinCoronaPredict_PayneLab.git).

Random forest regression (RFR)

A RFR model, implemented using scikit-learn, was used to
predict the individual protein abundance values that define the
protein corona.®® The model utilized mean squared error as the
scoring criterion. One hundred decision trees and a fixed
random seed were used. The fixed random seed kept the same
samples divided into data train and test sets splits across runs
for reproducibility. The dataset consisted of 369 proteins
identified in the coronas across all NP samples. Before use in
training, protein abundance values were log,-transformed to
normalize the distribution. Zeros were represented by the
smallest nonzero value to prevent errors associated with log
transformations.

After data pre-processing, recursive feature elimination with
k-fold cross-validation (ten folds) was used to identify the most
important predictive features on the training data split (90%)
(Table S4). This feature selection process was iterative, with
a step size of one, and maintained a minimum of one feature
until completion. A custom scoring method was used, which
combined mean squared error with a penalty for feature varia-
tion and quantity to refine feature selection effectively. This
custom approach also integrated evaluation criteria (R*, mean
squared error, Pearson correlation coefficient, and Spearman'’s
rank correlation coefficient) across multiple data folds,
providing a comprehensive assessment of model performance
on the selected subset of features across ten folds.

The selected features were then used to predict on the test
data split (10%), specifically predicting the log,-transformed
abundance values. The performance of the model was evaluated
using the custom scoring method which assessed the accuracy
of the predictions with respect to the known data values in the
test split, hidden during model training.

Random forest classification (RFC)

An RFC model, also implemented using scikit-learn, was
employed to predict whether proteins are enriched or depleted
in the corona, classified as ‘1’ (enriched) or ‘0’ (depleted), by
utilizing the significant features identified during the model
feature selection process.®® Binary classification is necessary for
RFC, as it allows the model to categorically distinguish between
the two possible states of protein entries, enriched or depleted,
based on the identified predictive features. In comparison, the
RFR model predicts continuous values. As we expect the
continuous values predicted by RFR will be more useful to other

© 2025 The Author(s). Published by the Royal Society of Chemistry
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researchers than the binary value obtained with RFC, the RFC
results are provided in the SI.

The RFC model was trained on protein enrichment data,
which was calculated based on the log,-transformed ratio of
corona abundance to serum abundance. Handling of protein
data was identical to that described for the RFR model.
Enrichment values were classified with their respective binary
categorization for future RFC classification (i.e. thresh param-
eter set to zero).

Recursive feature elimination with k-fold cross-validation
(ten folds) was implemented to identify the most important
features for corona prediction (Table S5). Similar to RFR, a step
size of one was used to iteratively eliminate features until the
optimal number of features was determined. This feature
selection process was evaluated with standard classifier model
evaluation metrics; area under the receiver operatoring char-
acteristic curve (AUROC; measure of the ability of the model to
distinguish between classes, considering both sensitivity and
specificity), accuracy, precision (positive predictive value), F1
score (harmonic mean of precision and recall), and recall (true
positive rate). The optimal features identified were subse-
quently used to train the classification model and predict on
a train-test split of 90/10. Predictions were assessed using the
same evaluation metrics used to assess feature selection.

Results and discussion
NP characterization

mNPs were synthesized and functionalized as described in
Methods (Table 1). Diameter and functionalization ligand were
chosen to provide a range of diameters, functional groups, and
zeta potentials for the training data. NPs diameter was
measured by both TEM (dygy) and dynamic light scattering to
determine hydrodynamic diameter (d,) and polydispersity
index (PDI). Two diameters of magnetic NPs were used for
functionalization. The smaller diameter (82 + 36 nm by TEM) is
denoted as mNPs. The larger diameter (182 + 48 nm by TEM) is
denoted as mNP;. The mNPs were synthesized with citrate
ligands (citrate-mNP) and then functionalized with PEI (PEI-
mNP) to provide a positive zeta potential. Functionalization
with ligands bound to gold seeds provided additional func-
tional groups and zeta potentials (PVP-Au-mNP, PEI-Au-mNP,
PEG-Au-mNP). PEG was of special interest for the resulting
~0 mV zeta potential and relevance to the biomedical
community (PEG-Au-mNP;, PEG-pNP).*”> PEG-Au-mNPs were
generated, but had too little protein present in the corona for
proteomics and are not described in the text. pNPs were used to
provide an additional core material (COOH-pNP).

Composition of the protein corona

Protein coronas were formed by incubating NPs (2.4-5 mg
mL ") in 10 or 100% (100% FBS equivalent to 40 mg mL " of
protein) solutions of FBS diluted in PBS for 30 minutes at RT.
Samples were then washed three times to remove unbound
proteins, as described in Experimental using previously pub-
lished protocols.**** Proteomic analysis was used to determine

© 2025 The Author(s). Published by the Royal Society of Chemistry

Table 2 Normalized abundance (%) of the top ten most abundant proteins in the protein corona for NPs incubated with FBS (100%, 30 min). Data for NPs incubated with 10% FBS is in the S|

(Table S6). The list of proteins is ordered based on protein abundance in FBS alone. The rank order of proteins present in FBS alone is shown in parentheses

FBS (rank) Citrate-mNP; Citrate-mNPs PEI-mNP; PEI-mNPs PEI-Au-mNP; PEI-Au-mNPs PVP-Au-mNP; PVP-Au-mNPs COOH-pNP PEG-pNP PEG-Au-mNPp
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the composition of the protein corona, as well as the compo-
sition of FBS in the absence of NPs. Single experiments were
carried out for each sample. Our previous proteomics studies of
triplicate samples confirmed that single experiments are suffi-
cient.* To correct for any change in performance or differences
in protein loading, each sample was normalized to itself by
dividing by the mean of the interior 80% of the protein inten-
sities.** Each sample was scaled to have the same average. We
report these values as percent normalized abundance (Table 2).
The amount of protein in the corona relative to the amount in
FBS, in the absence of NPs, was also calculated (Fig. 1), which
shows the enrichment of the ten most abundant proteins in the
protein corona relative to their abundance in FBS, in fold
change, log,. Proteins are listed in order of their relative
abundance (Table 2). Albumin is the most abundant protein in
FBS, comprising 54% of the protein in FBS (Table 2). It is
present at high abundance (16.8-46%) in all protein coronas
and is the dominant protein in the corona of the majority of the
NPs (Tables 2 and S6). The exception to this is PEG-pNP, which
has a corona dominated by hemoglobin subunit alpha (40%)
and COOH-pNP incubated in 10% FBS, which has a corona
dominated by alpha-2-HS-glycoprotein (30.6%; Table S6). In
comparison to the high abundance of albumin in FBS, albumin
is depleted in all protein coronas (Tables 2, S6 and Fig. 1).
While all NPs show a similar interaction with albumin
(depletion), the other most abundant proteins show a wider

View Article Online

Paper

range of protein-NP interactions (Fig. 1). For example,
complement C3, which plays a central role in the activation of
the complement system,’*”* exhibits a notably high spread (—2
to +4.5 log, fold change) in enrichment and depletion across
NPs, in comparison to the more narrow spread for albumin (—2
to —0.25 log, fold change). The wide range in enrichment and
depletion values for complement C3 suggests that NP features
such as diameter, zeta potential, and surface functionalization
significantly impact the adsorption of complement C3 onto the
NP surface. In contrast, proteins such as albumin (-2 to —0.25
log, fold change) and alpha-2-HS-glycoprotein (—2 to +1 log,
fold change) show narrower log, fold changes across different
NPs, suggesting less dependence on NP features. Similarly,
apolipoprotein A-I and alpha-2-macroglobulin exhibit a narrow
spread of log, fold changes (—0.5 to +3.5 and —1.5 to +1,
respectively), suggesting stable interactions across different NP
features. Complement C3 tends to be less enriched with posi-
tively charged NPs (e.g., PEI-mNPg, PEI-mNP;), though high
variability makes it difficult to establish a clear correlation with
zeta potential. Apolipoprotein A-I also shows moderate to high
enrichment with negatively charged NPs and consistent or
slight depletion with positively charged NPs. While the data
does not consistently support the idea that decreasing NP zeta
potential reduces protein enrichment, highly negative zeta
potentials (e.g., COOH-pNP with —63 mV) may decrease
complement C3 enrichment.
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Fig.1 Enrichment (>0 log, fold change) and depletion (<0 log; fold change) of the ten most abundant proteins in the protein corona relative to
their abundance in FBS. n = 1. A value of O (dotted line) would reflect a corona protein abundance that matches the abundance of the same
protein in the serum used to form the corona. COOH-pNP and PEG-pNPs were centrifuged (squares). All other samples were prepared by

magnetic pull-down (circles).
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In addition to NP and protein features, previous work has
shown that the separation method used in the preparation of
the protein corona, magnetic pull-down or centrifugation, is
one factor in the composition of the protein corona.*® We note
increased enrichment of hemoglobin subunit-alpha and apoli-
poprotein A-I on PEG-pNP and COOH-pNP, which underwent
centrifugation, in comparison to the mNPs, which are separated
using magnetic pull-down (Fig. 1).

Overall, this level of NP, protein, and experimental feature
complexity makes it challenging to extract trends. Instead, we
use the three NP core materials (mNP, gold-mNP, and poly-
styrene), two core diameters (82 nm and 182 nm), six surface
ligands, and seven effective surface charges as training data for
ML.

Protein features

In addition to NP features (core material, surface ligand, diam-
eter, zeta potential), protein corona formation will depend on
protein features (Table S1). A protein feature database was built
using UniProt,** NetSurfP 3.0,°** and BioPython.®”” UniProt was
used to extract protein entry accession number, length, mass, and
sequence information for the complete bovine Swiss-Prot
knowledge base. NetSurfP was used to predict solvent accessi-
bility, secondary structure, and structure disorder on a per amino
acid basis. We modified previously published Python code to
capture the entire bovine proteome.* These protein features were
combined with data calculated by the BioPython package, which
performs calculations using the protein sequence paired with
structural data from the Protein DataBank.

ML model development and evaluation

We constructed a comprehensive dataset of 84 features incor-
porating NP features, protein features, and experimental
features for use with ML models (Tables S1-S3). Two random
forest-based supervised learning models, RFR and RFC, were
developed and tested for the ability to predict the protein
corona.

Random Forest models were selected for their ability to
reduce overfitting, due to their ensemble nature, and strengths
for this specific application.””” For example, random forest
models average results over multiple trees, which leads to
higher accuracy than support vector machines.” Neural
networks require training data on the scale of ~10000 or
greater data points, making them less useful for this type of
data-limited application.” Implementation in Python allows for
code sharing and use by others. RFR was employed to predict
continuous numerical values, specifically the abundance of
individual proteins in the corona, which we quantified as
peptide intensities. RFC was utilized to predict categorical
outcomes, determining whether a protein would be enriched or
depleted in the protein corona relative to the serum used to
form the corona. Both models were trained to determine the
optimal number of input features using recursive feature
elimination with k-fold cross-validation across ten folds. Model
performance was evaluated using multiple performance
metrics.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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For RFR, R*, mean squared error, Pearson correlation coef-
ficient, and Spearman's rank correlation coefficients were used
to assess model performance. R* provides a measure of how well
true dataset values are replicated by the model, on a scale of 0 to
1, with 1 being a perfect replication by the model. An R* of
0 would indicate that the predictions are random. Mean
squared error measures the difference between the predicted
values made by the model and true values in the dataset, with
values closer to zero indicating better model performance. The
Pearson correlation coefficient measures the correlation
between the predicted and observed corona protein abundance
values. Spearman's rank correlation coefficient measures the
rank-based correlation between predicted and observed corona
protein abundance values. Both Pearson correlation and
Spearman's correlation coefficients can have values ranging
from —1 to 1. Avalue of +1 indicates perfect positive correlation.
For RFC, area under the receiver operating characteristic curve
(AUROC), accuracy, precision, F1 score, and recall were used as
performance metrics. AUROC measures the ability of the RFC
model to distinguish between classes, defined as protein
enrichment and depletion, considering the true positive rate
and false positive rate across all classification thresholds (i.e.
enriched or depleted). An AUROC value of 0.5 corresponds to
a random guess and 1.0 represents perfect classification.
Accuracy describes the ratio of correctly predicted proteins to
total number of proteins. Precision describes the proportion of
true positives to predicted positives. Recall describes the
proportion of true positives to actual positives (both true posi-
tives and false negatives). Precision and recall are combined in
the F1 score, which is the harmonic mean of the two values,
meaning both precision and recall are equally weighted, which
can range from 0 to 1 (perfect precision and recall).

We first used recursive feature elimination with k-fold cross-
validation to identify and score the most important NP, protein,
and experimental features for the protein corona. Recursive
feature elimination with k-fold cross-validation is a feature
selection technique that recursively removes less important
features while evaluating the performance of the model through
cross-validation. This technique identifies the optimal subset of
features that balance model accuracy and complexity. The

Table 3 Top ten of the 61 most important NP, protein, and experi-
mental features identified by the RFR model. The percent importance
is normalized

Feature Importance (%)
Protein abundance in FBS 46.7
Zeta potential 4.1
dn 3.2
Protein incubation concentration (10% or 100%) 2.1
drem 1.8
% Phenylalanine 1.7
% Non-structure associated amino acids 1.4
% Asparagine 1.3
NP incubation concentration 1.2
% Alanine 1.2

Nanoscale Adv., 2025, 7, 5612-5624 | 5619
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output is the list of selected features and their associated
percentage of importance. Results for the RFR model show the
negative mean squared error as a function of the number of
features (Fig. S1). The error decreases sharply initially and
stabilizes at 61 features, indicating that 61 features are optimal
for our model (Table 3). The average and standard deviation of
the R®, mean squared error, Pearson correlation coefficient, and
Spearman's rank correlation further validate robustness (Table
S7). High scores across these metrics reinforce the utility of the
RFR model and demonstrate the efficacy of the selected features
(Table S4).

Following feature selection using recursive feature elimina-
tion with k-fold cross-validation, the RFR model demonstrated
robust predictive performance, as reflected by high evaluation
metrics for predictions made on the test data split (Fig. S2 and
Table 4). A comprehensive analysis of RFR model and predic-
tion performance is provided in SI (Table S7).

For both models, the abundance of individual proteins in
FBS was identified as the most important feature for predicting
the protein corona (Table 3 and S5). This is intuitive, as proteins
with higher relative abundance are more likely to interact with
NPs. However, protein abundance is not the single determinant
of protein adsorption on NPs, reflecting the distinction between
kinetic and thermodynamic control in protein corona forma-
tion. For instance, despite being the most abundant protein in
FBS (54.3%), albumin is depleted in the corona of all NPs
(Tables 2, S6 and Fig. 1). This is in agreement with previous
research showing that initial kinetic adsorption of proteins can
be displaced by proteins with greater thermodynamic stability
on the NP surface.”***37%% This indicates that while protein
abundance is a key factor, NP and protein features also influ-
ence protein adsorption. Both models identified zeta potential
as the next most significant feature after relative protein
abundance values, with importance values of 4.1% and 8.5% for
the RFR and RFC models, respectively (Table 3 and S5). The
hydrodynamic diameter of the functionalized NPs (d},) was the
third most significant feature, with an importance of 3.2% and
7.6% for RFR and RFC, respectively (Table 3 and S5).

Predicting protein coronas for individual NPs

One goal of this research was to develop models that could be
used to predict the protein corona of new NPs based on char-
acteristics of the new NPs and protein features drawn from
existing databases. We evaluated the RFR model for the ability

Table 4 Evaluation metrics and scores assessing predictive ability of
the RFR model for 61 features. The performance of the RFC model was
also optimized through recursive feature elimination with k-fold
cross-validation and described in Sl (Fig. S3—S5 and Tables S8 and S9)

Evaluation metric Score
R* 0.81
Mean squared error 2.02
Pearson 0.90
Spearman 0.87
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Table 5 Prediction of protein coronas of individual NPs using the RFR
model. NPs ranked from best to worst predictions in terms of R?

NP FBS incubation (%) R

Citrate-mNPg 100 0.88
Citrate-mNPg 10 0.88
Citrate-mNP;, 10 0.87
PVP-Au-mNP;, 100 0.86
PVP-Au-mNP;, 10 0.85
PEI-mNPg 10 0.85
PVP-Au-mNPg 10 0.84
PEI-mNPg 100 0.84
Citrate-mNPy, 100 0.83
PVP-Au-mNPg 100 0.79
PEI-mNPy, 100 0.78
PEI-mNP;, 10 0.78
COOH-pNP 10 0.77
PEG-Au-mNP;, 100 0.76
COOH-pNP 100 0.71
PEI-Au-mNP,, 100 0.69
PEI-Au-mNPg 100 0.63
PEG-pNP 100 0.45

to predict proteins coronas on NPs that were excluded from the
training data. With our library of 11 NPs (Table 1), we incubated
7 of these NPs with both 10% and 100% FBS for 18 total NP
samples. We used 17 NPs, of our 18 total NPs, as training data
and then tested the model on the one NP that was excluded
from the training data. This training and testing were done
iteratively using leave-one-group-out cross-validation to test all
18 NPs. No additional feature selection was performed during
this process. The range in R* values for the ability to predict the
abundance of individual proteins present in the corona was
0.45-0.88 (Table 5). Mean squared error (1.38-6.18), Pearson
correlation coefficient (0.73-0.94), and Spearman'’s rank corre-
lation coefficient (0.63-0.91) were also determined for each NP
(Table S10). The RFC model was not used to predict the corona
of individual NPs as it provides only relative enrichment and
depletion of individual proteins rather than abundance. The
RFR model showed the best predictive ability for citrate-mNPg
(R* = 0.88) (Table 5 and Fig. 2A). PEG-pNP (R* = 0.45) were the
worst in terms of predictive ability (Table 5 and Fig. 2B). To
investigate the dependence of these predictions on the specific
training data used, we tested two scenarios: (1) RFR models
trained solely on citrate-mNP samples to predict the corona
formed on a citrate-mNPg (100% FBS) and (2) RFR models
trained solely on non-citrate-mNP samples to predict the corona
formed on a citrate-mNPg (100% FBS). R*> values remained
consistent with values obtained from use of the full data set
(Table S11).

To determine if higher abundance corona proteins, such as
albumin (Table 2), were more likely to be predicted correctly, we
measured the correlation of the top ten most abundant corona
proteins with the accuracy of prediction. We found no correla-
tion between protein corona abundance and predictive ability
(Fig. S6).

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig.2 Comparison of predicted and true (observed) protein abundance determined by the RFR model. (A) Citrate-mNPs had the best predictive
ability. (B) PEG-pNP had the worst predictive ability. The top ten most abundant proteins present in each corona are shown in color.

Conclusions

The goal of this research was to develop regression and classi-
fication ML models capable of identifying the relevant NP,
protein, and experimental features necessary to predict the
protein corona and then using ML to predict the protein corona
of individual NPs. We generated NPs with a range of features
(core material, surface ligand, diameter and zeta potential)
(Table 1). Protein features (e.g. secondary structure, percentage
of polar amino acids) were derived from proteomics data (Table
2, S6 and Fig. 1), UniProt, NetSurfP3.0, and BioPython (Table
S1). We selected FBS as the protein source for our protein-NP
samples as it is a common nutrient source for cells in culture,
well-documented in protein sequence databases, and frequently
used in other protein corona studies.***® Other protein sources,
such as mouse or human plasma or serum, could be incorpo-
rated into our code, which is shared on GitHub (https://
www.github.com/nvijgen/ProteinCoronaPredict_PayneLab.git),
either experimentally or computationally, through the use of
NetSurfP and BioPython to translate FBS protein features into

© 2025 The Author(s). Published by the Royal Society of Chemistry

protein features from another protein source. NP and protein
features were combined with experimental features (NP
concentration, protein incubation concentration, method of
free protein removal) to build the dataset (Tables S1-S3) for
the RFR and RFC models.

Both RFR and RFC models showed excellent performance
metrics (Tables 4, S7-S9 and Fig. S1-S5). Our models identified
the top feature in predicting the protein corona composition to
be the protein abundance in FBS (46.7% and 27.7% for RFR and
RFC, respectively) (Table 3 and S5). The next most important
feature for both models was zeta potential (4.1% and 8.5% for
RFR and RFC, respectively). The hydrodynamic diameter of the
functionalized NP was the third most significant feature, with
an importance of 3.2% for RFR and 7.6% for RFC. To evaluate
RFR model predictions for new NPs, we implemented leave-one-
group-out cross-validation, where each NP was iteratively
excluded from training and then used as the test set. This
approach allowed us to assess the predictive ability for each NP
individually, identifying which were the best and worst per-
forming (Fig. 2 and Tables 5 and $10). The model had the
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highest accuracy in predicting protein abundances for citrate-
mNPg (Fig. 2 and Tables 5 and S10) and the lowest accuracy in
predicting protein abundances for PEG-pNP (Fig. 2 and Tables 5
and S$10). Future work will explore the specific protein-NP
interactions that underlie these predictions.

Our work builds on previous ML models with the common
goal of protein corona prediction.****> In comparison to the
previous model developed for single-walled carbon nano-
tubes,* our models incorporate NP and experimental features,
in addition to protein features, into the training set. Our models
also incorporated the abundance of individual proteins in the
FBS used to form the corona, which was ultimately the most
important feature identified by both models (Tables 3, S4 and
S5). In comparison to the model developed with silver NPs and
yeast proteins,** FBS provides a more relevant protein source,
especially for NPs used in applications with cultured cells.
Additionally, our RFC model achieved an AUROC of 0.99 and F1
score of 0.93, whereas the RFC run on the yeast dataset achieved
an AUROC of 0.83 and F1 score of 0.81. We also included core
composition as an NP feature, a feature suggested in their work
to be important for future consideration. While our models
were constructed from data obtained from 18 protein-NP
combinations, previous work has used a dataset with >600
NPs.*> This work focused on NP and experimental features,
lacking protein features. The inclusion of protein features in
our dataset led to a total feature count of 84. In comparison, this
previous work had a feature count of only 21. In comparison to
this previous work, our RFR model enables a quantitative
prediction of specific protein abundance in the corona. In
addition, our leave-one-group-out cross-validation tests the
predictive ability of the RFR model on NPs that were not present
in the training data, a key goal in the use of corona prediction
for the design of novel nanomaterials.

One limitation of this current predictive ability is that
a totally novel NP with features well-outside of our existing data
set of NPs (mNP, gold-mNP, polystyrene) and ligands (citrate,
polyethyleneimine, polyvinylpyrrolidone, polyethylene glycol,
carboxylate) may need additional experimental data for
predictions with high accuracy.

Previous work has shown that the protein corona determines
the cellular and physiological response to NPs.**'%'*37 The
ability to predict the protein corona could provide a first step in
predicting the cellular response. For example, previous work
using 105 different gold NPs showed that the protein corona
determined the interaction of NPs with cells, but this was
determined experimentally in a tour de force experimental
study.** We hope the RFR and RFC models described above will
provide a computational tool for pre-screening NP candidates
for use in biological applications prior to experiments. For
example, in the longer term, we could envision the use of a ML-
predicted protein corona to reduce the need for cell and animal
experiments to determine NP toxicity.
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