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ntanglement using quantum gates
with scanning tunneling microscopy-driven
electron spin resonance

Eric D. Switzer,*abc Jose Reina-Gálvez, def Géza Giedke,g Talat S. Rahman, c

Christoph Wolf,de Deung-Jang Choi ghi and Nicolás Lorente *gh

Quantum entanglement is a fundamental resource for quantum information processing, and its controlled

generation and detection remain key challenges in scalable quantum architectures. Here, we numerically

demonstrate the deterministic generation of entangled spin states in a solid-state platform by

implementing quantum gates via electron spin resonance combined with scanning tunneling microscopy

(ESR-STM). Using two titanium atoms on a MgO/Ag(100) substrate as a model, we construct a two-qubit

system whose dynamics are coherently manipulated through tailored microwave pulse sequences. We

generate Bell states by implementing a Hadamard gate followed by a controlled-NOT gate, and evaluate

its fidelity and concurrence using the quantum-master equation-based code TimeESR. Our results

demonstrate that ESR-STM can create entangled states with significant fidelity. This study paves the way

for the realization of atom-based quantum circuits and highlights ESR-STM as a powerful tool for

probing and engineering entangled states on surfaces.
I. Introduction

Quantum computing relies on the ability to manipulate and
entangle quantum states with high delity.1,2 Among the
various platforms proposed for quantum computation, solid-
state systems provide a promising avenue due to their scal-
ability and integrability into existing technologies.3 One such
approach involves using magnetic atoms on insulating
substrates, where quantum coherence can be preserved while
allowing for controlled quantum operations.2,4,5 In this context,
the combination of electron spin resonance with scanning
tunneling microscopy (ESR-STM) and atomic manipulation
techniques offers a unique method for designing and imple-
menting quantum gates at the atomic scale.4,6–8
DIPC), 20018 Donostia-San Sebastián,

v

n, National Institute of Standards and

, USA

l Florida, Orlando, Florida 32816, USA

or Basic Science, 03760 Seoul, Republic of

public of Korea

Germany

), 20018 Donostia-San Sebastián, Spain.

(CSIC-UPV/EHU), 20018 Donostia-San

48013 Bilbao, Spain

8–8057
ESR-STM enables the coherent control of individual spins
through the application of microwave elds, providing an effi-
cient means to implement quantum logic operations.4,6,9 By
positioning magnetic atoms on thin insulating layers such as
magnesium oxide (MgO) grown on metallic single crystal
substrates such as Ag(100), their interactions can be precisely
controlled, and their quantum coherence properties can be
studied precisely at the level of individual spin states. Recent
experimental and theoretical advancements have demonstrated
that two-qubit quantum gates can be realized by exploiting the
interaction between adjacent magnetic adatoms.4,5 Specically,
a controlled-NOT (CNOT) gate, in combination with a Hada-
mard gate, allows for the deterministic generation of maximally
entangled Bell states.10

In this work, we numerically demonstrate the realization of
a two-qubit quantum gate using ESR-STM to create a Bell state
between two titanium (Ti) adatoms located approximately 1 nm
apart on MgO/Ag(100) (Fig. 1(b)) and predict realistic time-
dependent STM currents using the quantum master equation-
derived code TimeESR. These atoms have shown to host an
effective spin S = 1/2 orbital. An applied external magnetic eld
splits thems=±1/2 state energies, creating a quantum two-level
system. Our approach utilizes a sequence of pulsed microwave
excitations to implement the necessary quantum operations.
The Hadamard gate is achieved through coherent Rabi oscilla-
tions and brings the rst qubit into a superposition state. The
CNOT gate is implemented by selectively driving a single-spin
transition conditioned on the spin state of the control qubits
adatom (see Fig. 1(c)). We characterize the performance of the
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 One qubit and two qubit ESR-STM schemes. (a) Atomic scheme
fo the ESR-STM setup; one Ti atom (S = 1/2) on two monolayers of
MgO grown on Ag(100). The STM tip is an atomically sharp electrode
placed on the Ti atom (designated the transport site), driving the
electronic current through it. (b) Scheme of the two-qubit ESR-STM
setup consisting of two exchange-coupled Ti atoms (each S = 1/2) on
the same substrate as (a), with the STM tip placed on the transport site.
(c) Entanglement gate scheme using a single-qubit Hadamard gate on
the second site, followed by a two-qubit CNOT gate with the second
site as the control qubit. The effect of each gate for an input j0i5 j0i is
shown below the circuit. The final state of the depicted circuit is the

Bell state jFþi ¼ 1ffiffiffi
2

p ðj00i þ j11iÞ.
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quantum circuit through theoretical simulations and analyze
the effects of decoherence due to tunneling currents. This study
demonstrates that ESR-STM can serve as a powerful tool for the
implementation of elementary quantum circuits, providing
a pathway toward atom-based quantum information process-
ing. We aim to highlight that it is possible to entangle two spins
using only oscillating electric elds and the resulting time-
dependent currents, something that sets it apart from all
other approaches. The ability to create, manipulate, and read
out entangled spin states using STM not only advances our
understanding of quantum coherence at the atomic scale but
also opens up new possibilities for developing quantum tech-
nologies on solid surfaces.

II. Qubit operations in ESR-STM

We have created a time-dependent code, TimeESR,11 that
models the electron transport and the spin evolution of an
arbitrary magnetic atomic or molecular system in contact with
two electrodes under realistic out-of-equilibrium conditions,
including the effects of electrode voltage, electronic currents
and microwave driving. Using this code with craed sequences
of tailoredmicrowave pulses, e.g., with the tip of an STM, we can
produce controlled spin operations. In essence, the code allows
one to explore how to produce controlled operations on qubits,
© 2025 The Author(s). Published by the Royal Society of Chemistry
and the impact of these operations on ESR-STM observables,
such as the electronic current.

In Sections II A and II B, we provide a brief introduction to
the physical model, its implementation in the TimeESR code,
and the code's relevant outputs. In Sections II C–E, we generally
outline how one-qubit and two-qubit operations are imple-
mented in ESR-STM. Then in Section II F, we show the micro-
wave pulse sequence modeled with TimeESR to entangle two
qubits in one of the maximally-entangled Bell states.12

A. Model implemented in the TimeESR code

An essential tool employed throughout this work is the
numerical code TimeESR, specically developed to simulate
and analyze spin dynamics in ESR-STM experiments. This code
constitutes the primary computational framework for modeling
time-dependent quantum phenomena in single magnetic
atoms or molecules placed in an STM junction. Its focus lies in
investigating the coherent manipulation of localized spin states
under the inuence of time-periodic driving elds, as mediated
by tunneling electrons.

The physical system under consideration consists of
a quantum impurity (QI, physically a magnetic adsorbate which
may contain one or more magnetic sites) placed in an STM
junction, where it is tunnel-coupled to two electronic reservoirs:
the metallic tip (electrode a = T) and the substrate (a = S). The
role of the STM is twofold: it enables charge transport through
the adsorbate, and it provides a means to apply time-dependent
electric elds that modulate the tunneling rates between the
adsorbate and the electrodes. By solving the reduced density
matrix dynamics under microwave driving and a bias drop
between electrodes, TimeESR computes the dynamics of the QI
and the evolution of the electronic current that ows through
the QI.

The total Hamiltonian of the system is partitioned into three
contributions:

Ĥ(t) = Ĥelec + ĤQI + ĤT(t) (1)

The rst term, Helec, describes the two non-interacting elec-
tron reservoirs which model the tip and substrate:

Ĥelec ¼
X
aks

3akĉ
†
aksĉaks (2)

where ĉ†aks (ĉaks) creates (annihilates) an electron in electrode
a with momentum k and spin projection s ˛ {[, Y} with energy
3ak. Each electrode is characterized as a bath with temperature
Ta and chemical potential ma.

The second term, ĤQI, is the impurity Hamiltonian and it is
given by,

ĤQI ¼
X
s

3sd̂
†

sd̂s þUn̂[n̂Y þ mBB� g � ŝþ
XN
i¼1

ĤS;i (3)

where d†s (ds) creates (annihilates) an electron in a single
impurity orbital (henceforth designated as the “transport” site)
with spin s and energy 3s, and n̂s ¼ d†

sds is the number oper-
ator, mB is the Bohr magneton, B is the local magnetic eld on
the transport site, g is the g-tensor, and ŝ is the spin operator of
Nanoscale Adv., 2025, 7, 8048–8057 | 8049
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the transport orbital. Interactions on the N magnetic sites not
participating in transport, together with the environmental
effects via spin–orbit coupling, are taken into account using
a spin Hamiltonian ĤS,i following ref. 13 and 14. Eqn (3) models
a many-body entangled system consisting of a single impurity
orbital with onsite Coulomb repulsion U, under the inuence of
a local magnetic eld B, coupled to additional Nmagnetic sites.
In our two-site QI model in Fig. 1(b), eqn (3) corresponds to
a transport orbital on the rst Ti atom exchange-coupled to the
second Ti atom described by ĤS,i with a different local magnetic
eld. TimeESR allows for additional complexity of the other
magnetic sites ĤS,i in the QI, as explained in the Appendix.

The nal contribution, ĤT(t), describes the tunnel coupling
between the QI and the electrodes. Importantly, this tunneling
is modulated by an external time-dependent driving eld, which
in ESR-STM setups is caused by an oscillating electric eld
applied between the tip and the substrate. The tunneling
Hamiltonian reads,

ĤTðtÞ ¼
X
aks

TaðtÞĉ†aksd̂s þ h:c:; (4)

where Ta(t) is the time-dependent, momentum and spin-
independent, tunneling amplitude between the impurity and
electrode a. Following the approach in ref. 15–18, and more
recently in ref. 19, we keep the time-dependence to its lower
order in time,

Ta(t) = Ta
0[1 + Aa cos(ut + d)], (5)

which captures the effect of the modulated tunneling barrier
due to the driving eld. Here, Aa is the amplitude of the
modulation (assumed small), u is the driving frequency, and
d is a phase shi in the drive. Our calculations19,20 have shown
that this mechanism is extraordinary efficient in driving the
spin, leading to Rabi ratesU and coherence times T2 in excellent
agreement with experiments.4

The full dynamics of the system, including the coupling to
the electrodes, is described by a reduced density matrix rlj(t),
where l and j label the eigenstates of ĤQI by diagonalizing eqn
(3). We derive the equation of motion for r(t) within the Born-
Markov approximation,21,22 treating the coupling ĤT(t) to
second order in perturbation theory. This results in the time-
dependent quantum master equation,

ħr
c

lj
ðtÞ �iDljrljðtÞ ¼

X
vu

h
Gvl;juðtÞ þ G*

uj;lvðtÞ
i
rvuðtÞ

�
X
vu

h
Gjv;vuðtÞrluðtÞ þ G*

lv;vuðtÞrujðtÞ
i
; (6)

where ℎ is the reduced Planck constant, Dlj = El − Ej is the
energy difference between states l and j, and ℎ−1Gvl,ju(t) are the
time-dependent rates describing tunneling processes involving
electron transfer between the impurity and the electrodes. The
real part of Gvl,ju(t) effectively encodes the time-dependent
decoherence of the system, while the imaginary part repre-
sents the impact of the modulated tunneling on electron
transfer. Further details on the form of the time-dependent
rates can be found in ref. 17.
8050 | Nanoscale Adv., 2025, 7, 8048–8057
B. Utility of TimeESR

The TimeESR code numerically solves eqn (6) for arbitrary time-
dependent tunneling amplitudes and system parameters.
Generally, TimeESR computes the time-dependent current,
populations, and spin expectation values. As a result, the so-
ware captures the essential physics of spin dynamics under
time-dependent driving, including tunneling-induced deco-
herence, non-equilibrium transport, and coherent spin
manipulation. Other sources of decoherence, however, are not
included. As shown experimentally in ref. 7, the electronic
current is the largest source of decoherence. To mitigate it,
current techniques utilize thicker substrates (e.g., more layers of
MgO in our example) and ancillary atoms that drive the current
but do not directly produce the quantum operations them-
selves.5,7 Experimentally, pure dephasing seems to be largely
absent in ESR-STM measurements.7

Continuous-wave ESR spectra can also be computed by
repeating calculations in TimeESR over a range of different
driving frequencies u, in which each calculation's time propa-
gation is long enough to reach a steady state (dictated by the
coherence times of the system studied). The DC component of
the current, as a function of the driving frequency, is directly
comparable with experimental ESR spectra23–26 whilst the time-
dependent component is not accessible in the experiment
directly due to the slow integrating nature of STM ampliers,
generally limiting the time-resolution to kHz.27 The computed
current is also accurate at shorter times, permitting the calcu-
lation of electronic currents under the presence of short bias
pulses. Thus, the code is best suited to model time-dependent
driving protocols that implement quantum gate operations
such as p-pulses, p/2-pulses, and more complex sequences
designed to achieve universal quantum control, whilst for the
long-time limit other methods such as Floquet expansion might
be more suitable.17–19 TimeESR also supports the inclusion of
multiple simultaneous or sequential driving frequencies,
enabling the study of advanced multi-frequency pulsed proto-
cols used in contemporary ESR-STM experiments. These
include selective addressing of multiple spins and conditional
gate operations akin to two-qubit gates such as the CNOT gate.
C. Single qubit unitary evolution under ESR drive

Before addressing the unitary evolution of the two magnetic site
QIs in Fig. 1(b) under ESR-STM, we rst describe the time
evolution of a simpler problem: a single magnetic site (single
qubit), shown in Fig. 1(a). We designate the polarized spin “up”
state j[i of, e.g., a Ti adatom on MgO/Ag (100)4 as the digital j0i,
while the “down” state jYi is the digital j1i. The difference in
energy between the two states {j0i, j1i} divided by ℎ is called the
Larmor frequency u0/2p. A harmonic time-dependent interac-
tion will lead to a non-trivial evolution of a generic state. In the
case of resonance, the driving frequency exactly matches the
Larmor frequency, u = u0. Under this condition, the transition
probability between the two states oscillates maximally. The
rate of change of the state, the Rabi rate U, measures how fast
the transition is driven by the time-dependent interaction.
© 2025 The Author(s). Published by the Royal Society of Chemistry
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On resonance in the absence of noise, using U � u0, the
time-dependent state can be written as jJ(t)i = Û(t)jJ(0)i.
Under the above provisos, the unitary in the lab frame can be
expressed by the Wigner D-matrix28 D1/2(u0t − d0, Ut, d0) multi-
plied by an arbitrary phase factor exp(ia), or equivalently,29

ÛðtÞ ¼ eiae�i
u0

2
t

�

2
66664

cos

�
U

2
t

�
�ieid sin

�
U

2
t

�

�ie�id eiu0t sin

�
U

2
t

�
eiu0t cos

�
U

2
t

�
3
77775;

(7)

where d = d0 − p/2, By transforming to the rotating frame, one
obtains the form,

Û
0ðtÞ ¼ eia

2
6664

cos

�
U

2
t

�
�ieid sin

�
U

2
t

�

�ie�id sin
�
U

2
t

�
cos

�
U

2
t

�
3
7775: (8)

It is in this rotating frame that one can attempt to match the
pulsed unitary to a qubit gate operation. However, eqn (8) is
restrictive in the sense that it alone does not generate all useful
qubit gate operations. Instead, one must apply one or more
pulses of carefully chosen duration t, Rabi frequency U, and
phase d to achieve any particular single qubit gate operation. If
each pulse is “switched on and off” sufficiently fast (compared
to the timescale 2p/U), the full unitary qubit gate operation may
be approximated by a product of discrete pulses,

Ûdesired = Ûn/Û2, Û1, (9)

where each Ûi is of the form eqn (8) and where each Ui and di

may be distinct. It is important to note that the typical rise and
fall times for ESR-STM pulses are on the order of sub-
nanoseconds, which approaches the characteristic timescales
of commercially available microwave signal generators oper-
ating between 10 GHz and 40 GHz. While this does not neces-
sarily invalidate the approximation described above, it does
indicate that careful consideration of its limits and conditions
is required in this regime. We next illustrate single- and two-
qubit gates via two canonical examples: the Hadamard gate
(single-qubit) and the CNOT gate (two-qubit).
D. Single-qubit gates with ESR pulses: Hadamard

The Hadamard gate acts on the time-line of a single qubit and is
represented by an “H” symbol, Fig. 1(c). The strategy is to design
a sequence of pulses given by a product of unitaries, eqn (9),
such that the nal unitary is the Hadamard gate. One can
achieve this (up to irrelevant global phase) through a sequence
of unitaries built from individual ESR-STM pulses that mimic
the unitaries of Pauli matrices X̂ , Ŷ , Ẑ and their fractional
powers, e.g., H = Ŷ1/2 Ẑ or H = X̂ Ŷ1/2.

Directly comparing the ESR-STM evolution in eqn (8) to
rotations Rðq;fÞ ¼ exp� iq2ðcos fbsx þ sin fbsyÞ, one sees that
matching phases d in ESR pulses effectively generates
© 2025 The Author(s). Published by the Royal Society of Chemistry
“rotations” around different axes on the Bloch sphere. To
generate an effective Hadamard gate, one can then follow the
procedure,

1. A p/2 pulse (t = p/2U) with phase d = −p/2. From eqn (8),
this yields Û

0

1 ¼ Ŷ
1=2

.
2. Ap-pulse (t= p/U) with d= 0, which is effectively an X̂ gate

(up to a global phase): Û
0

2 z X̂.The combined operation
Û 0 ¼ Û

0

2Û
0

1 results in a Hadamard gate, up to an overall phase
factor i. Another route is Ŷ−1/2 X̂ , achieved by reversing the order
and switching the sign of d. Either ESR-STM pulse scheme yields
the same nal result.

E. Two-qubit gates with ESR pulses: CNOT

We now turn to two-qubit operations, focusing on the
Controlled-NOT (CNOT) gate, an essential step in creating
entangled Bell states. Assume a two-qubit system correspond-
ing to the two magnetic sites T (the transport site qubit) and T0

(the target site qubit) within the QI in Fig. 1(b). In this system,
one useful basis set for the Hilbert space described by the states
jTi 5jT0i is the product states quantized with respect to
a particular axis, e.g., aligned to the principal axis of an applied
magnetic eld: {j00i, j10i, j01i, j11i}. Using this basis, the same
machinery of Section II C can then applied to transition
between these states. The effective operation of the CNOT gate
with respect to the “control” qubit T is to ip the target qubit T0

if jTi= j1i; otherwise, it does nothing. In ESR-STM systems with
multiple spins, an appropriate pulse frequency UC can selec-
tively drive the transition

jsT/YT/sT/sni 4 jsT/YT/s�T0/sni

only when jsTi is jYi. Thus, carefully engineered p-pulses at UC

implement the conditional “ip” on the second qubit, yielding
a CNOT gate.

F. Physical example: generating a Bell state

As a concrete illustration, suppose we have a two-spin system
with many-body basis states that correspond to product states
of the rst magnetic site, the transport site, with the second
magnetic site with polarization aligned to a Zeeman axis set by
locally-applied magnetic elds,

{j1i, j2i, j3i, j4i} = {jYYi, j[Yi, jY[i, jYYi}, (10)

whose spin to digital mapping is jYi / j0i and j[i / j1i.
These states can be simulated by using the parameters
described in the Appendix, resulting in frequencies (in GHz),

uð1Þ ¼ 0; uð2Þz 15:473;
uð3Þz 16:161; uð4Þz 31:520:

Fig. 2 shows a scheme of the energy levels and single-qubit
transitions of this two-spin system, assuming the states are
sufficiently “Zeeman-like,” corresponding with well-known
experimentally-accessible systems.5,8,30 The system contains
additional congurations describing different transient charge
states of the transport site (the unoccupied and doubly-
Nanoscale Adv., 2025, 7, 8048–8057 | 8051
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Fig. 2 Two-qubit system stemming from two spin-1/2 sites weakly
interacting and slightly detuned such that Zeeman-product states, eqn
(10), are an excellent approximation to the four-level system. The
single-qubit transitions between them are designated by their
respective rates gi.

Nanoscale Advances Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 3

1 
O

ct
ob

er
 2

02
5.

 D
ow

nl
oa

de
d 

on
 1

/2
4/

20
26

 1
2:

31
:4

8 
A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online
occupied states) in order to account for the electron transport
process. For the operations on the spins that we describe, we
only consider the above four states that correspond to the
longer-lived charge state.

Using TimeESR, we identify drive frequencies near the Lar-
mor frequency uij = u(j) − u(i) near each relevant transition
energy, eachmaximizing population transfer between jii and jji.
For example, u13 z 16.161 GHz drives j1i4 j3i nearly perfectly
(see Fig. 4(a) and 5(a); at t z 200 ns the spin on the second site
Fig. 3 Pulse sequence used in the input of TimeESR to produce an entan
sequence, corresponding with the sequences shown in Fig. 4 and 5.

8052 | Nanoscale Adv., 2025, 7, 8048–8057
ips to almost +0.50 and consequently the population largely
shis from state j1i to j3i), if the time duration of the pulse
corresponds to half a Rabi period. This is called a p pulse. In
Fig. 3 the rst pulse is this p pulse with duration tpulse = p/U13

z 200 ns, where U13 is the Rabi frequency for the oscillation j1i
4j3i. The Rabi frequencies are determined numerically by
plotting the time-dependence of the populations over time at
resonant driving.

In this system, a possible sequence to create the Bell state

jFþi ¼ 1ffiffiffi
2

p ðj00i þ j11iÞ is:
1. Initialize the system in the ground state j00i.
2. X̂ on site 2: apply a p pulse at u = u13 z 16.161 GHz

addressing the transition j1i 4 j3i with no phase shi. The
resulting state is −ij01i.

3. Ŷ−1/2 on site 2: apply a p/2 pulse at the same u13 frequency
with a phase shi d = p/2. The result is a state

� iffiffiffi
2

p ðj00i þ j01iÞ.
4. CNOT with site 2 as the control qubit: apply a p pulse for

the j3i4 j4i transition at u = u34 z 15.359 GHz with no phase
shi. The resulting state is the Bell state jF+i with a global
phase −i.

Steps (2) and (3) together implement the Hadamard-like
operation on the second site, while step (4) implements
gled jF+i Bell state. Colors indicate the position of the pulse within the

© 2025 The Author(s). Published by the Royal Society of Chemistry
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a CNOT-like ipping of the transport site, conditional on the
second site's state as the logical j1i. Fig. 3 is a snapshot of the
input of TimeESR needed to implement the above sequence of
pulses. In the rst line the input establishes the total time of the
simulation, 750 ns in this example. The next line of the input
declares the number of pulses, and the maximum number of
driving frequencies uij per pulse (in our example, there is only
one frequency per pulse). Next, the four pulses are described by
declaring the time interval where it acts, an on/off toggle switch
value (1.0 for on, 0.0 for off), its frequency in GHz, and the phase
of the pulse in radians. Numerical precision of the inputs and
a small time-step for the time propagation are important
because the decoherence of the spins is fast and quantum
operations quickly become noisy.

In ESR-STM, the combination of (i) distinct spin-resonance
frequencies uij for different qubit sites and (ii) the ability to
introduce phase shis d and ne-tune pulse durations t allows
one to implement universal one- and two-qubit operations.5,7

Single-qubit gates such as the Hadamard gate can be con-
structed from a pair of carefully phased pulses, while two-qubit
gates like CNOT can be realized by single-frequency pulses,
since every transition frequency is naturally conditional on the
control-qubit state (i.e., g1 is different from g3 since they differ
by the state of the transport site qubit). These building blocks
enable the generation of important entangled states, including
Bell states.
Fig. 4 Spin evolution during the quantum circuit execution. The top
color bar represents a schematic of the four pulse regions described in
Fig. 3. (a) Expectation value of the spin operator aligned to the locally-
applied magnetic field Ŝx for each site; see the inset for a description of
the principal axes. Initially the frequency is tuned to drive the second
site to a superposition state. During this time, no operation is per-
formed on the transport site, but the electronic current causes
decoherence and the value of the spin slightly drifts away from hS1xi =
−0.50. At 281 ns, the CNOT gate is applied and both expectation
values go to zero. (b) Expectation value of the spin operator aligned to
the electrode's spin polarization (Z-axis) Ŝz for each site. The expec-
tation value of hSyi (not shown) follows the same pattern as hSzi. The
profile of hSzi tracks with the result of each pulse operation. As shown
in the inset, all calculations are done in the lab frame, leading to
oscillations at the Larmor frequency of the in-plane spin expectation
values.
III. Creation of Bell states with
ESR-STM on two weakly-coupled spins

Fig. 4 shows the spin dynamics over the two sites when the
sequence of pulses described in Fig. 3 is performed on the
ground state of the spin dimer. The magnetic eld is locally
applied along the X-axis, which gives the quantization axis of
our system. The rst pulse is a p-pulse leading to the transition
j00i/ ij01i. Fig. 4(a) shows this rst pulse, in which the second
site's spin expectation value along the quantization axis hS2xi
transitions from−0.50 to almost +0.50. These simulations show
that it is virtually impossible to have a perfect single-qubit p
pulse in a multi-qubit system due to the complex combined
time-evolution of the exchange-coupled spins. Our simulations
include a junction current which causes decoherence that can
be seen in the reduction of the transport site's spin expectation
value hS1xi in Fig. 4(a), from −0.50 to approximately −0.46
within the time region of the rst pulse.

Aer the second pulse, the p/2 pulse at the j00i / j01i
transition frequency, the p pulse on the j01i / j11i transition
is turned on at 281 ns. As a consequence, we see that the spin
expectation value of the two sites becomes zero along the
quantization axis. This is an indication that we have created
a Bell state, however it is not direct proof as this representation
does not directly show the coherent properties of the system. To
show that we have created Bell states, we detail the delity and
concurrence of the system in the following section.

Each spin oscillates in their respective Bloch spheres, as seen
in Fig. 4(b). Both the Y and Z components show fast oscillations
© 2025 The Author(s). Published by the Royal Society of Chemistry
at the Larmor frequency (see the inset of Fig. 4(b)), producing
complete turns around the X-axis until the nal p pulse. Aer
this pulse, the oscillations are greatly reduced in amplitude.
Nanoscale Adv., 2025, 7, 8048–8057 | 8053
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Fig. 5(a) shows the populations of the four states during the
realization of the circuit. These populations follow the sequence
of pulses, and because to the simple form of the quasi-Zeeman
states of the QI Hamiltonian, one can rationalize the values of
hS1xi and hS2xi in Fig. 4(a), based on the population of
each state.

Finally, Fig. 5(b) shows the electronic current that is driven
through the transport spin. The division of current is apparent
before and aer the pulse at around 300 ns because it separates
the driven and free evolution of the two-spin system. The
Fig. 5 Population of the different states, Fig. 2, during the quantum
circuit execution (a) and the computed electronic current (b). The top
color bar represents a schematic of the four pulse regions described in
Fig. 3. Both graphs show the fast evolution taking place before the
pulses are turned off at around 300 ns and the free evolution of the
two spins is allowed. The population of the states can be easily iden-
tified with the expectation value of each single spin in Fig. 4.

8054 | Nanoscale Adv., 2025, 7, 8048–8057
current appears noisy but contains clear patterns that reect the
pulses and the dynamic response of the spin system. Unfortu-
nately, the time scale of the uctuations is too fast to allow
a direct detection in STM.27 Accumulated statistics of the time-
averaged current from a large number of consecutive realiza-
tions of this gate sequence might allow one to reconstruct the
dynamics.
A. Quality of the Bell states

We quantify the quality with which our circuit prepares the
desired Bell state using the delity,

F = hF+jrjF+i, (11)

where r denotes the state of the two qubits. Fig. 6 shows the
delity of our prepared state with the target Bell state jF+i. We
see that at the moment of pulsing the CNOT gate, we create
a state that has a delity above 90%. However, the delity
oscillates rapidly (see the inset of Fig. 6) at a frequency close to
the 31.520 GHz energy difference between the contributing
states to jF+i and jF−i, namely j00i and j11i. The delity decays
over a time scale of ms as r evolves into a mixed state. Because
the nal state is a mixed state, there is always some remnant
weight on the Bell state.

A better insight in the entanglement properties of our system
is provided by the concurrence,C31 since it is not affected by the
rapidly-oscillating relative phase between the two eigenstates. C
takes values between 0 and 1. For two qubits, C ¼ 0 holds for all
separable states, while C ¼ 1 implies a maximally entangled
state (i.e., the state jF+i up to local unitaries). The concurrence
Fig. 6 Concurrence and fidelity with respect to jF+i during the
execution of the quantum circuit. The concurrence is a measure of the
entanglement, accordingly it remains very low until it maximizes at the
formation of the jF+i. The formation of the latter is monitored through
the fidelity, which is the projection of the Bell state on the instanta-
neous state of the circuit. When the CNOT gate is created, the Bell
state is formed and consequently the fidelity reaches 93%. As shown in
the inset, all calculations are performed in the lab frame which result in
fast oscillations at a frequency equal to the difference in the j00i and
j11i eigenenergies. Current-induced decoherence is evident in the
decrease of concurrence over a scale of ms after the Bell state is
formed.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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gives an upper bound to the possible Bell-state del-
ityð1þ CÞ=2$ F.32,33 Both quantities show that a highly entan-
gled state close to the Bell state was achieved. As r evolves,
current-induced decoherence accumulates. This results in the
decline of the concurrence at a rate larger than the decay of the
delity envelope. Like the delity envelope, the decay occurs
over an experimentally-reasonable ms scale, and is an order of
magnitude larger than the slowest gate operation of the circuit.

IV. Conclusions

We have demonstrated the theoretical realization of universal
quantum gate operations in a two-qubit system formed by
titanium atoms on a MgO/Ag(100) surface, manipulated using
ESR-STM techniques. By designing and applying sequences of
microwave pulses, we successfully implemented a Hadamard
gate and a controlled-NOT (CNOT) gate, which led to the
formation of maximally entangled Bell states. Our numerical
simulations, performed with the TimeESR code, capture the
time-dependent spin dynamics of the system under realistic
experimental conditions. We quantied the quality of the
entangled states by computing both the delity and the
concurrence, reaching values above 90% before decoherence
effects, which happen on a time scale of ms, set in. The inuence
of tunnel-induced decoherence was analyzed, demonstrating its
impact on the long-term stability of entangled states and the
importance of optimizing gate sequences and pulse parameters
to mitigate these effects.

By using the numerical results of TimeESR in the time-
dependent quantum master equation formalism, the results
shown here go beyond prior theoretical studies of entanglement
generation in ESR-STM,10,34 andmore generalized tripartite spin
systems in which the transport site functions as an entangle-
ment witness.35 Specically we show the crucial impact of the
tunneling processes in ESR-STM on system properties and
experimental observables during entanglement generation. Our
results also show use of a transport spin and an exchange
coupled second spin are sufficient for quantum gate operations
in ESR-STMwithin the available coherence time of the transport
spin.

The work presented here establishes ESR-STM as a viable
platform for the implementation of elementary quantum
circuits at the atomic scale. The precise control of individual
spins and their coherent coupling opens promising avenues for
developing atomically dened quantum devices. Challenges
remain, however, in the scalability of the platform (e.g.,
dynamically tuning the coupling between magnetic sites in the
QI), and the generation of entanglement over a larger number of
magnetic sites. Future work will focus on extending this
approach to larger qubit arrays, and exploring more complex
gate sequences. This may require improved coherence times
and Rabi rates through optimized surface preparation and
quantum control.36 Our ndings contribute to the growing eld
of quantum coherence and entanglement in atomic-scale solid-
state systems, highlighting ESR-STM as a uniquemethod for the
realization of atomic-scale quantum information circuits on
surfaces.
© 2025 The Author(s). Published by the Royal Society of Chemistry
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The computational codes supporting the ndings of this study,
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have included due referente to the TimeESR code and its web
server page hosted at github.
Appendices
Appendix A: spin Hamiltonian used in TimeESR

TimeESR allows for a generalized treatment of the spin
Hamiltonian for each magnetic site ĤS,i connected to the
transport site in the QI Hamiltonian ĤQI of eqn (3). The general
form of the spin Hamiltonian in TimeESR for spin site i with
spin Si is,

ĤS,i = ĤZ,i + ĤJ,i + ĤA,i, (12)

which accounts for the Zeeman, exchange interaction, and
magnetic anisotropy Hamiltonian terms, respectively. The
Zeeman term ĤZ,i is,

ĤZ;i ¼
X
c

mBB
c
i gicŜ

c

i ; (13)

where the sum is over all lab frame directions c, Bic is a locally
applied magnetic eld, and the g-tensor is simplied by
considering a principal-axis dependent g-factor gic.

ĤJ,i represents the exchange interaction Hamiltonian
between all impurities and impurity site i,

ĤJ;i ¼
X
jsi

X
c

Jc
ij Ŝ

c

i Ŝ
c

j ; (14)

where Jijc is the exchange interaction strength for the pairing of
site i and j in the lab-frame direction c. Relevant to all impu-
rities where Si > 1/2, ĤA,i is a magnetic anisotropy term built
from Stevens operators,

ĤA;i ¼ B2;i
0Ô2

0ðSiÞ þ B2;i
2Ô2

2ðSiÞ
þB4;i

0Ô4

0ðSiÞ þ B4;i
4Ô4

4ðSiÞ;
(15)

where Bk,i
q is the coefficient of the Stevens operator Ôk

q(Si) for
impurity site i, order k, and degree q.
Appendix B: spin Hamiltonian and TimeESR Hamiltonian
inputs for Bell state generation

For the example given in the main text for a single transport site
exchange-coupled to another S = 1/2 impurity, eqn (12) is
simplied considerably. First, the Zeeman terms are aligned
perpendicular to the electrode axis which we take to be the Z-
axis, and the g factors are isotropic g1 = g2 = g = 2,
Nanoscale Adv., 2025, 7, 8048–8057 | 8055

https://github.com/qphensurf/TimeESR
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5na00421g


Nanoscale Advances Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 3

1 
O

ct
ob

er
 2

02
5.

 D
ow

nl
oa

de
d 

on
 1

/2
4/

20
26

 1
2:

31
:4

8 
A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online
ĤZ = gm(B1
xŜ1

x + B2
xŜ2

x). (16)

The exchange interaction Hamiltonian is simplied to be
isotropically ferromagnetic,

ĤJ = JŜ1 × Ŝ2 (17)

The magnitude of B and J are set so that the Zeeman term is
two orders of magnitude larger than the exchange interaction
Hamiltonian, and the occupation energy 3 is negative and two
orders of magnitude larger than the Zeeman term.

The values that we have used in the simulations of Fig. 3–6
are 3d = −5.0 meV, U = 50 meV, B1

x = 0.5509026 T, B2
x =

0.5751223 T, J = −0.11390 GHz, and the bias drop is
symmetric with magnitude 6.0 mV. The exchange value
corresponds to the experimental values of two Ti adatoms
located approximately 1 nm apart on MgO/Ag(100) as given in
ref. 5 and 30. The rates due to the coupling with the electrodes
are 5.0 and 1.0 meV with the sample and tip electrodes,
respectively. The drive has been chosen to correspond to 50%
of the rate with the tip which is 100% spin polarized along the
Z-axis. These parameters allow us to drive both the quantum
impurity beneath the tip and the connected magnetic site
outside the tunneling junction without the need to enhance
the driving of the latter by placing a quantum magnet nearby,
a mechanism described in ref. 36. Nevertheless, such
a conguration could relax the parameter requirements
employed here.

The temperature is xed for both electrodes at Ta = 0.05 K.
The system is initialized by thermalization with the baths rep-
resented by the temperature of the electrodes. With increasing
temperature the polarization of the QI decreases proportional to
the energy difference relative to the Boltzmann factor kBTa. This
has been shown before to limit the achievable entanglement.10

From this, for the typical energy splittings in the 10 GHz regime,
a temperature of 0.4 K appears to be the limit above which no
entanglement can be reliably detected.
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