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for classifying monoamine
neurotransmitters by applying machine learning on
UV plasmonic-engineered auto fluorescence time
decay series (AFTDS)

Mohammad Mohammadi, a Sima Najafzadehkhoei,b George G. Vega Yon bc

and Yunshan Wang *a

This study introduces a hybrid approach integrating advanced plasmonic nanomaterials and machine

learning (ML) for high-precision biomolecule detection. We leverage aluminum concave nanocubes

(AlCNCs) as an innovative plasmonic substrate to enhance the native fluorescence of neurotransmitters,

including dopamine (DA), norepinephrine (NE), and 3,4-dihydroxyphenylacetic acid (DOPAC). AlCNCs

amplify weak fluorescence signals, enabling probe-free, label-free detection and differentiation of these

molecules with great sensitivity and specificity. To further improve classification accuracy, we employ ML

algorithms, with Long Short-Term Memory (LSTM) networks playing a central role in analyzing time-

dependent fluorescence data. Comparative evaluations with k-nearest neighbors (KNN) and Random

Forest (RF) demonstrate the superior performance of LSTM in distinguishing neurotransmitters. The

results reveal that AlCNC substrates provide up to a 12-fold enhancement in fluorescence intensity for

DA, 9-fold for NE, and 7-fold for DOPAC compared to silicon substrates. At the same time, ML

algorithms achieve classification accuracy exceeding 89%. This interdisciplinary methodology bridges the

gap between nanotechnology and ML, showcasing the synergistic potential of AlCNC-enhanced native

fluorescence and ML in biosensing. The framework paves the way for probe-free, label-free biomolecule

profiling, offering transformative implications for biomedical diagnostics and neuroscience research.
Introduction

The precise quantication and identication of monoamine
neurotransmitters (MANTs) play a pivotal role in understanding
neurological processes and in the early diagnosis of neurode-
generative diseases.1–4 Conventional analytical methods such as
chromatography and mass spectrometry5 require complex
sample preparation and expensive reagents, unsuitable for
frequent assessments of MANT levels.6,7 Electrochemical
approaches such as the Fast-Scan Cyclic Voltammetry (FSCV)
method8 are cost-effective alternatives; however, they cannot
distinguish MANTs with similar oxidation potentials.9 Geneti-
cally encoded uorescence probes10,11 are able to detect MANTs
with excellent sensitivity and specicity; however, they require
the use of transgenic animals. Antibody or aptamer-based
assays12,13 have demonstrated real-time sensing of MANTs.
However, the long-term stability of these probes in biological
uids remains an issue.14–17
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MANTs have an aromatic ring structure that emits auto-
uorescence (AF) when excited by ultraviolet (UV) light. The AF
absorption cross-sections are orders of magnitude higher than
that of Raman or infrared absorption. Therefore, AF spectros-
copy is a promising technique for sensitive, label-free, and
probe-free quantication and identication of MANTs.
However, the classication of similar MANTs based on their AF
prole is challenging due to their overlapping spectrum.18 We
have shown in our prior work that the AF of MANTs drop cast on
a solid substrate (e.g., a silicon wafer or a plasmonic nano hole
array, etc.) decays exponentially over time when continuously
exposed to UV light.19–22 The decay rate constants were found to
be distinct among similarly structured MANTs, and their
differences were enlarged by a UV plasmonic nano hole-array.20

Our prior work focused solely on the decay rate constants and
has not realized the full potential of using UV plasmonic-
engineered Auto Fluorescence Time Decay Series (AFTDS) in
classifying MANTs. In this paper, we demonstrated excellent
classication accuracy by combining articial intelligence with
the AFTDS of MANTs deposited on aluminum plasmonic
concave nanocubes (AlCNC). The assembly of concave cubes
was reproducibly obtained by drop casting a droplet of nano-
particle solution containing AlCNCs in ambient conditions,
Nanoscale Adv., 2025, 7, 8013–8022 | 8013
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offering a cost-effective and nanofabrication-free way to form
a large area of plasmonic substrates.23,24

Machine learning has increasingly become a powerful tool in
nanoscale science, surface chemistry, and biosensors, enabling
advances in fabrication, characterization, and property predic-
tion by integrating experimental data with physics-informed
models. While ML has been applied to Raman and uores-
cence spectroscopy for biochemical sensing, this paper is the
rst application of ML for the classication of neurotransmit-
ters based on AFTDs. We performed comparative analysis using
three ML techniques – Long Short-Term Memory (LSTM), k-
nearest neighbors (KNN), and Random Forest (RF).25–27 LSTM
on AFTDS collected on AlCNCs achieved the highest classica-
tion accuracy, followed by a slightly poorer performance by KNN
and RF on AFTDS. KNN and RF on AF collected in the solution
phase without plasmonic nanoparticles achieved poorer
performances. Our results emphasize the importance of
plasmonic-engineered AFTDS in achieving high classication
accuracy among similarly structured MANTs. In addition, the
superiority of LSTM over KNN and RF in analyzing time-
dependent AF data was demonstrated.

Material and methods

Aluminum concave nanocubes solution with nominal diame-
ters of 80 ± 9 nm was purchased from NanoComposix (particle
concentration: 3.9 × 1012 particles per mL, mass concentration:
2.8 mg mL−1, with a surface area of 27.3 m2 g−1, and were di-
ssolved in 1-propanol). Dopamine, 3,4-dihydroxyphenylacetic
acid, and norepinephrine (>99.9%) were obtained from Sigma-
Aldrich.

Fluorescence measurements of the neurotransmitters were
conducted on two substrates: AlCNC and plain silicon wafers as
a reference. The AlCNC structure was selected based on our
hypothesis that its concave geometry, featuring sharp corners
and edges similar to those in aluminum bowtie nano
antennas,28,29 enables it to more effectively trap and concentrate
light, leading to stronger and more consistent uorescence
enhancement compared to smoother geometries or spherical
shapes, such as aluminum hole arrays, and aluminum nano-
triangles.21,30 A standard 2-inch silicon wafer was cut into four
pieces and treated with a plasma cleaner for 90 seconds at
a base pressure of 0.4 torr to render the surface hydrophilic.
Subsequently, 5 mL of the AlCNC nanoparticle (NP) solution was
drop-cast onto the silicon substrate and allowed to dry in
ambient conditions;23 offering a simple and time-efficient
fabrication route without requiring complex methods or
equipment such as e-beam lithography or sputtering.21 Aer
drying, a multi-layer pattern of the nanoparticles remained on
the substrate surfaces. The structural and compositional anal-
ysis of AlCNCs was performed using scanning electron
microscopy (SEM) and scanning transmission electron micros-
copy (STEM). Following substrate preparation, solutions of
three MANTs in deionized water at varying concentrations were
prepared, and 1 mL of each solution was drop-cast24 onto two
different substrates. The outer edge of the coffee ring pattern of
the AlCNC where high concentration of AlCNCs were found and
8014 | Nanoscale Adv., 2025, 7, 8013–8022
a Si wafer to measure the uorescence spectrum. The dried
MANTs were then exposed to a 266 nm CW solid state UV laser
CryLas FQCW266-10 (incident angle of 60°) with an output
power of ∼5 mW and a circular spot size of ∼100 mm in diam-
eter, and AFTDS were collected using a Horiba IHR 550 spec-
trometer coupled with a CCD camera.19–22 The AFTDS were
taken over 2–3minutes and an exposure time of 0.5 seconds was
used for each spectrum within the AFTDS.

We performed a comparative analysis using three ML tech-
niques: rst, we used LSTM; a type of recurrent neural network
well-suited for sequence prediction, which can capture
temporal dependencies in the uorescence data, potentially
improving the accuracy for distinguishing closely related
biomolecules. While LSTM has been applied for capturing
sequential patterns and forecasting time-series tasks such as
molecular generation,31 property prediction,32,33 and dynamic
process modeling,34,35 this paper presents the rst application of
LSTM in classifying molecules based on AFTDS. Secondly, we
used KNN; a simple, instance-based learning algorithm that
classies data points based on the closest training examples in
the feature space.36 Third, we used RF, an ensemble learning
method based on decision trees, to classify the spectral data and
assess its performance compared to other algorithms.27 The
AFTDS data was recorded as a time-dependent spectrum span-
ning 280–360 nm, Each uorescence time series originally
contained up to 240–360 spectra (0.5 s interval over 2 to 3
minutes). However, because the number of time-dependent
spectra for each illumination spot (sequence length) varied
across experiments (ranging from 0–17 to 240–360 spectra aer
preprocessing), we standardized all AFTDS inputs to the
shortest complete sequence length of 17. Longer sequences
were truncated to 17 regularly spaced sequences, and shorter
ones were padded if necessary. This variability was due to the
adjustment of sample position to nd a high uorescence
signal spot that leads to delayed collection of uorescent data
aer shutter opens at time 0. This length adjustment ensured
consistent input dimensions for the LSTM while preserving the
overall decay dynamics.

Adjustment details can be found in Fig. S1, Tables S1 and S2
of the SI. These were converted into structured input tensors of
shape (time_steps × wavelength_bins) for sequence-based
models (LSTM) or attened into feature vectors for non-
sequential models (KNN, RF). Processing the AFTDS with ML
was accomplished in different steps; the uorescence data
gathered from multiple experiments was used to train the ML
model. Each input sample was labeled with the corresponding
neurotransmitter class (DA, DOPAC, NE) to train supervised
classiers. The training process involved pre-processing the
uorescence data, feature extraction, and applying data
augmentation techniques to improve the model's accuracy and
generalizability.

Distinguishing neurotransmitters with similar structures
solely based on their native uorescence is challenging due to
their overlapping uorescence spectra. To address this chal-
lenge, we employed ML classication models and developed
a reliable classication framework capable of differentiating
neurotransmitters based on their unique uorescence
© 2025 The Author(s). Published by the Royal Society of Chemistry
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signatures. This approach allows for more precise detection and
identication of neurotransmitters. The integration of ML not
only improves classication accuracy but also provides a scal-
able method for analyzing large experimental datasets 6, 10.

We scaled all uorescence data with MinMaxScaler and
evaluated model performance with 4-fold cross-validation (75%
train, 25% test) as Fig. 1 shows the workow. The dataset was
rst stratied by neurotransmitter class to maintain balanced
representation in each fold. For every split, three folds (75%)
were used exclusively for training, and the remaining fold (25%)
was held out for validation. This process was repeated four
times so that each fold served once as the validation set, and the
reported metrics correspond to the mean across folds. To
prevent data leakage, preprocessing steps such as MinMax
scaling t only on the training partition within each fold and
then applied to the validation data. Importantly, spectra from
the same experimental replicate were kept within a single fold,
ensuring that no replicate contributed to both training and
validation sets. For the in-solution emission spectra, each
sample was a static snapshot of paired wavelength–intensity
values fed directly to KNN and a 150-tree RF. For the AFTDS, we
supplied KNN and RF with attened, right-aligned intensity
Fig. 1 Workflow for classifying DA, DOPAC, and NE after preprocessing

© 2025 The Author(s). Published by the Royal Society of Chemistry
vectors, while the LSTM received the raw 17-step sequence,
letting its three stacked LSTM layers learn temporal depen-
dencies before batch normalization, a dense layer, and so-max
output. This unied preprocessing lets each model exploit
either static spectral structure or time dynamics as appropriate,
yielding consistent classication performance across modali-
ties. Further details and the code used to process the data, t
the model, and generate predictions can be found in the data
availability section.

The AFTDS collected on AlCNC substrates contain only
seventeen regularly spaced intensity values per trace, so the data
are sequential and short. A LSTM network suits this setting
because its gated recurrent structure keeps information from
both the fast initial quench and the slower tail of the decay
curve, the two regions that together separate DA, DOPAC, and
NE even though they occur at very different times.

The in-solution spectra, by contrast, are single wavelength–
intensity snapshots. For these static measurements, we wanted
algorithms that run quickly while still capturing subtle spectral
patterns. An 11-neighbor KNN classier provides a simple non-
parametric baseline that classies by proximity in wavelength–
intensity space, while a RF with 150 trees captures non-linear
UV autofluorescence raw data.

Nanoscale Adv., 2025, 7, 8013–8022 | 8015
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interactions among neighboring wavelengths and offers built-in
feature importance scores that aid interpretation.

Simpler alternatives such as logistic regression and single
decision trees were rejected before testing. Linear decision
boundaries cannot recover the class separation that appears
only aer part of the uorescence has decayed, and a single tree
is sensitive to noise in individual wavelengths. Either option
would likely undert or overt without reducing inference time,
since RF and KNN already respond well under a millisecond on
the intended devices. Therefore, we concentrated our experi-
ments on the LSTMmodel for the sequential traces and on KNN
together with RF as fast, interpretable baselines for the static
spectra.

All analyses were performed in Python 3.10 using Tensor-
Flow 2.18.0.37 The LSTM achieved 89% accuracy using 17-point
standardized sequences derived from the original variable-
length uorescence time series, under 4-fold cross-validation
with replicate-level partitioning to avoid data leakage. The
training data was partitioned into four equal folds, with three
folds (75%) used for training and one-fold (25%) reserved for
validation in each iteration. This process was repeated four
times, allowing each fold to serve as the validation set once. By
exposing the model to diverse training and validation distri-
butions, cross-validation effectively addressed class imbalance,
enhanced generalization, and minimized bias. Real-time
inference was benchmarked on Google Colab Pro with an NVI-
DIA A100 GPU and Intel Xeon CPU (2.20 GHz); the trained LSTM
processed a single 17-point AFTDS trace in under 1 ms, con-
rming the framework's suitability for real-time neurotrans-
mitter classication.

Fig. 2 presents the training and validation curves of the
LSTM model over 50 epochs, showing model accuracy (blue)
and model loss (red). Both training and validation accuracy
increase rapidly during the initial epochs and stabilize around
0.89, indicating good generalization and minimal overtting.
Fig. 2 The plot presents the training and validation curves of the LSTM
training epochs.

8016 | Nanoscale Adv., 2025, 7, 8013–8022
The k-fold cross-validation results further support the model's
consistency, with accuracy ranging from 88.2% to 90.9% and
loss values stabilizing around 0.3 across folds.

The dataset used for model training and evaluation con-
sisted of 146 432 samples for models trained on AlCNC and
4113 samples for in-solution models. A 75–25% split was
applied, allocating approximately 109 824 samples for training
and 36 608 samples for testing in the AlCNC dataset, while the
in-solution dataset contained 2817 training samples and 939
test samples the dataset captures both spectral and temporal
uorescence dynamics, providing a rich input for classication.
Results and discussion
Experimental results

Fig. 3(A) shows a SEM image of the coffee ring pattern (the dark
circle) le by a drop of deionized water containing molecules
aer it evaporated on the AlCNCs. The UV laser focuses near the
dark circle where the concentration of molecules is higher than
in other spots to maximize the uorescence signal. Fig. 3B
shows the extinction spectrum of AlCNC measured by a UV-Vis
spectrometer, and the extinction dip near 300 nm closely aligns
with the emission wavelengths of the neurotransmitters, sup-
porting the choice of AlCNC for optimal plasmonic enhance-
ment. Fig. 3(C–F) presents the STEM analysis of AlCNCs,
highlighting their composition and surface features. The
Energy Dispersive Spectroscopy (EDS) in Fig. 3C conrms
aluminum (Al) as the dominant component, with oxygen (O)
mainly on the surface of the AlCNCs. The average diameter of
AlCNCs were estimated to be 80 ± 9 nm by STEM tools, and the
thickness of the oxide layer on the surface of AlCNCs aer
exposure to air is estimated to be between 4 to 8 nm (Fig. 3D).
The cyan-colored EDS map represents aluminum in Fig. 3E,
while the redmap corresponds to the oxide layer (Fig. 3F). These
results provide a detailed characterization of the AlCNCs and
model, illustrating model accuracy (blue) and model loss (red) over 50

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 The characterization of aluminum concave nanocubes. (A) A coffee ring formed by evaporating a drop of deionized water containing
molecules on AlCNCs. (B) Extinction spectrum of AlCNC (C) EDS line scan profile over a selected region of an AlCNC, illustrating the distribution
of Al (cyan) and O (blue), with the inset displaying the scan area superimposed on an AlCNC. (D) STEM images highlight the morphology and
concave geometry of the AlCNCs, with oxide layer thickness estimated to be 6 ± 2 nm. (E and F) EDS elemental mapping images showing the
spatial distribution of Al (cyan) and the oxide layer (red) on the AlCNC surfaces.

Fig. 4 Absorption vs. concentration data fit for DA, DOPAC, and NE in
deionized water.
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their surface properties. SEM images of AlCNC nanoparticles,
along with the coffee ring pattern formed by drop-casting 1 mL
of molecule solution, are also presented in Fig. S2.

AF intensity is inuenced by concentration, absorption effi-
ciency (3), excitation light intensity, and experimental condi-
tions.38 While a molecule with a higher quantum yield generally
exhibits greater uorescence intensity,20 the molecule with
a higher extinction coefficient can absorb more light, leading to
stronger uorescence despite a lower quantum yield. For
example, although NE has a higher quantum yield than DA, the
higher extinction coefficient of DA (2110 L mol−1 cm−1

compared to NE's 1070 L mol−1 cm−1) results in higher uo-
rescence intensity from DA. In contrast, although DOPAC
exhibits an extinction coefficient comparable to DA, its much
lower quantum yield (1.7%) leads to signicantly reduced
uorescence intensity.39,40 The extinction coefficients of DA, NE,
and DOPAC were determined from the slope of linear t data of
absorption vs. concentration plots in Fig. 4, using ve data
points employed in our previous work for quantum yield
calculations. The calculated extinction coefficients were 2110,
1070, and 2210 L mol−1 cm−1 for DA, NE, and DOPAC, respec-
tively, as presented in Table 1. The uorescent data for DA, NE,
and DOPAC in deionized water (DI) at 5 different concentrations
are shown in Fig. S3 and the corresponding absorption data are
shown in Fig. S4.

We employed AlCNCs that were drop cast and dried on a bare
Si wafer (as reference) as plasmonic substrates to differentiate
and analyze three similar neurotransmitters: DA, DOPAC, and
NE. Fig. 5(A–C) presents AFTDS signals, decreasing over time for
DA, DOPAC, and NE, and the topmost curve (highest intensity)
corresponds to the rst spectrum. The AF spectra, shown in
Fig. 5D and E, compare the intensities of DA, DOPAC, and NE
acquired at 0–0.5 seconds with an acquisition time of 0.5
© 2025 The Author(s). Published by the Royal Society of Chemistry
seconds (I0, the highest intensity spectrum in the AFTDS) on
a silicon wafer (Fig. 5D) and AlCNC substrates (Fig. 5E). DA
exhibited the highest uorescence intensity on both substrates,
followed by NE and DOPAC. Notably, uorescence intensities
on the AlCNC substrate were signicantly higher compared to
a silicon substrate, highlighting the uorescence-enhancing
properties of AlCNCs. This enhancement is specically attrib-
uted to the localized surface plasmon resonance (LSPR) effects
of AlCNCs in the UV range, which amplifes both the excitation
and uorescent emission (quantum yield) near the nanocube
surface, unlike the non-plasmonic silicon substrate.39 This
enhancement suggests strong plasmonic amplication or more
efficient excitation/emission conditions on the AlCNC substrate
Nanoscale Adv., 2025, 7, 8013–8022 | 8017
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Table 1 Quantum yield and extinction coefficients of DA, DOPAC, and
NE

Molecule Quantum yield (%)
3, extinction coefficient
(L mol−1 cm−1)

DA 5.9 � 0.8 (ref. 20) 2110 � 111.2
NE 6.3 � 0.6 (ref. 20) 1070 � 117.6
DOPAC 1.7 � 0.2 (ref. 20) 2210 � 52.6
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while maintaining consistent spectral proles. Additionally,
uorescence spectra data acquired using a uorometer for the
neurotransmitters dissolved in water are presented in Fig. 5F.

Fig. 6 compares the average integrated uorescence inten-
sities and net enhancement factors for DA, NE, and DOPAC;
each droplet contains 1 mL of 500 mM of MANTs that drop cast
and dried on a silicon wafer and AlCNC substrates. The inte-
grated uorescence intensity and net enhancement factors were
calculated using the methods published previously.19,20 To
quantify the variability in enhancement measurements, the
error was calculated as the standard deviation (STD) across
multiple experimental replicates.40 For each neurotransmitter
(DA, DOPAC, and NE), uorescence spectra were collected at
multiple distinct spots (n = 5–7) on both AlCNC and silicon (Si)
substrates. The integrated uorescence intensity for each
Fig. 5 AFTDS for three neurotransmitters (A) DA, (B) DOPAC, and (C) NE d
intensity of DA, DOPAC, and NE (1 mL of 500 mM) collected at 0 to 0.5 se
Spectra of DA, DOPAC, and NE solution dissolved in water at a concent

8018 | Nanoscale Adv., 2025, 7, 8013–8022
measurement was obtained by subtracting the baseline signal
(dark spectrum) and computing the area under the spectrum
using the trapezoidal rule. Enhancement factors were calcu-
lated by normalizing the integrated intensity on AlCNC to the
corresponding average intensity on Si. The reported enhance-
ment values represent the mean of these normalized measure-
ments, and the associated errors reect the standard deviation
across the set of replicates, thereby accounting for experimental
variation due to sample heterogeneity, measurement noise, and
substrate uniformity. As shown in Fig. 6A, uorescence inten-
sities on the AlCNC substrate were signicantly higher than
those on the silicon wafer, with DA exhibiting the strongest
signal, followed by NE and DOPAC. Fig. 6B highlights the net
enhancement factors achieved on AlCNC, with DA, NE, and
DOPAC showing enhancements of 12, 9, and 7 respectively,
compared to silicon wafers.

These results demonstrate that AlCNCs drop cast and dried
on a substrate are effective in enhancing the AF signal of
MANTs. Although other plasmonic nanostructures have ach-
ieved higher uorescence enhancement factors, the presented
method achieves a plasmonic substrate without complicated,
lengthy and expensive nanofabrication techniques.

The AFTDS data on different concentrations for model
training and evaluation are shown in Fig. S5. The dataset con-
tained three classes—DA, DOPAC, and NE—with slightly
rop cast and dried on AlCNC substrates (1 mL of 500 mM). Fluorescence
conds on (D) a silicon wafer and (E) AlCNC substrates, (F) fluorescence
ration of 50 mM measured by a fluorometer.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 6 (A) Integrated fluorescence intensity and (B) net enhancement factors from three neurotransmitters: DA, DOPAC, and NE, comparing
signal levels between AF data on silicon wafers and AlCNCs.
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varying support: 54 784, 51 712, and 39 936 samples, respec-
tively, in the AlCNC dataset, and 1105, 1,326, and 1326 samples
in the in-solution dataset and more details about samples in
each class can be found in Fig. S6. Each sample corresponds to
a unique uorescence data point dened as a pair of uores-
cence intensity and wavelength values, represented as a func-
tion FL(Wv, I). As shown in Fig. S5, each uorescence time series
was acquired over about 2 to 3 minutes measurement time-
frame with a 0.5-second acquisition interval, yielding approxi-
mately 240–360 spectra per measurement. Each of these spectra
spans a 60 nm range (280–360 nm), representing the AFTDS for
a specic molecule at a dened concentration. The weighted
andmacro averages in performancemetrics were used to ensure
a balanced evaluation across all classes.
Classication results

Fig. 7 presents the confusion matrices for the LSTM, KNN, and
RF models used to classify three neurotransmitters: DA,
DOPAC, and NE; based on AF data obtained from AlCNC and in-
solution environments. The matrices display class-specic
prediction distributions, with diagonal elements representing
correct or true positives and off-diagonal elements indicating
misclassications. The LSTM model on AFTDS achieved high
classication accuracy, with 88.0% for DA, 90.4% for DOPAC,
and 89.2% for NE, indicating strong temporal feature learning.
The KNN model on AFTDS also demonstrated high perfor-
mance, achieving 89.3% for DA, 86.1% for DOPAC, and 83.0%
for NE. Similarly, the RF on AFTDS achieved 87.4% for DA,
85.6% for DOPAC, and 76.7% for NE, supporting its strong
ensemble classication ability on temporal AFTDS data.
Although RF outperformed KNN on the AF in-solution dataset
(RF achieving 60.9% for DA, 82.1% for DOPAC, and 68.6% for
NE versus KNN's 44.8% for DA, 89.0% for DOPAC, and 66.6% for
NE), both models performed substantially worse compared to
those applied to AFTDS data. This drop in accuracy highlights
increased confusion among class boundaries in the solution-
© 2025 The Author(s). Published by the Royal Society of Chemistry
based measurements. The absolute number of samples per
matrix cell was provided inside the brackets in Fig. S6 and in
Table S3, revealing the distribution and support for each class.
These matrices provide a clear visual assessment of model
effectiveness and misclassication tendencies.

The classication performance metrics, precision, recall,
and F1 score, for LSTM, KNN, and RF models across three
molecular classes: DA, DOPAC, and NE, are presented in
Table 2. These metrics, derived from confusion matrices,
provide insight into each model's classication, accuracy, and
efficiency. We included macro and weighted averages to
summarize model performance across all classes. Macro
average treats all classes equally, useful for balanced datasets,
while the weighted average reects class distribution, favoring
the majority classes. These metrics offer complementary views
but can mislead if used alone in imbalanced settings. For better
clarity, bar charts are provided in Fig. S7.

The results demonstrate that the LSTM model consistently
outperforms the KNN model when applied to AFTDS data
collected from MANTs on AlCNCs. The LSTM model achieves
a weighted and macro average F1 score of 0.89, indicating
strong generalization and superior classication performance
across all classes. In contrast, the KNN model yield a slightly
lower weighted andmacro average F1 score of 0.86, reecting its
comparatively reduced ability to capture dynamic spectral
features.

For AF spectra data collected from MANTs in solution
(without plasmonic nanostructures), the KNN model exhibits
reduced classication performance compared to its perfor-
mance on AFTDS data. It achieves a weighted and macro
average F1 score of 0.68. Notably, KNN performs best on DOPAC
but struggles with NE and exhibits the weakest performance on
DA. This discrepancy may be attributed to differences in
molecular intensity within solution-based measurements.
Conversely, classication accuracy using AFTDS data remains
relatively consistent across different molecules, underscoring
its robustness in molecular classication.
Nanoscale Adv., 2025, 7, 8013–8022 | 8019
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Fig. 7 Confusion matrices for LSTM, KNN and RF classifiers distinguishing DA, DOPAC and NE from AFTDS and AF in-solution data. Panels (A–C)
(AFTDS) retain high diagonal accuracies, whereas the accuracies in panels (D and E) (AF in-solution) drop sharply, especially for DA and NE,
signaling greater inter-class confusion. Cell values are percentages; diagonals denote correct predictions, and off-diagonals indicate
misclassifications.
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In addition to KNN and LSTM, a RF model was evaluated
under the same conditions. On AFTDS data, the RF model
achieved a weighted andmacro average F1 score of 0.84, slightly
lower than the KNN and LSTM models but still demonstrating
strong performance. When applied to AF data collected in
solution, the RFmodel outperformed KNN, with a weighted and
macro average F1 score of 0.71. This indicates that while RF
does not match LSTM performance on AFTDS data, it provides
more reliable classication than KNN in solution-based
Table 2 Classification models performance metrics across classes (DA
within each dataset are bolded and underlined for emphasis. Values for

Model Class DA

LSTM using AFTDS of MANTs on AlCNC Precision 0:90

Recall 0.88
F1 score 0:89

KNN using AFTDS of MANTs on AlCNC Precision 0.83
Recall 0:89

F1 score 0.86
RF using AFTDS of MANTs on AlCNC Precision 0.81

Recall 0.87
F1 score 0.84

KNN using AF of MANTs in the solution Precision 0.70
Recall 0.45
F1 score 0.55

RF using AF of MANTs in the solution Precision 0.67
Recall 0.61
F1 score 0.64

8020 | Nanoscale Adv., 2025, 7, 8013–8022
environments, likely due to its ensemble-based structure and
resilience to data noise.

The sample size for data collected on AlCNC is much larger
than that of solution-based spectra. Since ML benets from
large data sets, our methods of collecting time variant spectra
under continuous light illumination are advantageous
compared with solution-based spectra collection. For instance,
using AlCNC and acquiring AFTDS data with an acquisition
time of 0.5 seconds, we obtained 300 spectra from a single
molecular concentration in 2 minutes. In contrast, obtaining
, DOPAC, NE). The best-performing values for each metric and class
recall are also shown in the confusion matrices

NE DOPAC Weighted avg. Macro avg. Accuracy

0.88 0:89 0:89 0:89 —
0:89 0:90 0:89 0:89 —
0:88 0:90 0:89 0:89 0:89

0.88 0.89 0.87 0.87 —
0.83 0.86 0.87 0.86 —
0.86 0.87 0.87 0.87 0.86
0:89 0.84 0.84 0.85 —
0.77 0.86 0.84 0.83 —
0.82 0.85 0.84 0.84 0.84
0.63 0.71 0.68 0.68 —
0.67 0.89 0.67 0.68 —
0.65 0.79 0.66 0.67 0.68
0.67 0.78 0.71 0.71 —
0.69 0.82 0.71 0.71 —
0.68 0.80 0.71 0.71 0.71

© 2025 The Author(s). Published by the Royal Society of Chemistry
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the same number of spectra with solution-based UV-Vis would
require 300 different concentrations and separate measure-
ments, which would be an impractical, time-consuming, and
costly approach.

Overall, these ndings highlight the LSTM model's advan-
tage in leveraging the time-dependent characteristics of AFTDS
signals, allowing for more accurate molecular differentiation. In
contrast, the KNN model, which relies on static data, demon-
strates lower classication performance. The confusion matrix
results further reinforce the LSTM model's effectiveness in di-
stinguishing structurally similar MANTs based on AFTDS data
while also showing the RF model as a better alternative than
KNN when temporal data is limited or unavailable.

Conclusion

This work demonstrates a transformative approach to probe-
free and label-free biosensing by merging autouorescence
using novel plasmonic nanoparticles with ML. Aluminum
concave nanocubes, a UV plasmonic substrate, signicantly
enhanced the native uorescence signals of neurotransmitters,
achieving up to a 12-fold improvement compared to silicon
substrates. This enhancement amplied the autouorescence
intensity signals, and AFTDS was the key factor that enabled the
differentiation of similar neurotransmitter data in a label-free
manner. When analyzed using ML techniques, the AFTDS on
AlCNCs provided high classication accuracy, highlighting the
critical role of plasmonic-engineered uorescence dynamics in
molecular identication.

Integrating ML models, particularly LSTM networks, proved
critical in analyzing and classifying complex uorescence data.
With a classication accuracy of 89%, the ML models effectively
captured subtle variations in spectral data, enabling the reliable
identication of neurotransmitters. The study also highlighted
the comparative advantage of LSTM over KNN and RF in
handling time-dependent uorescence data (AFTDS). In addi-
tion, RF models demonstrated competitive performance,
particularly in environments where temporal patterns are less
pronounced. While not as effective as LSTM on AFTDS data, the
RF model surpassed KNN in classifying solution-based spectra,
emphasizing its robustness and versatility as a static-data
classier and suggesting RF as a better approach in scenarios
where dynamic signal acquisition may be limited.

These ndings underscore the potential of combining
nanotechnology and ML to create smart biosensing systems
that are both sensitive and selective. To the best of our knowl-
edge, the proposed methodology may pave the way for devel-
oping non-invasive, real-time diagnostic tools for complex
biological environments, offering new avenues for applications
in biomedical diagnostics, neuroscience, and beyond.
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