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Hydroxyapatite (HAp) has emerged as a biomaterial of significant interest due to its intrinsic biocompatibility
and structural similarity to natural bone minerals. While HAp is traditionally derived from natural sources,
chemical synthesis via conventional methods, such as wet chemical precipitation and sol-gel
processing, and newer techniques like microwave-assisted synthesis and hydrothermal methods have
enabled greater control over its physicochemical properties. With the expansion of applications beyond
conventional biomedical uses, recent research has concentrated on engineering nanohydroxyapatite
with precisely tailored morphologies and structures. This review examines the influence of various
organic modifiers on nano-HAp synthesis, highlighting how these agents modulate its crystal growth,
crystallinity, surface topology, particle dimensions, and porosity. Potent chelating agents (e.g., citric acid
and EDTA) have been shown to yield purer, more uniform nanoparticles, whereas cationic—anionic

surfactants (e.g., CTAB and SDS) enhance the surface area. Modifiers such as Triton X-100, chitosan, and
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Accepted 17th June 2025 polyethylene glycol effectively adjust the pore size. Scientists are also investigating environmentally

friendly and toxicant-free modifiers. Through summarization of insights from current literature, this

DOI: 10.1039/d5na00392] review provides a comprehensive framework for selecting suitable modifiers to fabricate well-defined
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1. Introduction

In the current era of advanced materials research, hydroxyapatite
(HAp) has become one of the most widely investigated bioma-
terials as it spans multiple disciplines, including medicine,"
dentistry,> agriculture,® industrial fields," environmental
science,’® etc. Different application fields of HAp are visualized
(Fig. 1). HAp with the chemical formula Ca,;,(PO)s(OH), closely
resembles the inorganic component of bones and teeth.*” Its
exceptional properties, such as biocompatibility and reactivity,
make it ideal for bone tissue engineering, drug delivery, and
orthopedic applications.®*> The term “apatite” was first used
by Werner in 1788 to refer to a family of compounds with
similar hexagonal crystal structures and space groups despite
varying compositions. After the development of X-ray diffrac-
tion, Dejong in 1926 confirmed that apatite is identical to the
mineral component of bones and teeth."*'* Among the signifi-
cant apatite groups, HAp has been extensively studied since the
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HAp nanomaterials for diverse applications in future studies.

1950s for its usage in medical disciplines.”>'® Apart from
medical usage, HAp also became worthwhile for industrial and
technological applications such as a catalyst in chemical reac-
tions,'” a host material for lasers,® fluorescence materials,*® ion
conductors,® and gas sensors.** Furthermore, synthetic HAp is
employed in protein and nucleic acid fractionation via column
chromatography*” and water treatment* and soil remediation>*
for heavy metal contamination.>® Hydroxyapatite (HAp)
continues to be a focal point of scientific research. For instance,
polycaprolactone/nano-hydroxyapatite (PCL/nano-HAp) nano-
composites have been utilized to fabricate drug-loaded
implants through solution-extrusion 3D printing which have
superior mechanical properties;*® recently developed carboxy-
methylcellulose-Al(ur)/HAp aerogel beads are capable of selec-
tively removing fluoride from brick tea infusions without
altering sensory properties, achieving adsorption capacities
over 23 mg g~ ;% gold/hydroxyapatite nanocomposites func-
tionalized with polydopamine nanocomposites modulate
immune responses and facilitate vascularized bone regenera-
tion;*® collagen and k-carrageenan fabricated with hydroxyapa-
tite reinforced with lanthanum oxide nanoparticles,
a biocomposite, has been shown to speed up the bone repair
process.” These recent studies highlight that researchers are
actively exploring new ways to improve hydroxyapatite.

HAp has a Ca/P molar ratio of 1.67, which is the right
balance with high stability of HAp and good mechanical
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Fig. 1 Application of HAp in different fields.

properties.*>*" Primarily, it exists in two nano-crystalline
structures—hexagonal phase (P6s;/m or P63;) and monoclinic
phase (P2,/b or P2,).> In hexagonal HAp, OH groups are
aligned along the c-axis in two order variations: hexagonal
disordered P63/m, where OH dipoles are randomly distributed
over the whole crystal between the neighboring unit cells, and
ordered P6; with a parallel orientation, a common phase found
in synthetic hydroxyapatite. In monoclinic HAp, they also have
the same variations as the hexagonal one but are less
common.* The properties of hydroxyapatite mostly depend on
its preparation method or origin. Studies showed that HAp
from biological sources exhibits higher crystallinity (at 800 °C)
than synthetic HAp, whereas the synthetic one has a larger
surface area and porosity.** With the evolution of nanotech-
nology, nanosized HAp gained significant attention due to its
improved qualities compared to normal HAp.** Superior bio-
logical responses such as bone regeneration, osteoblast adhe-
sion, and proliferation made nano-HAp highly valuable.*®
Several research studies have been conducted to study the
characteristics of the nanoparticles of HAp. Recent investiga-
tions revealed that nano-HAp has a complex surface structure,
and the nanoparticles consist of a crystalline core that is
elongated along the crystallographic c-axis.’” Furthermore, it is
assumed that the nanocrystals have a grain size of less than 100
nm in at least one direction, closely resembling the mineral
found in hard tissues.*® Conventional HAp cannot withstand
high loads and is prone to brittle failure.*® Nano-HAp follows
the Hall-Petch relationship,*® where the strength of the mate-
rial increases with decreasing grain size.*' Furthermore, nano-
HAp possesses higher dissolution rates®* because of the
increased grain boundaries.** Among various morphologies of
nano-HAp, needle-like and spherical shapes are the most
common and applicable.** Owing to the exceptional physical
and chemical properties of HAp, many synthesis methods have
been developed by scientists to modify its morphologies, sizes,
crystallinity, calcium-phosphate ratio, and other characteris-
tics for specific applications.***® These synthesis methods are
significantly influenced by reaction conditions (reaction
temperature, pH, calcination temperature, time, initial
concentration, etc.).*” For tailored applications, modifiers have
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received much recognition for the synthesis of nano-HAp with
controlled properties, especially organic modifiers are exten-
sively used such as citric acid-mediated F-doped mesoporous
HAp, which has biocidal implant application,*® surface-modi-
fied HAp with stearic acid (SA) is used as a coating agent for
titanium dental implants.* Modifiers including urea, fatty
acids, amino acids, citric acid,’® carboxylic acids, cetyl-
trimethylammonium bromide (CTAB), sodium dodecyl sulfate
(SDS),** ethylenediaminetetraacetic acid (EDTA), Tween 20,
trisodium citrate, and p-sorbitol®* are successfully used in
different processes for controlled synthesis.>***

While many studies have explored how reaction conditions
affect HAp's structure, there is still little research on how
modifiers influence its properties, to the best of our knowledge.
This review provides a comprehensive analysis of the existing
literature on modifiers used for the structural variation of nano-
hydroxyapatite (nano-HAp), aiming to facilitate future investi-
gations to fill the knowledge gap. For this particular review
paper, we will be discussing the effect of modifiers on the
structural variation of nano-HAp synthesized by some of the
most significant synthesis methods: the wet chemical tech-
nique, microwave-assisted method, sol-gel method, and
hydrothermal method for efficient uses.

2. Synthesis methods

Several methods have been developed for synthesizing
hydroxyapatite (HAp), and each of these methods results in
unique characteristics of HAp.* These techniques can be clas-
sified into dry (e.g., solid-state synthesis and mechanochemical
method), wet (e.g., wet precipitation and sol-gel), and high-
temperature methods (e.g., combustion and pyrolysis).>®* Among
these, the most commonly employed approaches, wet chemical,
sol-gel, hydrothermal, and microwave-assisted methods, will be

discussed here (Table 1).

2.1 Wet chemical method

In 1976, Jarcho and his colleagues first explored the wet-chemical
precipitation method to produce a dense polycrystalline
hydroxyapatite with high mechanical properties. Since then,
many researchers have refined and expanded this technique.>”
Common sources of calcium for the wet chemical method are
calcium hydroxide (Ca(OH),), calcium nitrate tetrahydrate

Table 1 Different synthesis methods for HAp>*

Dry method o Solid-state synthesis
e Mechanochemical
method

Wet method e Wet precipitation
e Sol-gel

e Hydrolysis

e Hydrothermal
e Emulsion

e Sonochemical
e Combustion

o Pyrolysis

High-temperature
method

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 2 Synthesis of hydroxyapatite by the wet chemical method.

(Ca(NO;),-4H,0), and calcium oxide (CaO) and sources of
phosphorus are phosphoric acid (H;PO,) and diammonium
hydrogen phosphate ((NH,),HPO,). For the synthesis, reactants
are dissolved in water or a water-ethanol mixture, then stirred
and aged at room temperature to 85 °C overnight, with the pH
kept at 9-11. The filtered precipitate is dried using atmospheric
drying, vacuum drying, or freeze drying and calcined at
temperatures between 700 °C and 1250 °C.**** Several charac-
terization techniques, such as X-ray diffraction (XRD), Scanning
Electron Microscopy (SEM), Fourier Transform Infrared (FTIR)
spectroscopy, Transmission Electron Microscopy (TEM), Differ-
ential Thermal Analysis (DTA), and chemical analysis — Atomic
Absorption Spectroscopy (AAS) or EDTA titration, demonstrated
the purity (nearly pure) with a low level of impurity content.®
Other benefits, such as the minimal processing temperature and
the ability to produce highly intricate nanomaterials and adapt
according to specific applications, have drawn the attention of
researchers.® Studies have shown that altering the critical pro-
cessing parameters, such as temperature, pH, concentration of
reactants, and aging time, can modify the physicochemical
properties (morphology, particle size, and crystallinity), which
have a significant influence on the biological response and
clinical performance of nano-HAp.** For instance, spherical-
shaped HAp nanoparticles with smaller particle sizes (21-78 nm)
can be obtained under alkaline conditions (pH 11), while neutral
to moderately basic pH conditions give particles shaped as bea-
ded rods, nanorods, nanoflakes, or twisted boxes with large sizes
(28-202 nm). The crystallite size ranging from 8 to 77 nm can be
achieved at varying annealing temperatures from 300 °C to 900 °
C (ref. 65) (Fig. 2).

2.2 Microwave-assisted method

Microwave processing of materials is an innovative technology
that provides a powerful approach for enhancing, improving, or

altering the characteristics of existing materials.®® It is an
effective way to overcome the problems associated with tradi-
tional methods. Small-sized and highly pure nanoparticles with
thermal stability can be achieved through this process.®” The
microwave synthesis method is fast and environmentally
friendly. It is a time and energy-saving method, and almost
100% of the electromagnetic energy is converted into heat,*®
resulting in uniform volumetric heating of a sample.*® In vitro
studies demonstrate the potential of microwave-synthesized
HAp for osteoporotic bone regeneration” with cell viability of
more than 80%, and its bio-compatibility nature was also
proven.” Over the past few decades, several attempts have been
made to combine microwave irradiation with other techniques®®
(Fig. 3).

The first use of microwave (MW) irradiation to prepare pure
hydroxyapatite (HAp) through precipitation from aqueous
medium in under an hour was reported in 1991,”> where two sets
of experiments were conducted in a microwave oven, one with
ionic solutions to precipitate calcium phosphate species which
was microwaved for 5 minutes and the other using a preformed
wet solid.” In later experiments, the microwave irradiation period
of the reaction mixture was prolonged to 20-25 minutes.” The
resulting precipitate was filtered, then dried in an oven at 40 °C to
80 °C for 17-24 hours and calcined at 500-10 000 °C in most
cases.”””® The MW-assisted nano-HAp precipitation method
successfully produced a “biomimetic” amorphous carbonate
nano-HAp structure using concentrated body fluids easily and
rapidly with high purity and quantity.” In reflux-assisted MW
synthesis, MW heating is combined with a reflux condenser to
maintain the reaction temperature.** With modified process
parameters,* this method can produce highly crystalline nano-
HAp powder with smaller particle size and mixed (lenticular and
rod-shaped) morphologies. The MW-hydrothermal method uses
a sealed MW device at high pressure & temperature, which

Microwave
synthesis

I I ]

MW-
MW-wet
Do hydrothermal
precipitation land solvothermal

MW-combustion|
system

Reflux-assisted
MW
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MW-solid state assisted-MW

Fig. 3 Flow sheet of the main methods in MW-assisted preparation of nano-hydroxyapatite.®®
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accelerates crystal growth and phase purity.*” The MW-sol-
vothermal method is similar to the hydrothermal method, but
organic solvents are used instead of water.* For rapid synthesis,
the MW-solid state method is preferable for being a one-step
method.* Experiments show that spherical nano-HAp (calcium-
deficient hydroxyapatite (CDHA), 50 nm, and Ca/P ~ 1.5) was
prepared within 4 min in a domestic MW by this process.** The
MW-combustion system can be initiated by auto-ignition with
a domestic MW oven.*® This method has been used for doping
nano-HAp with europium for bio-imaging applications with
sufficient fluorescence emission intensity.”” Combining ultra-
sonication and MW irradiation, the ultrasonic-assisted MW
method enhances the surface area and mesoporosity®® and
fastens nucleation;* therefore, this process is a viable option for
improving bioactivity & drug-loading efficiency. In subsequent
studies, researchers have illustrated that various parameters such
as aging time, microwave irradiation power, and time signifi-
cantly impact HAp.*

2.3 Sol-gel method

The sol-gel method (Fig. 4) is a prominent technology in the
production of nanoparticles and is widely used in industries for
exceptional purity and efficiency.”® This method involves the
transformation of a sol into a gel, followed by subsequent
drying and calcination steps to obtain the desired hydroxyapa-
tite structure. The common source of Ca is calcium nitrate tet-
rahydrate [Ca(NOs),-4H,0] and that of P is phosphorus
pentoxide (P,Os). Biocompatible sources, such as eggshell-
derived calcium and trimethyl phosphate as a phosphorus
source, have also been used. Water and ethanol are widely used
solvents in the sol-gel method. Aging times vary from 1 hour
(short process) up to 24 hours at room temperature; the drying
temperature is typically kept at 80-100 °C, and calcination is
done from 600 to 800 °C.>*° The sol-gel process offers the
advantage of creating uniform and nanostructured materials at
low processing temperatures.”” Additionally, sol-gel coatings
exhibit significant improvements in mechanical properties
because of nanocrystalline grain structures.®® Studies indicated
that the grain structure morphology in sol-gel coatings
contributes to superior biological and mechanical properties.*®
Besides, this method offers exceptional advantages, including
precise control over particle size, morphology, versatility,'*® and
the attainment of high purity and homogeneity.'”* Some of the

Calcium nitrate
tetrahydrate,
Ca(NO,),.4H,O

Phosphorus
pentoxide
(P,05)

Stirring Gel

and formation
aging up

to 24

hours

Fig. 4 Synthesis of hydroxyapatite by the sol—gel technique.
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significant drawbacks of this method are that the precursors
and solvents used in this process are costly,'*> procedures such
as aging and calcination are time-consuming,* and the possi-
bility of the formation of a secondary phase of calcium oxide
(Ca0), which negatively impacts biocompatibility. The CaO
content must be minimized through procedural adjustments or
post-processing, such as washing with a dilute acid solution.*®*

2.4 Hydrothermal method

Hydrothermal synthesis (Fig. 5) is a versatile, environmentally
sustainable, and low-energy consumption method, which is
used to create desired crystalline phases from slurries, solu-
tions, or gels under mild reaction conditions.*'*® Nano-
materials can be synthesized across a broad temperature
range'® with controlled size and morphology.’”” Various
compounds, including simple and complex oxides, carbonates,
silicates, chalcogenides, etc., are synthesized by this process.
Furthermore, products with commercial value, including Be;-
Al,(SiO;) (beryl, emerald, and aquamarine), Al,O3 (corundum,
ruby, and sapphire), BeAl,0, (chrysoberyl and alexandrite), and
ZnO (zincite) are grown by this method.** This process typically
dissolving calcium- and phosphate-containing
substances in distilled water to make a suspension, sealing the
solution in an autoclave, and treating the precipitate at
controlled temperature.'*®'* The reaction can be in a single or
heterogeneous phase at pressures exceeding 100 kPa to initiate
crystallization directly from solutions.”® The most common
sources of starting material for hydrothermal synthesis of HAp
include calcium nitrate tetrahydrate, Ca(NO;),-4H,0, and dia-
mmonium hydrogen phosphate, (NH,),HPO,. The synthesis
temperature can be as low as 60 °C (minimum temperature for
improved crystallinity) up to around 220 °C, the pH ranges from
3 to 11, a higher pH generally favoring the forward reaction for
HAp formation, and synthesis time typically ranges from 24 to
72 hours."* Maintaining such conditions for extended periods
increases energy consumption, making the process costly,
which is one of the drawbacks of hydrothermal processes.'*

involves

3. Importance of modifiers in nano-
HAp synthesis

The characteristics and applications of nanomaterials are
greatly influenced by their size, morphology, and surface

Calcination Nano-HAp

600-800 °C

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 5 Synthesis of hydroxyapatite by the hydrothermal method.

chemistry. One of the most effective strategies to control these
properties is through the application of modifiers during
synthesis. While synthesis without modifiers can yield pure
materials, they have limited control over the morphology,
homogeneity, and dispersibility of nanostructures compared to
modifier-assisted synthesis, which actively influences nucle-
ation, crystal growth, and surface interactions of nano-
structures.'** For example, in two sets of experiments on HAp
synthesis by the precipitation method, one without a modifier
resulted in irregular particle growth with a size range of 8.4-24
nm,""* while another with a modifier produced rod- and flake-
shaped particles ranging from 19 to 143 nm (depending on the
modifier used)."”* This tunability is essential for optimizing
nano-HAp for specific applications, such as enhanced bioac-
tivity in bone regeneration, increased surface area for catalytic
reactions, or improved dispersion in composite materials. For
instance, stearic acid, as a surface modifier, prevents agglom-
eration, promotes better thermal stability, and improves cell
viability, making the synthesized HAp highly biocompatible."*¢
Similarly, ionic surfactants CTAB or SDS were found to be highly
effective in shaping the anisometric growth of nano-HAp
particles, which makes them good candidates for tissue engi-
neering applications and drug delivery systems.'"” Exploring the
specific effects of modifiers over different synthesis techniques
will provide deeper insights into the importance of modifiers in
nano-HAp synthesis for targeted applications.

3.1 Effect of modifiers on different synthesis methods

3.1.1 Wet chemical technique. HAp as a photocatalyst has
been used for degrading toxic wastes and is still being
explored."® A study via the wet chemical method to enhance the
photocatalytic activity of HAp indicated that modified HAp
using urea, palmitic acid, and naphthalene exerted significant
influence on their performance (e.g., maximum degradation
capacity of 7 mg g~ for 100% ethanol-derived HAp). In general,
these modifiers alter the crystallographic structure of HAp,
creating more active surfaces for dye degradation and inducing
microstrain within the crystal lattice, which affects the mate-
rial's optical properties and photocatalytic efficiency. Experi-
mental data demonstrated that urea-modified HAp showed the

© 2025 The Author(s). Published by the Royal Society of Chemistry
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lowest photocatalytic activity, with only 69.63% degradation
and 5.57% degradation capacity. The reason behind this poor
performance could be the lowest degree of crystallinity and
highest microstrain, resulting in poor photocatalytic perfor-
mance."" Stearic acid (SA), a surface modifier, is considered
a good candidate for surface modification as it prevents particle
agglomeration via hydrogen bond formation between the
hydroxyl groups on the HAp surface and the carboxylic groups
of SA. Hydrocarbon chains form a layer that stabilizes the
particles, acting as a mechanical barrier limiting particle
aggregation.” As the experiment was conducted using two
concentrations of SA (7% & 15%), the result indicated that 7%
SA-coated HAp showed the best dispersion and a homogeneous
structure with reduced particle size (60-77 nm), offering good
bioactive composite characteristics. Excessive concentration of
SA (15%) leads to larger particle aggregates due to the formation
of multiple SA layers or excess SA particles forming their phase,
which decreases structural integrity.*** Organic modifiers such
as citric acid, acetic acid, glutamic acid, and gallic acid are used
to control the nucleation and crystallinity of particles. In the
synthesis of carbonated hydroxyapatite (CHAp), citric acid
produced the smallest CHAp particles with a rod shape (19-25
nm), and since it is a strong chelator, it binds three calcium ions
per citrate ion (calcium-citrate complex), mobilizing calcium
ions, which influence crystal growth.*** Citric acid can produce
smaller sized hydroxyapatite than sodium dodecyl sulphate and
sodium dodecylbenzene sulphonate.”® Acetic acid resulted in
flake-shaped particles but were larger in size as it chelated one
calcium ion per acetate ion and limited calcium availability less
effectively than citric acid. Glutamic acid also produced rod-
shaped particles but with a slightly larger size compared to citric
acid because it affected calcium availability moderately. Mean-
while, gallic acid led to the largest particles (127-143 nm) with
a flake shape due to the ©- stacking interaction between CHA
and GA units, promoting agglomeration. Here, temperature
plays an important role; with increasing temperature, crystal-
linity increases.' Cationic functionalized nano-HAp materials
are highly promising for gene therapy. Study with the incorpo-
ration of arginine (Arg) or polyethylenimine (branched PEI -
bPEI, or linear PEI - LPEI) as cationic modifiers and dispersing
agents showed significant improvement in colloidal stability

Nanoscale Adv.
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and DNA binding ability of HAp. Compared to Arg, the length
and aspect ratio of the synthesized particle were lower in PEI
with higher dispersibility due to the high content of NH, free
groups in PE, while LPEI was evident as most suitable to
generate plate-like morphology, similar to natural bone
components.” As a part of an eco-friendly experiment,
different concentrations (5 mg, 10 mg, and 20 mg) of caffeine,
a nitrogen-containing heterocyclic compound™® as a modifier,
were used, which improved the shape and morphology of HAp.
The findings suggest that, similar to EDTA or citric acid,
caffeine prevents clumping of nanoparticles'** and also acts as
a stabilizing agent by capping the surface' of forming HAp
nanoparticles, leading to smaller particle size (HAp size ~ 35
nm). Concentration should be considered before using caffeine
as a modifier. A low concentration of caffeine (5 mg) did not
show significant differences compared to non-modified HAp.
According to TEM images, increasing concentration (20 mg)
exhibited the highest crystallinity with sharp XRD peaks and
well-defined rod-like morphology.**® Mesoporous hydroxyapa-
tite nanoparticles were successfully synthesized using chitosan,
a natural polymer. During calcination, when chitosan was
separated, pores formed in the voids (average pore diameter ~
38 nm). Data showed that as the weight ratio of chitosan
increases with varying pH, it produces larger and more inter-
connected pores. This tunable pore structure makes HAp highly
suitable for drug delivery applications'*® (Fig. 6).
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An overview of the response to using various modifiers in the
synthesis of nano-HAp by the wet chemical method is provided
in Table 2. This table highlights the key characteristics and
outcomes associated with each modifier, offering a clear
comparison of their effects.

3.1.2 Microwave-assisted method. Organic modifiers such
as EDTA, amino acids, CTAB, polyvinylpyrrolidone (PVP), and
trisodium citrate showed significant influence on the
morphology, crystallinity, and biocompatibility of HAp."** EDTA
is a water-soluble polymer commonly used as a chelating agent
and also as a complexing agent. It has been used as a capping
agent for preparing various metal nanoparticles, including gold
(Au), zinc (Zn), copper (Cu), and chromium (Cr)."***** Capping
agents have clinical significance for modifying nanoparticles
that are biocompatible® as surface capping enhances the bio-
logical properties and modifies the properties of colloidal
suspensions.’ EDTA? ", a complex reagent, is a member of the
poly-amino carboxylic acid family. It acts as a hexadentate
ligand while binding with Ca®" ions, surrounding each Ca** ion
with four oxygen atoms and two nitrogen atoms and forming
several chelate rings in a stable Ca-EDTA complex."*” Stable Ca-
EDTA complexes control the crystal by modulating the avail-
ability of Ca®>"."*® One study using EDTA as a capping agent in
the synthesis of hydroxyapatite (HAp) at varying pH>'"** showed
spectroscopic characteristics along with structural characteris-
tics. The IR spectra of the samples indicated that EDTA-assisted

(Gl

Fig. 6
different modifiers: (A) urea, (B) palmitic acid, and (C) naphthalene.**
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(i) TEM microphotographs of the synthesized nano-HAp: (a) HApA-10, (b) HApbPEI-10, and (c) HApLPEI-5.12* (ii) SEM image of HAp with
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¢ All surface area and pore size measurements in this review paper were performed using the Brunauer-Emmett-Teller (BET) and the Barrett-Joyner-Halenda (BJH) methods, respectively, unless

otherwise stated.
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samples are purer and uniform. The EDTA-assisted samples
were structurally well-defined with smaller particle sizes (~100
nm) and reduced carbonate contamination compared to the
samples without EDTA." Temperature plays a crucial role here
with a higher sintering temperature of 1100 °C (pH 9), facili-
tating anisotropic growth, forming larger nanostrips."*® Also,
data indicated that at higher pH, the samples are more uniform
and dispersed.*® Similar to EDTA, oxalic acid, a chelating agent,
forms calcium oxalate driven by the strong electrostatic attrac-
tion between the oxalate anions (C,04>") and calcium cations
(Ca*"), which allows for controlled release of Ca®>" ions and
prevents premature crystallization of HAp. In addition, oxalic
acid increases the surface area and produces mesoporous HAp,
which is highly preferable for drug delivery applications.****
Cationic-anionic surfactants possess better adsorbent proper-
ties and are ideal for adsorption of dyes and metal ions. A study
showed that the use of cationic-anionic surfactants (CTAB,
sodium dodecylbenzene sulfonate (SDBS), and SDS) caused the
surface area of HAp nanorods to increase (the surface area for
individual anionic counterpart - 52 m* g~ *; for cationic - 48 m>
g~ '; without surfactant - 19 m* g *; with a mixture of cationic-
anionic surfactants, it was higher - 56 m® g~ ). They evaluated
the adsorption capacity and found the maximum amount of dye
adsorbed (methylene blue) was 833 mg g '.**” CTAB has
a potential ability to facilitate micelle formation. As the
concentration increases, it reacts progressively to the PO,*~
groups and creates an electrostatic barrier, effectively inhibiting
longitudinal growth and yielding nanorods with smaller
dimensions."*>'** However, at much higher concentrations
above the critical micelle concentration (CMC), flexible worm-
like micelles form, providing elongated templates for particle
growth."** Chitosan can generate well-dispersed nanoscale HA

Inner surface

(iii)

Fig. 7 (i) SEM image of citric-acid assisted HAp,**® (ii) SEM image of
Moringa oleifera flower extract capped hydroxyapatite,**” and (iii) TEM
images of HA powders prepared in the presence of (a) 15% alginic acid
and (b) 15% sodium alginate.**°
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particles embedded in a polymeric matrix with a uniformly
porous interconnected network. It is non-toxic to MG 63 oste-
oblasts with cell viability of up to 54.5%."* The modifiers typi-
cally used have exhibited some degree of toxicity, so researchers
are shifting towards bio-friendly growth regulators, particularly
those that naturally occur in the body, such as amino acids
(glycine, serine, etc.). The electrostatic interaction between
amino acids and the outer surface of nanocrystals of HAp leads
to morphological changes. Adsorption of amino acids can occur
on any specific crystallographic face, inhibiting growth in the
perpendicular direction while allowing growth parallel to the
face, which results in a larger surface area. They significantly
reduce hydroxyapatite's aspect ratio and crystallinity, increasing
the cytocompatibility.’*® Moringa oleifera flower extract is
another biofriendly option prepared by boiling dried moringa
flowers and is rich in tannins and polyphenols. They act as
chelating agents and enhance the structural and biological
performance of synthesized HAp* (Fig. 7 and Table 3).

3.1.3 Sol-gel method. For targeted applications,
researchers started applying modifiers in the sol-gel method to
fine-tune the characteristics of nano-hydroxyapatite. Organic
modifiers such as trisodium citrate, citric acid, polyethylene
glycol, Tween 20, p-sorbitol, ethylene glycol, and sodium
dodecyl sulphate are widely used."*® Mesoporous hydroxyapatite
(MPHA) is highly biocompatible with a high surface-volume
ratio and adsorption capability. To synthesize MPHA, stearic
acid (SA), a surface modifier,’ resulted in high surface area,
porosity, and pore size (5.84 nm - BET analysis), and excellent
cytocompatibility with high cell viability (up to 83%). It was
suggested that the carboxyl group in stearic acid likely adhered
to the surface of the HAp during the process, creating small,
uniformly distributed pores. Also, the strong interaction
between SA and ethanol organized cylindrical structures
(micelles), helping to create rod-like HAp. pH was a pivotal
parameter here. Only pH 11 resulted in a well-defined structure,
while pH 7 and 9 contained impurities like B-TCP (FESEM
analysis) with a sponge-like structure.’*> As a templating agent,
CTAB can also produce porous HAp ranging from 6 to 10 nm
with varying concentrations of CTAB.'®® Another templating
agent, polyethylene glycol (MW 600), modifies the morphology
of particles where nano-HAp appears to be agglomerated with
sub-microscopic pores. Its flexibility allows its chains to interact
with hydroxyapatite nanocrystals. The ether bonds (-O-) of
polyethylene glycol interact with HAp nanocrystals, guiding
them to grow in a specific direction. The flexibility is highly
temperature sensitive in aqueous solution, which is a drawback
of polyethylene glycol. At higher temperatures, it acts like a soft
template, encouraging organized, oriented growth along certain
axes and promoting the formation of flat, platelet-like HAp
structures instead of random shapes, which is beneficial for
biomedical use. A study using sintering temperatures of 400 °C,
750 °C, and 1100 °C showed that only at 1100 °C were the X-ray
patterns aligned with ASTM data.’® Citric acid is quite
a common modifier used in the synthesis process of HAp.'*
When citric acid is used as a modifier, it forms a calcium—citrate
complex. This chelating effect moderates the availability of free
calcium ions in solution and limits the size of the HAp particles

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 8 SEM images of (i) modifier (0.1 M CTAB)-assisted HAp spheroidal particles'®® and (ii) stearic acid-assisted HAp at pH 7 (a and a2), pH 9 (b
and b2), and pH 11 (c and c2), with uniform rod-like structures at 40k and 80k times magnification of the sample.*”®

formed.’*® While synthesizing hydroxyapatite—calcite, data
indicated that at 60 °C samples with citric acid modifiers
produced smaller sized particles (55 nm) with lower crystallinity
compared to samples without citric acid (particle size ~ 84 nm),
which is a good fit for biomedical applications. Temperature,
PH, and concentration of citric acid are vital in these prepara-
tions (e.g., at room temperature, the particle size reduces to 51
nm from 55 nm (at 60 °C)).**° Lemon extract, a natural source of
citric acid, has also been used, and the resultant HAp showed
well-defined characteristics with suitability for cancer treat-
ment.'” EDTA as a chelator can form mesoporous HAp with
a surface area of up to 155 m”> g * with robust ion exchange
capacity, making it an efficient absorbent for radioactive
materials (55-63% uptake of U(vi) and Cs(1) within 10 minutes)
with maximum adsorption capacities of 77.2 mg g~ * for Cs(i)
and 59.3 mg g ! for U(v)."*® Latex and carbon fibers work as
pore-forming templates and can generate HAp with micro-,
meso-, and macropores (up to 100 nm) with a high surface
area'® (Fig. 8 and Table 4).

3.1.4 Hydrothermal method. Amino acids such as gluta-
mine, alanine, and valine can tailor the morphology and crys-
tallinity of HAp for efficient application.”” A study using
glutamine in the hydrothermal synthesis, which is simple and
cost-effective, produced nano-rods of HAp with average lengths
ranging from 50 to 100 nm. Being a biomolecule, glutamine is
non-toxic and environmentally friendly. They can imitate bio-
mineralization, a natural process (biomimetic method)."”®
Another eco-friendly option is alginate, a naturally occurring
linear polysaccharide commonly found in different brown
seaweeds. As a modifier, they adsorb onto the surface of specific
crystallographic planes of HAp nuclei, which blocks further ion
attachment along the c¢-axis. Under hydrothermal conditions,
alginate depolymerizes to oligosaccharides and

© 2025 The Author(s). Published by the Royal Society of Chemistry

monosaccharides. These anionic groups actively adsorb onto
the surface.” In an experiment with three different concen-
trations of alginate (HA-0.4%, HA-0.8%, and HA-1.6%) and
a sample without alginate, the effect of alginate on the
morphology of HAp was evident. The XRD analysis revealed that
with increasing concentration of alginate, the crystallinity
decreases, and the particles become smaller and more aggre-
gated. The SEM images showed that nanoparticles become
more dispersed at higher alginate concentrations. If the goal is
to get a well-defined rod-like structure, then glutamine is more
suitable, as alginate gives less defined rod-like structures of
HAp."”® Saponin, a plant-derived surfactant, forms micelle-like
structures that influence crystal nucleation and growth of the
synthesized HAp. With increasing concentration of saponin, the
nanorods become thinner and more acicular. It contributes
antifungal and antibacterial properties and enhances the
surface activity of HAp."”® For mesoporous HAp under hydro-
thermal conditions, the use of Triton X-100 resulted in
increased pore volume. Triton X-100 is a non-ionic surfactant
that hinders clumping of HAp particles through van der Waals
interactions, contributes to particle stability in suspension,
leads to the formation of rod-like structures following oriented
attachment of crystal growth (at high concentrations), and
under hydrothermal conditions alters the pore structure
(increases the pore volume). Although Triton X-100 has
a similar hydrophilic side chain as polyethylene glycol (PEG),
both show differences, while even at higher concentrations
Triton X-100 does not have any impact on the crystallization
process,'® and PEG, on the other hand, influences crystal
growth, which is mediated by temperature. With increasing
temperature, crystallinity increases.'®'®* Different approaches
of the hydrothermal method, including the use of novel tech-
niques such as sono-chemical for biomedical applications
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along with organic surfactants like CTAB, can control the
properties of particles. SEM analysis shows a well-defined rod-
like structure with a diameter of 30-50 nm, which remained
intact even after prolonged ultrasonic treatment. Residence
time in the autoclave is an important parameter here; TEM
images revealed that with increasing time (20 h), the diameter
changes to 15-40 nm."® Furthermore, CTAB showed contra-
dictory outcomes in the present study, where the former study
encouraged that CTAB likely favors the growth of HAp crystals
along the c-axis,”* and the study suggested that CTAB can block
the growth along the c-axis. CTAB and PO,*>~ both have tetra-
hedral structures; this structural complementarity and the
electrostatic effect sometimes lead to the adsorption of CTAB
ions on the (001) planes of HAp, which may block the crystal
growth along the c-axis, producing shorter nanorods rather than
longer ones.'® SDS is another surfactant that can be used
instead of CTAB for its similar effect.'®® The EDTA-assisted
hydrothermal process was used to synthesize a complex three-
dimensional dandelion-like HAp, as EDTA controls agglomer-
ation, growth, and is also cost-effective. Dandelion-like HAp
possesses a high specific surface area and relevant properties
for catalysts and molecular sieves.'®® The mechanism here can
be described as involving the Ca-EDTA complex (mentioned in
2.2.1), which facilitates the radial self-assembly into dandelion-
like HAp'*® (Fig. 9 and Table 5).

3.1.5 Special class of modification. Doping hydroxyapatite
(HAp) with foreign ions has gained much recognition in recent
times for effectively altering properties such as size,
morphology, surface charge, porosity, and topology, compared
to other structural modifications.'® Different dopants such as
Zn, Cu,"”® Mg, Sr,*** Ag,*”> Mn,** Se, and F*** are used for
biomedical applications, coating materials,** anti-microbial

Fig.9 SEM images of HAp synthesized with different modifiers: (i) PEG
400 assisted rod-like HAp,*** (ii) EDTA assisted dandelion-like struc-
ture,*®s and (iii) aminotris assisted spherical nanoparticles of HAp.*88
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effect,’*® human hepatoma cells,*” catalytic activities,”*® and so
on. The choice of dopant depends on its functionality, struc-
tural compatibility, solubility, mechanical enhancement, and
application. More than half of the elements in the periodic table
can be incorporated into the HAp structure. Considering the
potential toxicity and radioactivity of certain elements, some
have not been tested yet. 72 out of 118 elements have been
successfully incorporated into HAp, representing 61% of the
periodic table.>® They can be introduced as single elements or
binary and multiple.?** Single incorporation is done for altering
specific properties, such as Mg to improve cellular behavior.>"*
Binary or multi-ions enhance multi-functionalities, for
example, Sr-Zn doping maintains a higher HAp phase
percentage (>93%) and crystallinity higher than the value of
71%,** and Mg, Si, and CO; together enhanced the solubility
rate of HAp with ion release for a longer period.*** The synthesis
process of single ion doping in the HAp structure is easier and
less complex than that using binary or multiple ions (Table 6).

4. Discussion
4.1 Synthesis methods

As stated before, there are several synthesis methods for HAp,
and each of these methods has its advantages and drawbacks,
which make them suitable for specific applications. To ensure
the large-scale production and practical application of HAp
nanoparticles, a simple, environmentally sustainable synthesis
method with high-quality nanoparticle yield in significant
quantities is essential (Table 7).

Hydrothermal synthesis became widely recognized in the
20th century.”®® Its ability to create high-purity end products,
improved morphological control,** and compatibility with
large-capacity equipment revived commercial interest.”*” Simi-
larly, microwave-assisted synthesis is another promising tech-
nique because of its uniform heating, faster reaction rates, and
pollution-free operation, which result in narrower size distri-
butions, improved crystallinity, and smaller particle sizes.**®
Also, it is affordable, which increases the appropriateness for
production on a wide scale.

4.2 Suitable modifier for specific applications

Selection of the optimal combination of synthesis route and
modifiers mainly depends on the target application. For pho-
tocatalytic activity, the wet chemical method with the organic
modifier naphthalene is preferable as it increases the surface
area and results in a higher degradation percentage and
capacity.”® In bone tissue engineering, citric acid is a good
option for its ability to control nucleation and crystallinity, and
it also produces smaller, rod-shaped particles."*® However, the
sol-gel method with stearic acid (SA) works better, as meso-
porous hydroxyapatite (MPHA) offers high biocompatibility, an
increased surface-to-volume ratio, and improved adsorption
capability. Stearic acid also contributes to high surface area and
porosity, with a pore size of 5.84 nm (BET analysis) and excep-
tional cytocompatibility, achieving cell viability of up to 83%."7°
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For gene therapy, LPEI is the most suitable modifier, as it
improves the strength of biocomposites and produces plate-like
morphology, making it a preferred choice.” In drug delivery
applications, some modifiers work very well, such as oxalic acid
(with a surface area of 89 m*> g~ '), which enhances the porosity
and mesoporous structure, making it highly effective.*** A non-
toxic alternative is serine with the microwave-assisted method,
which has a stronger electrostatic effect on the surface of the
crystal, resulting in a great impact on crystallization character-
istics, which enhances biocompatibility and is promising for
drug delivery applications.'*® Chitosan as a modifier increases
pore size (average pore diameter ~ 38 nm), which makes it
particularly useful for slow drug release applications, especially
for osteoporosis treatment." Under hydrothermal conditions,
Triton X-100 increases the pore volume and effectively produces
a combination of meso- and macropores suitable for catalysis
and drug delivery.'® For eco-friendly synthesis, caffeine can be
considered as it prevents agglomeration of nanoparticles
similar to citric acid, and it promotes the formation of well-
defined nanorods, with improved shape and size as the
concentration increases.’” EDTA is beneficial for electro-
chemical sensing of uric acid and biosensor applications."**'%¢
EDTA is also preferred for synthesizing hydroxyapatite (HAp)
with high surface area, uniform microporosity, and strong ion-
exchange capacity, and is promising for environmental reme-
diation and nuclear wastewater treatment applications.'® In
adsorption applications, a combination of cationic-anionic
surfactants (CTAB, SDBS, and SDS) increases the surface area,
leading to better dye adsorption capacity."*’

5. Challenges and limitations

While modifiers play a crucial role in controlling the
morphology, porosity, and surface area of HAp nano-
materials,” their use also presents certain limitations and
challenges. One of the primary concerns is the cost associated
with modifiers. They can significantly increase the overall
expense of the synthesis process. Studies suggested that phase-
pure HAp nanorods can be synthesized through simpler, cost-
effective routes without the need for hard templates or surfac-
tants,'** thereby raising doubt about the necessity of modifiers
in certain applications. Some modifiers work better at higher
temperatures, for instance, glutamic acid shows lower solubility
at room temperature, and solubility increases with higher
temperature.>*® Experimental data showed that the solubility of
gallic acid increases from ~0.72 to ~29 g per 100 g water for 273
K to 373 K temperature.>*® Achieving higher temperatures is
another cost-intensive factor for a process. Concentration
control of modifiers is another significant obstacle. As
mentioned before, with increasing concentration, caffeine
produces nano-HAp with well-defined characteristics, but
higher concentrations can lead to excessive particle growth and
secondary agglomeration if not controlled properly.’*® It
emphasizes the importance of optimization to avoid structural
inconsistencies and material loss. Some modifiers possess
environmental risk due to their potential toxicity. The toxicity of
common surfactants like Tergitol NP-10, Triton X-100, and
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Table 7 Comparison of synthesis techniques

Methods Advantages Limitations Best application Ref.

Wet chemical Simple and low-temperature Lower crystallinity Photocatalysis 119
processing

Microwave-assisted Rapid synthesis, energy- Requires specialized Drug delivery and rapid HAp 234
efficient, and higher equipment production
crystallinity

Sol-gel High purity, homogeneity, Long processing time, Biomedical application and 170
and controlled morphology requires organic solvents composite materials

Hydrothermal Lesser energy requirement, Requires high pressure and Bone tissue engineering and 235

high crystallinity, uniform
morphology, and tunable

porosity

Tween 40 was evaluated using the Microtox® acute toxicity test.
According to the findings, all of these surfactants had ECs,
values less than 100 mg L™, suggesting that they are somewhat
toxic and could be dangerous for aquatic life.>** Use of surfac-
tants is estimated at over 15 million tonnes per year, and reports
indicate that up to 60% (by weight) may be discharged into
water bodies. Synthetic surfactants tend to persist in ecosystems
due to their low biodegradability, where they can disrupt bio-
logical processes, promote eutrophication, and cause foaming
in water bodies. Furthermore, their degradation byproducts
may exhibit higher toxicity than the original compounds, and
they can facilitate the mobilization of other contaminants, such
as heavy metals.** Some surfactants, such as SDS, cocamido-
propyl betaine (CAPB), have been shown to cause significant
cytotoxicity in uncalcined hydroxyapatite (HAp), with cell
viability dropping below 70%, compromising biocompati-
bility.>** Therefore, the implementation of modifiers must be
evaluated against cost, processing complexity, environmental
concerns, and scalability to ensure workable and effective
synthesis methodologies for biomedical and industrial use.

6. Future recommendations

From the identified limitations, it is clear that we need to
explore more eco-friendly substituts to improve the sustain-
ability and versatility of HAp synthesis. One promising
approach is using inexpensive, natural modifiers such as tea
polyphenols, which can improve the mechanical strength,
osteoconductivity, and biocompatibility with necessary porosity
and crystallinity for biomedical applications.”** Researchers
should explore other natural compounds with similar benefits.
Another environment-friendly way is the synthesis of HAp from
biogenic sources, such as eggshells, fish bones, and
mussels,***** which can minimize waste, cut production costs,
and preserve high material purity along with modifiers.”*”
Expanding research on these biogenic HAp syntheses can help
with environmental cleanup and sustainable biomedical
applications, and it can be a good substitute for traditional
synthetic techniques. On top of that, advanced modeling tech-
niques, such as numerical analysis for scaffold fabrication, offer
a powerful tool for optimizing sintering temperatures,
compaction loads, and microstructural integrity.>*® These

Nanoscale Adv.

long reaction times

bioactive coatings

computational approaches can improve the mechanical
performance of HAp scaffolds, which may ensure their suit-
ability for clinical applications where structural reliability is
vital, and subsequent studies can improve potential weaknesses
and optimize system efficiency.

7. Conclusion

HAp can be synthesized through various methods; among
them, four methods are mostly common: the wet chemical
technique, microwave-assisted method, sol-gel method, and
hydrothermal method. As the diversity of HAp applications
expanded, modifiers such as CTAB, EDTA, amino acids, urea,
fatty acids, Triton X-100, polyethylene glycol, citric acid, SDS,
etc., were considered by researchers to synthesize HAp particles
with a uniform shape, size, and properties. In general, these
modifiers control the crystallization process and promote
growth in a particular direction. Strong chelating agents such as
citric acid and EDTA produce uniform particles as they limit
calcium availability effectively. Chelating agents, surfactants,
and natural polymers such as chitosan can produce larger and
interconnected pores, making nano-HAp highly suitable for
biomedical applications, particularly for drug delivery.
Currently, researchers are prioritizing eco-friendly modifiers
such as caffeine or amino acids. Caffeine works as a stabilizing
agent by interacting with the surface of nanoparticles. Amino
acids, on the other hand, promote growth in a particular
direction by adsorbing on the outer surface of nanocrystals.
Notably, the fundamental mechanisms of these modifiers that
influence HAp synthesis remain consistent across different
synthesis methods. Instead, it is the variation in the concen-
tration of these modifiers and the reaction conditions—such as
temperature, pH, and synthesis duration—that primarily drive
differences in the resulting HAp structure and morphology.
Despite the benefits of modifiers in customizing the
morphology of nano-HAp, their use in the synthesis process is
relatively unexplored. This is mainly due to the complexity of
synthesis, cost, application-specific limitations, and environ-
mental concerns. However, future researchers can focus on eco-
friendly, biocompatible modifiers in nano-HAp synthesis to
expand applications while addressing cost, versatility, and
safety.
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