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to predict gold nanostar optical
properties†

Peiying Wu, a Rui Zhang, a Céline Porte,a Fabian Kiessling,ab Twan Lammers, a

Sima Rezvantalab,*c Sara Mihandoost*d and Roger M. Pallares *a

Gold nanostars (AuNS) are nanoparticles with spiky structures andmorphology-dependent optical features.

These include strong extinction coefficients in the visible and near-infrared regions of the spectrum, which

are commonly exploited for biomedical imaging and therapy. AuNS can be obtained via seedless protocols

with Good's buffers, which are beneficial because of their simplicity and the use of biocompatible reagents.

However, AuNS growth and optical properties are affected by various experimental factors during their

seedless synthesis, which affects their performance in diagnosis and therapy. In this study, we develop

a workflow based on machine learning models to predict AuNS optical properties. This approach

includes data collection, feature selection, data generation, and model selection, resulting in predictions

of the first and second localized surface plasmon resonance positions within 9 and 15% of their true

values (root-mean-squared percentage error), respectively. Our results highlight the benefits of using

machine learning models to infer the optical properties of AuNS from their synthesis conditions,

potentially improving nanoparticle design and production for better disease diagnosis and therapy.
1. Introduction

Gold nanostars (AuNS) are anisotropic gold nanoparticles with
star-shaped morphology, including sharp and pointed tips
radiating from a central core.1 AuNS exhibit morphology-
tunable optoelectronic properties, which are highly valued in
numerous applications, ranging from biomedicine to
catalysis.2–5 For instance, AuNS sustain localized surface plas-
mon (LSP) resonances and intense near-eld enhancements,
particularly at the sharp end of their branches.6 The intense
eld enhancements are commonly exploited in identifying and
quantifying analytes via surface-enhanced Raman
spectroscopy.7–9 At the same time, their sensitivity to changes in
the refractive index of their surroundings is used for colori-
metric sensing.10–13 Because their LSP bands can be shied
towards the near-infrared region of the spectrum by increasing
the aspect ratio of their branches, AuNS have been preclinically
ing, RWTH Aachen University Hospital,
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used as theranostic agents for photothermal therapy and pho-
toacoustic imaging.14–16

AuNS are commonly obtained through colloidal chemistry
via seed-mediated protocols, where gold salts are reduced in the
presence of shape-directing agents on top of pre-synthesized
spherical gold nanoparticles (used as seeds).17–19 Many of
these methods, however, tend to rely on cytotoxic and/or
strongly bound reagents that can hamper AuNS further use.
In the last decade, a seedless methodology based on Good's
buffers (Fig. 1a), which act as both reducing and shape-
directing agents, has become increasingly adopted for the
synthesis of AuNS.20–22 This seedless approach (even though it
can also be used with pre-synthesized seeds) benets from (1)
being straightforward, i.e. a one-pot protocol rather than
a multi-step procedure like the seed-mediated syntheses, (2)
using biocompatible Good's buffers, which are frequently used
as buffers in cell cultures, and (3) providing great tunability over
LSP position and number (with some AuNS displaying twomain
LSP bands) (Fig. 1b). The simplicity of the seedless synthesis,
however, comes at a cost: the inuence of multiple factors
(some of them through secondary effects) on the growth and
nal morphology and optical properties of AuNS.22 As a result, it
is difficult to fully understand the role and magnitude of these
multifactorial inuences on the AuNS optical features, which
directly affect their performance in diagnosis and therapy.
Hence, approaches that can cope with the large number of
variables and the multidimensional relationships between
them are needed to assess and predict these multifactorial
inuences over AuNS optical properties.
Nanoscale Adv., 2025, 7, 4117–4128 | 4117
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Fig. 1 Synthesis of AuNS with Good's buffers. (a) Schematic representation of the synthesis of AuNS with biocompatible Good's Buffers. (b)
Representative extinction spectra and transmission electron micrographs of AuNS grown under different conditions and displaying short and
long branches and one and two main LSP bands, respectively. The AuNS sample with short branches was synthesized and characterized as
described in the methods section. The transmission electron micrograph and UV-vis spectrum of the AuNS sample with long branches has been
adapted with permission from ref. 22. Copyright 2022 American Chemical Society.
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In recent years, machine learning (ML) has become a key tool
in nanoscience to analyze large datasets of nanomaterials, to
identify complex relationships between processes, structures
and properties, and to predict nanomaterial features and
performances.23–25 For example, deep neural networks have
been used to predict the structure of spherical gold nano-
particles based on their optical characteristics,26 while super-
vised ML algorithms have been employed to predict the UV-vis
spectra of spherical and rod-shaped gold nanoparticles based
on their morphology.27 Zhang et al. explored several ML algo-
rithms to predict the photothermal performance of silica-
coated gold nanorods for photothermal therapy, with extreme
gradient boosting (XGB) showing the highest prediction accu-
racy (91%).28 It is worth noting that the quality of ML prediction
heavily depends on the size of the input data used for training.
Hence, multiple training data augmentation approaches, such
as those obtained via generative adversarial networks (GAN),
have been developed to overcome the challenges related to data
Fig. 2 The workflow of the study. Data collection was performed to inclu
were conducted to identify key variables. Data generation techniques we
carried out, followed by the prediction of LSP-1 and LSP-2 values using

4118 | Nanoscale Adv., 2025, 7, 4117–4128
scarcity.29–31 In the case of AuNS obtained through Good's buffer
synthesis, we expect that ML can elucidate how the different
synthesis parameters affect the optical properties of the
resulting particles. This could lead to a more efficient synthetic
process, allowing for the development of tailored AuNS with
enhanced optical features for specic applications in diagnosis
and therapy.

In this study, we developed a comprehensive workow for
predicting the LSP band positions of AuNS using ML models.
The process involved data collection, feature selection, data
generation, and model selection (Fig. 2). Firstly, the relation-
ships between key features were explored, and feature impor-
tance was determined using the least absolute shrinkage and
selection operator (LASSO) and random forest (RF) ranking
methods, where the former performed more efficiently for
feature selection. Moreover, the model performance was opti-
mized with synthetic data generation methods, including
bootstrapping, synthetic minority over-sampling technique
de features affecting the LSP of AuNS. Feature evaluation and selection
re applied to enhance model performance. Model selection was then
the most suitable models.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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(SMOTE), Gaussian mixture model (GMM), and conditional
tabular generative adversarial network (CTGAN), which signi-
cantly improved the accuracy of the ML models, particularly
with bootstrapping. Among the different models evaluated,
which included RF, XGB, and support vector regression (SVR),
the RF model demonstrated the best predictive accuracy.
Additionally, we also explored a multi-output RF model to
simultaneously predict the position of both LSP bands (LSP-1
and LSP-2).

2. Methods
2.1. Data collection

Data from AuNS synthesized with Good's buffers were collected
from previously published research and our laboratory ndings.
The dataset comprised 144 samples with 11 features that
described the chemical characteristics, solution parameters,
and operation conditions (Table 1). We focused on predicting
the two LSP band positions (LSP-1 and LSP-2), as they are the
most important parameters for most AuNS applications.
Moreover, we only considered features with at least 50 data
points within our dataset. This threshold was chosen to avoid
unreliable predictions, resulting from low-number data points.
Hence, the dataset contained several input features, including
buffer type (i.e. 4-(2-hydroxyethyl)piperazine-1-ethanesulfonic
acid (HEPES), 4-(2-hydroxyethyl)-1-piperazinepropanesulfonic
acid (EPPS), and 3-(N-morpholino)propanesulfonic acid
(MOPS), Fig. S1†), buffer concentration (mM), gold concentra-
tion (mM), ratio of buffer/gold concentration, pH, seed size
(nm), seed concentration (pM), stirring (yes/no), and tempera-
ture (°C), and two target outputs, namely LSP-1 (nm) and LSP-2
(nm) (Fig. S2†), which represented the multi-output regression
targets.

2.2. Feature initial evaluation and selection

Feature evaluation and selection were conducted to identify the
most relevant descriptors for predicting AuNS LSP-1 and LSP-2.
Initially, a correlation analysis was performed on the original
dataset to evaluate the relationships between the features and
detect any potential redundancies or multicollinearity. A
correlation matrix and pair plots were used to visualize
Table 1 List of features considered in the study

Name

Target LSP-1 (nm)
LSP-2 (nm)

Chemical features Gold concentration
Buffer type
Buffer concentratio
Ratio of buffer/gold
pH
Seed particle size (n
Seed concentration

Operation features Temperature (°C)
Stirring

© 2025 The Author(s). Published by the Royal Society of Chemistry
interactions among the features, which guided the selection of
the most relevant variables for further analysis.

Aer this initial evaluation, the importance of the features
was assessed using RF and LASSO. For RF, the Gini importance
metric, which evaluated the reduction in impurity achieved by
each feature, was used to assess the importance of each feature.
For LASSO, a penalty coefficient (l) was conducted systemati-
cally using LassoCV, which performed cross-validation to
identify the optimal a (inverse of l) from a specied range of
values. The l was determined through 5-fold cross-validation by
minimizing the mean squared error across a grid of 50 a values
logarithmically spaced between 10−3 and 101. Aer tting the
model, feature importance was assessed based on the absolute
values of the LASSO coefficients. These methods allowed for
a detailed ranking of the features based on their contribution to
the prediction of the LSP values. The RF algorithm was
employed for its ability to capture complex non-linear rela-
tionships between features, while LASSO was selected for its
efficiency in handling high-dimensional data by penalizing less
relevant features and shrinking their coefficients to zero.32,33

2.3. Data generation

To train the prediction models effectively and enhance the
original data, we compared the performance of synthetic data
generation methods, including bootstrapping, SMOTE, GMM,
and CTGAN. Based on our comparison, we selected boot-
strapping, which generates additional samples by random
sampling with replacements from the original dataset.34 This
technique was applied to increase the size of the training data
and improve the models' ability to generalize. Bootstrapping
ensured that the original distribution of the data was preserved,
while providing a larger dataset to train the models. SMOTE
addressed any imbalances in the dataset, particularly if some
features were underrepresented. SMOTE works by creating
synthetic samples from the minority class by interpolating
between existing samples.35 This method helped balance the
dataset and prevented the models from being biased toward
more frequent feature values. GMM was used to generate
synthetic data based on the underlying statistical distribution of
the original dataset.36 By tting a GMM to the dataset, the
method generated new samples that retained the statistical
Value �
standard deviation

682 � 79
230 � 436

(mM) 0.23 � 0.10
EPPS, HEPES, MOPS

n (mM) 109.8 � 86.0
concentration 522 � 433

7.11 � 0.47
m) 15 � 25
(pM) 3.2 � 6.1

25, 50
Yes/no

Nanoscale Adv., 2025, 7, 4117–4128 | 4119

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5na00265f


Nanoscale Advances Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

7 
M

ay
 2

02
5.

 D
ow

nl
oa

de
d 

on
 1

1/
10

/2
02

5 
5:

40
:5

8 
PM

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
characteristics of the original dataset. GMM is particularly
effective in capturing complex patterns and distributions in the
input data, helping to improve the overall diversity and coverage
of the feature space. CTGAN is a variation of GAN that is tailored
to generate realistic tabular data.37 It introduces conditional
sampling to better handle discrete columns and data imbal-
ance. It is applied to the dataset to create highly realistic
synthetic data by learning from both continuous and categor-
ical variables. CTGAN captures the joint distributions between
features, producing synthetic data that closely mimics the
structure of the original dataset, further enriching the training
data. By tting different methods to the original dataset, we
generated the same number of samples as the original data
(144). This synthetic approach effectively doubled the size of the
training set, ensuring a greater representation of the feature
space. The generated synthetic data were combined with the
original data, resulting in an augmented dataset to train the ML
models.

2.4. LSP prediction

2.4.1. Regression algorithms. To predict the position of the
LSP-1 and LSP-2 bands, we experimented with three regression
algorithms, namely RF, SVR, and XGB. For RF, the optimal
hyperparameters were determined through grid search, with
100 estimators and a random state of 42. This model was
selected for its ability to handle non-linear interactions and
complex feature dependencies. A non-linear radial basis func-
tion kernel was selected for SVR, ensuring a direct relationship
between input features and the target variables. The gamma
parameter was set to ‘scale’ to control the inuence of indi-
vidual data points. The XGB model was optimized using key
hyperparameters, including n_estimators = 50, learning_rate =
0.2, max_depth = 3, colsample_bytree = 0.8, and subsample =

0.8. The XGB was selected for its ability to ensure a balance
between model exibility and performance.

2.4.2. Multi-output regressor. To predict LSP-1 and LSP-2
simultaneously, we used the XGB model, as it was the model
with the best performance in single output prediction. We
employed synthetic data generation to address the potential
issue of limited data.

2.5. Model evaluation

2.5.1. Metrics. To evaluate the performance of the regres-
sion models, we used three different metrics, namely mean
square error (MSE), mean absolute error (MAE), and R-squared
(R2). MSE measures the average squared difference between the
predicted and actual values.

MSE ¼ 1

n

Xn

i¼1

yi � byi 2

MAE captures the average magnitude of errors in the
predictions.

MAE ¼ 1

n

Xn

i¼1

���yi � byi
���
4120 | Nanoscale Adv., 2025, 7, 4117–4128
R2 assesses how well the model explains the variability in the
target data.

R2 ¼ 1�
Pn
i¼1

�
yi � byi

�2

Pn
i¼1

ðyi � yÞ2

2.5.2. Evaluation method. The whole data was divided into
training (80%) and test (20%) sets to ensure that the test data
was untouched. Next, the method validation was conducted
using K-fold cross-validation (with 7-fold). Aer normalizing the
training set with StandardScaler to maintain uniform scaling of
the feature values, synthetic data were generated exclusively for
the training set. The training data, including both the original
and synthetic samples, were split into seven-fold, where six-fold
were used for training, and one-fold was held out for validation.
This process was repeated seven times, allowing each fold to be
used as the validation set once. During each iteration, the
model was trained and validated, and the R2, MAE, and MSE
scores were recorded for both the training and validation sets.
To provide further insights into the models' performances,
visualizations of the predicted versus actual values were gener-
ated for the datasets. These visualizations enabled a clear
comparison of how well themodel tted the data, particularly in
terms of overtting (if present in the training set) or under-
tting (in the validating set). Additionally, learning curves were
plotted to observe the models' convergence behaviors over
different training set sizes, offering insights into their perfor-
mances with increasing data. The learning curves were con-
structed using a series of training set sizes, ranging from 10 to
100% of the data. Lastly, we tested the performance of the
model with all test data instead of part of the test data in K-fold.
It is useful for evaluating the nal performance of an ML model
on unseen (test) data and for assessing how well the model
generalizes beyond the training and validation phases.
2.6. Synthesis and characterization of AuNS

To grow AuNS with short branches and one LSP band, HAuCl4
(nal concentration of 0.2 mM) was mixed with a HEPES solu-
tion (pH 7.4, nal concentration of 150 mM, and nal volume of
10 mL), vigorously stirred, and le undisturbed for 2 h. HEPES
was purchased from Carl Roth (Karlsruhe, Germany), and
HAuCl4$3H2O was purchased from Sigma-Aldrich (St. Louis,
USA). The AuNS extinction spectra weremeasured with a TECAN
Innite M200 Pro microplate reader (Tecan Group Ltd,
Männedorf, Switzerland), and their morphology was charac-
terized with a Hitachi transmission electron microscope at 100
kV.
3. Results and discussion
3.1. Feature initial evaluation and selection

To identify the most effective feature selection algorithm, we
compared RF and LASSO as feature selectors across the three
models (RF, XGB, and SVR) and with bootstrapping as data
© 2025 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5na00265f


Paper Nanoscale Advances

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

7 
M

ay
 2

02
5.

 D
ow

nl
oa

de
d 

on
 1

1/
10

/2
02

5 
5:

40
:5

8 
PM

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
generator, as it had been successfully used in the analysis of
gold nanoparticle synthetic parameters.38 The best feature
selection algorithm should achieve the highest R2 or lowest
error while minimizing feature numbers, and should align with
empirical observations. Our results indicate that all models
achieved their highest performance with LASSO (Fig. 3a and
S3†).

For example, for the prediction of LSP-1 with the RF model
(the one with the best performance), although both selector
methods showed relatively high R2 values (around 0.9) with
different feature numbers (Fig. 3a), the RF model with ten
features selected by LASSO was the combination with the best
performance (R2 value of 0.914). Similarly, for LSP-2 prediction,
the combination of LASSO with six features was the one with the
highest R2 value (0.733) (Fig. 3b). Taken together, these results
Fig. 3 Selection of features. (a) R2 calculated with the best model, RF, us
prediction. (b) R2 calculated with the best model, RF, using different n
Importance ranking of all features for (c) LSP-1 and (d) LSP-2 prediction
selected with LASSO for LSP-1 prediction. (f) R2 calculated with all mod
prediction.

© 2025 The Author(s). Published by the Royal Society of Chemistry
pointed out that the RF model with feature selection based on
LASSO performed the best when predicting both LSP-1 and LSP-
2, even though the prediction of the rst plasmonic band was
better, as its R2 value was higher (0.914 and 0.733 for LSP-1 and
LSP-2, respectively). This was likely caused by the different data
sizes for both plasmonic bands, since all AuNS display LSP-1,
but only a small fraction of particles possesses LSP-2 (original
data size of 144 and 32, respectively). Hence, based on the
comparative analysis, LASSO emerged as the superior feature
selection method, which led us to adopt it for the subsequent
analyses.

Identifying the most relevant features and evaluating their
importance is essential to optimize the predictive models.
Fig. 3c and d present the feature importance rankings deter-
mined using LASSO for LSP-1 and LSP-2, respectively. These
ing different numbers of features selected with LASSO or RF for LSP-1
umbers of features selected with LASSO or RF for LSP-2 prediction.
. (e) R2 calculated with all models using different numbers of features
els using different numbers of features selected with LASSO for LSP-2

Nanoscale Adv., 2025, 7, 4117–4128 | 4121

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5na00265f


Nanoscale Advances Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

7 
M

ay
 2

02
5.

 D
ow

nl
oa

de
d 

on
 1

1/
10

/2
02

5 
5:

40
:5

8 
PM

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
rankings, which include both numerical and categorical
features, illustrate the contribution of each feature to the
prediction tasks. The importance rankings identied ten
features for LSP-1 (i.e. buffer concentration (mM), buffer/gold
concentration ratio, gold concentration (mM), pH, buffer type
MOPS, buffer type HEPES, seed size (nm), seed concentration
(pM), temperature (°C), and stirring (yes/no)) and seven features
for LSP-2 (i.e. buffer type MOPS, buffer type HEPES, buffer/gold
concentration ratio, pH, buffer concentration (mM), gold
concentration (mM), and seed concentration (pM)) as the most
relevant to predict the plasmon band positions, which are
consistent with qualitative experimental observations previ-
ously reported.20–22

Based on these features, we trained the three regression
models, namely RF, XGB, and SVR, and the selection method
LASSO, to identify the best prediction model and the appro-
priate number of features. Consistent with our previous results,
the RF model achieved the highest R2 values with ten (up to R2

of 0.914) and six (up to R2 of 0.733) features for predicting LSP-1
and LSP-2, respectively (Fig. 3e and f), while the SVR model
severely underperformed, with some instances showing nega-
tive R2 values, indicating very poor predictions.

Understanding the relationships between features is essen-
tial to validate and rene the feature selection. We initially
assessed potential redundancies or strong interactions of
features based on correlation matrices and pair plot diagrams
and identied the relationships between features and their
potential predictive power (Fig. S4 and S5†). For example, seeds
(nm) were negatively correlated with LSP-1 (nm) with a Pearson
correlation coefficient (r) of −0.35, and buffer (mM) was posi-
tively correlated with LSP-1 (nm) and LSP-2 (nm) with r of 0.51
and 0.48, respectively, suggesting that they are important
features for prediction. Moreover, the feature buffer concen-
tration (mM) and the buffer/gold concentration ratio were
almost perfectly correlated (r of 0.96). The features seed (nm)
and seed (pM), which refer to the physical size and concentra-
tion of the seed, respectively, were also highly correlated (r of
0.86), indicating that they convey very similar information. In
ML, using two highly correlated features simultaneously may
lead to multicollinearity problems. Therefore, we compared the
prediction results of excluding the seed (nm) feature and buffer/
gold concentration ratio. The results showed that retaining
these two highly correlated features led to better model
performance (Table S1†).

In conclusion, our analysis demonstrates that LASSO is the
optimal feature selection method for our study, with LSP-1
requiring ten features and LSP-2 six features for achieving the
best prediction outcomes.
3.2. Data generation

To further improve the performance of the ML algorithms in
predicting the LSP band positions, we optimized the data
augmentation strategy. For this purpose, we combined the three
regression algorithms (RF, XGB, and SVR) with four data
generationmethods, namely bootstrapping, SMOTE, GMM, and
CTGAN. For LSP-1, all four data generation methods performed
4122 | Nanoscale Adv., 2025, 7, 4117–4128
well when combined with the RF and XGB models, with R2

values above 0.830 (Fig. 4a). Among them, we conrmed that
the bootstrapping method combined with the RF model gave
the best result with an R2 value of 0.914. For LSP-2, three
combinations displayed better results, namely the XGB model
combined with SMOTE, the RF model combined with CTGAN,
and the RF model combined with bootstrapping with R2 values
of 0.855, 0.759, and 0.733, respectively (Fig. 4b).

To further understand the impact of generated data on the
models' performance, we compared their performance based on
threemetrics, namely R2 value, MAE, andMSE. Furthermore, we
broke down the performance of the algorithms into seen data
(training set in each cross-validation fold without or with
synthetic data), unseen data (validating set in each cross-
validation fold), and full unseen data (test dataset). While the
performance of all algorithms improved during the prediction
of the training and testing LSP-1 data aer data augmentation,
the most signicant changes occurred when data generation
was applied to predict the validating datasets (Table S2†). For
instance, the R2 value for the validating data using the three
models only increased with bootstrapping synthetic data (from
0.716 to 0.955, from 0.533 to 0.962, and from 0.378 to 0.480 for
the RF, XGB, and SVR models, respectively). The impact of the
generated data on predicting the validating sets was also
observed in the MAE and MSE values, as they all signicantly
decreased aer implementing the bootstrapping data genera-
tion (Table S2†). Similar results were observed for the LSP-2
position prediction, as the performance of all algorithms
signicantly improved aer data augmentation in all training
and most validating data sets (Table S3†). Regarding the
prediction of the test datasets, the R2 metrics for all three
models trained with original data and those trained with both
original and generated (with bootstrapping) data for LSP-1 and
LSP-2 were compared (Fig. 4c and d). The RF model provided
the best predictions for LSP-1 and LSP-2. For LSP-1, the R2 value
increased from 0.837 to 0.914 aer data generation. For LSP-2,
the R2 value decreased from 0.773 to 0.733. However, the
metric MAE, decreased aer the data generation, proving the
contribution of synthetic data in improving the prediction
results (test set). Hence, the combination of the RF model and
the bootstrapping method was considered the best option
moving forward, since it performed the best for LSP-1 predic-
tion and was one of the best when predicting LSP-2.

Next, we analyzed the similarity between the original data
and the generated data by the bootstrapping method. To assess
the similarity between the original and bootstrapped datasets,
we performed the Kolmogorov–Smirnov (KS) test for each
feature. The KS statistic quanties the largest difference
between the cumulative distributions of the two datasets, while
the p-value assesses the statistical signicance of this differ-
ence. Fig. S6 and S7† compare the distributions of the most
important features between both datasets for LSP-1 and LSP-2,
conrming that the generated data by bootstrapping strongly
resembled the original one with p-values of 1.00 and KS values
below 0.03.

Overall, the results illustrate that RF consistently provided
the most reliable predictions for both LSP-1 and LSP-2, while
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4 Impact of data generation. Performance of all models using different methods of data generation for (a) LSP-1 and (b) LSP-2. R2 metrics
for models without andwith generated data (with bootstrapping) for (c) LSP-1 and (d) LSP-2. The values displayed refer to test dataset predictions.
For performance breakdown based on training and validating sets refer to Tables S2 and S3.† GD stands for generated data.
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XGB also performed well but tended to underperform on the
test and validating datasets (Tables S2†). SVR demonstrated
poor performance due to the non-linear relationship between
the features. Moreover, all regression algorithms were better at
predicting the position of the rst plasmon band than the
second one. As previously discussed, this may be caused by the
greater number of data points for LSP-1, since all AuNS display
the rst plasmonic band, but many do not present a second
one.

To better characterize the impact of data augmentation on
the best-performing model, particularly on convergence and
generalization, we compared the learning curves of the RF
model trained without and with generated data using boot-
strapping. We selected MAE for plotting the learning curves due
to its interpretability, robustness to outliers, and ability to
directly assess the average prediction error. These graphs depict
two important aspects, namely training error and cross-
validation error. The former represents how well the model
performs on the data it has been exposed to, while the latter
estimates the model's ability to generalize to unexposed data.
The gap between the two curves indicates the degree of over-
tting or undertting, while the shaded area around the
training and test MAE curves represents variability or spread of
error, usually due to the inherent variability of the model
predictions across subsets of data, visually assessing the
stability of the model performance.

Fig. 5a shows the learning curves of LSP-1 without data
generation. As the number of training examples increased to 92,
© 2025 The Author(s). Published by the Royal Society of Chemistry
the training MAE decreased to 17.0. The validation MAE fol-
lowed a similar trend, starting at 64.6 and stabilizing around
26.6 for larger datasets, suggesting some overtting. In Fig. 5b,
the learning curves for the RF model predicting LSP-1 showed
faster convergence and reduced error rates when data genera-
tion was applied in the validating set. Initially, the training MAE
was 24.7, but then dropped rapidly to 7.6, and the validation
MAE stabilized at 11.8, which was signicantly lower than it was
without data generation. The shaded area also narrowed, indi-
cating less variability in model performance, most likely due to
the data addition of the training set. Similar learning speed and
generalization improvements were observed for the RF model
predicting LSP-2, further demonstrating the positive impact of
data generation. In Fig. 5c, the model showed higher error
values for LSP-2 without generating data. The training MAE
started at 228.8 and decreased to 76.6 as the number of training
examples increased to 80. The validation MAE showed a similar
trend, but ended up with a higher error, 143.0, which suggested
that the model suffered from overtting and struggled to
generalize to unseen data. Fig. 5d shows the impact of data
generation on LSP-2 prediction. The training MAE started at
100.9 and steadily decreased to 39.1 as the data increased. The
validation MAE decreased accordingly and stabilized at 65.9 for
larger dataset sizes. Compared with Fig. 5c, the shaded area in
Fig. 5d was narrower, indicating a more stable model perfor-
mance with less variation in MAE, reecting better
generalization.
Nanoscale Adv., 2025, 7, 4117–4128 | 4123
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Fig. 5 Evaluation of convergence and generalization. Learning curves of LSP-1 prediction by the RF model (a) without and (b) with data
generation. Learning curves of LSP-2 prediction by the RFmodel (c) without and (d) with data generation. The shaded regions around the training
and cross-validation. Data generation was performed with bootstrapping. MAE curves correspond to standard deviations above and below the
mean of MAE.
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Next, because the RF model performed the best when
combined with LASSO feature selection and bootstrapping data
augmentation, we assessed its generalization capacity with
scatter plots. For the training data, the scatter plot shows a very
good alignment along the diagonal (Fig. 6a), resulting in a high
degree of accuracy in predicting LSP-1 values within the training
set (R2 and MSE of 0.980 and 145.7, respectively, Table S2†). For
the test set, the data points were more dispersed than in the
training set but still well aligned with the diagonal (Fig. 6b),
reecting good generalization of the model to unseen data for
the LSP-1 (R2 and MSE of 0.914 and 455.4, respectively, Table
S2†). For the LSP-2, the scatter plots showmore variance around
the diagonal in both training and test sets compared to LSP-1,
especially at higher values (Fig. 6c and d), indicating that the
model has more difficulty predicting LSP-2 in both datasets
(Table S3†). These observations further conrmed our previous
observation that the RF model is less effective when predicting
the second plasmon band position.

3.3. Multi-output model

Up to this point, the positions of LSP-1 and LSP-2 had been
independently predicted (one at a time). Nevertheless, it would
be highly benecial if the model could be used to predict both
plasmon bands simultaneously. Hence, in this last section, we
4124 | Nanoscale Adv., 2025, 7, 4117–4128
explored whether the RF model combined with LASSO feature
selection and bootstrapping data generation could be further
used to predict both LSP-1 and LSP-2 simultaneously.

First, we assessed the optimal number of features necessary
for LSP-1 and LSP-2 prediction with the multi-output RF model.
Fig. 7a compares the model performance when trained with the
original data alone and when combined with the generated data
(with bootstrapping), using feature sets ranging from 7 to 10
features. The results obtained with eight features were the best
for both predictions. These features were buffer type MOPS,
buffer type HEPES, pH, buffer concentration (mM), ratio of
buffer/gold concentration, gold concentration (mM), seed
concentration (pM), and temperature (°C) (in descending order
of importance), and were consistent with the ones previously
identied for single LSP bands. Notably, the model trained with
the combined original and generated data demonstrated better
performance, indicating that the inclusion of the synthetic data
improved the model training process.

To further analyze the performance of multi-output RF aer
data generation, we calculated its metrics with eight features
using the original and generated data (Table S4†). When trained
using only original data, the RF model achieved an R2 value of
0.894 on the training set, 0.638 on the validating set, and 0.817
on the test dataset. Nevertheless, the MAE and MSE values
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 6 Assessing the predictive performance of the RF model with scatter plots. Visualizing the prediction of the LSP-1 position by the RF model
with bootstrapping data generation in the (a) training and (b) test sections. Visualizing the prediction of the LSP-2 position by the RF model with
bootstrapping data generation in the (c) training and (d) test sections.
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indicated relatively high errors in both the training and test
phases. In contrast, the RF model improved in most metrics
when trained with both original and generated data. The R2

value increased to 0.965 and 0.902 in the training and validating
sets, respectively, though its performance in test datasets
slightly decreased (0.809). The MAE and MSE values were also
reduced in training sets, where the MAE and MSE decreased by
56.2% and 56.1%, respectively, a signicant improvement
compared to using original data alone. Therefore, these results
showed that the inclusion of generated data improved the
training performance of the model and overall reduced errors.
However, the R2 improvement across the validating and test
datasets was not signicant. This suggests that while data
generation is benecial, in this case the benets are reduced
when applied to entirely unseen data.

Aer conrming that the feature selection and data genera-
tion methods are applicable (and potentially benecial) to the
multi-output RF, we visualized the prediction and generaliza-
tion of the multi-output model in the training and test sections
with scatter plots. For training data, a strong alignment between
the predicted and actual values was observed (Fig. 7b). Notably,
most data points clustered tightly around the diagonal red line,
representing good predictions and suggesting that the model
performed well on the training set (R2 value of 0.965 and anMSE
value of 4327.6, Table S4†). For test data, while the alignment
© 2025 The Author(s). Published by the Royal Society of Chemistry
with the diagonal red line was less pronounced, it remained
relatively strong (Fig. 7c). The R2 value of 0.809, and the MSE
value of 33 616.1 suggested that the model performance on the
test data was acceptable (Table S4†).

Lastly, we analyzed the model performance regarding MAE
through its learning curves. For only original data (without
synthetic data), as the number of training examples increased,
the training MAE quickly stabilized around 40, indicating that
the model tted the training data well (Fig. 7d). Nevertheless,
the validation MAE remained signicantly higher, hovering
around 100 to 140, and uctuating signicantly as more
examples were used. The gap between the training MAE and the
validation MAE suggested potential overtting, where the
model performed well on the training set but underperformed
when generalized to unseen data. When the original data was
enriched with generated data (with bootstrapping), the curves
showed similar patterns, but improved learning due to the
inclusion of the synthetic data (Fig. 7e). The faster convergence
and smaller gap between the training MAE and the validation
MAE curves suggested that the model beneted from the data
generation, which enhanced its ability to generalize to unseen
data, further validating the approach. In summary, the multi-
output RF model with data generation demonstrated a strong
predictive performance on both training and validating data-
sets. However, the performance on the test set exhibited
Nanoscale Adv., 2025, 7, 4117–4128 | 4125
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Fig. 7 Evaluation of the multi-output model performance. (a) R2 calculated for test dataset with multi-output RF with and without bootstrapping
generated data using different numbers of features selected with LASSO. Visualizing the prediction of the multi-output RF model with data
generation with bootstrapping in the (b) training and (c) test sections. Learning curves of the multi-output RF model (d) without and (e) with data
generation, respectively.
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a greater variability, reecting the typical decrease in model
accuracy when generalizing to unseen data.
3.4. Discussion

This study provides important insights into feature selection and
data generation methods for predicting the LSP position of AuNS
using ML models. LASSO-based feature selection and RF feature
importance rankings helped to identify key predictors for LSP-1
and LSP-2, which included buffer concentration (mM), buffer/
gold concentration ratio, gold concentration (mM), pH, buffer
type MOPS, buffer type HEPES, seed size (nm), seed concentra-
tion (pM), temperature (°C), and stirring (yes/no). Notably, the
4126 | Nanoscale Adv., 2025, 7, 4117–4128
EPPS buffer showed no importance for predicting both LSP-1 and
LSP-2 (Fig. 3a and b). This was likely due to the chemical simi-
larities between EPPS and HEPES, which differ only by a single
carbon in the sulfonic acid chain. In contrast, MOPS has
a distinct chemical structure, lacking the hydroxyethyl chain.
These ndings align with the experimental results, which indi-
cate that EPPS and HEPES yield very similar AuNS, while MOPS
produces more anisotropic and distinct nanocrystals.19,20

The decision to apply data generation techniques, such as
bootstrapping, played a crucial role in improving the model
performance. Our results indicated that synthetic data generation
generally improved the models' accuracy. This was particularly
© 2025 The Author(s). Published by the Royal Society of Chemistry
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evident when comparing models trained with original data or
with both original and generated data. For instance, the RFmodel
performance for LSP-1 improved signicantly with data genera-
tion, as reected by the higher R2 values and lower MAE and MSE
metrics. However, for LSP-2, while data generation also improved
performance, the gains were less pronounced, particularly on the
test dataset, as the R2 values were lower. This may be explained by
particles infrequently displaying LSP-2, since all AuNS possess
LSP-1, but only a small fraction of those display LSP-2. Thus, the
original dataset for LSP-2 was smaller, which could lead to data
aggregation and incomplete information, resulting in less effec-
tive predictions. To enhance model training and improve overall
predictive performance, future efforts should focus on generating
larger datasets that include AuNS exhibiting a second plasmon
band. This expanded data will allow the models to capture better
the complex behaviors associated with multi-plasmonic
responses.

Regarding model selection, RF consistently outperformed
the other models, namely XGB and SVR, especially for LSP-1
prediction. The RF model was suitable for this study because
of its ability to handle non-linear interactions and robustness
against overtting. However, for LSP-2, the performance of all
models, including RF, was slightly lower, suggesting that more
exploration of feature correlations or more sophisticated data
generation techniques may be required.

Lastly, the multi-output RF model demonstrated strong
predictive performance on both training and validating datasets
aer data generation. Greater variability was identied when
predicting the test data, which was consistent with lower model
accuracy when generalizing to unseen data.

4. Conclusions

In summary, we have applied ML models, namely RF, XGB, and
SVR, to predict the LSP-1 and LSP-2 positions of AuNS based on
features that had been reported to inuence them during
synthesis. Feature importance evaluation and selection were
carried out with the LASSO and RF methods, where the former
performed better, identifying buffer concentration (mM),
buffer/gold concentration ratio, gold concentration (mM), pH,
buffer type MOPS, buffer type HEPES, seed size (nm), seed
concentration (pM), temperature (°C), and stirring as the most
critical parameters affecting the AuNS optical properties.
Because the models were trained with a relatively small data set
(144 samples), synthetic data was generated using four different
methods (bootstrapping, SMOTE, GMM, and CTGAN). The
inclusion of synthetic data during training consistently
improved the prediction results for all models, with specic
combinations performing better for the prediction of LSP-1 (RF
and bootstrapping with R2 of 0.914) and LSP-2 (XGB and SMOTE
with R2 of 0.855). TheML workowmade possible simultaneous
predictions of both LSP band positions, but the prediction
performance decreased (R2 of 0.817). In summary, these results
illustrate the use of ML models to predict the optical properties
of AuNS synthesized through seedless synthesis, which may
offer new opportunities for improving the nanoparticle design
and their nal applications.
© 2025 The Author(s). Published by the Royal Society of Chemistry
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10 D. M. Soĺıs, J. M. Taboada, F. Obelleiro, L. M. Liz-Marzán and
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P. Chamoso and E. Corchado, Data Augmentation Using
Gaussian Mixture Model on CSV Files, Distributed
Computing and Articial Intelligence 17th International
Conference, 2020, p. 1237.

37 L. Xu, M. Skoularidou, A. Cuesta-Infante and
K. Veeramachaneni, Modeling Tabular data using
Conditional GAN, 33rd Conference on Neural Information
Processing Systems, 2019.

38 A. A. Guda, M. V. Kirichkov, V. V. Shapovalov, A. I. Muravlev,
D. M. Pashkov, S. A. Guda, A. P. Bagliy, S. A. Soldatov,
S. V. Chapek and A. V. Soldatov, Machine Learning
Analysis of Reaction Parameters in UV-Mediated Synthesis
of Gold Nanoparticles, J. Phys. Chem. C, 2023, 127, 1097–
1108.
© 2025 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5na00265f

	Machine learning to predict gold nanostar optical propertiesElectronic supplementary information (ESI) available Pearson correlation matrix between...
	Machine learning to predict gold nanostar optical propertiesElectronic supplementary information (ESI) available Pearson correlation matrix between...
	Machine learning to predict gold nanostar optical propertiesElectronic supplementary information (ESI) available Pearson correlation matrix between...
	Machine learning to predict gold nanostar optical propertiesElectronic supplementary information (ESI) available Pearson correlation matrix between...
	Machine learning to predict gold nanostar optical propertiesElectronic supplementary information (ESI) available Pearson correlation matrix between...
	Machine learning to predict gold nanostar optical propertiesElectronic supplementary information (ESI) available Pearson correlation matrix between...
	Machine learning to predict gold nanostar optical propertiesElectronic supplementary information (ESI) available Pearson correlation matrix between...
	Machine learning to predict gold nanostar optical propertiesElectronic supplementary information (ESI) available Pearson correlation matrix between...
	Machine learning to predict gold nanostar optical propertiesElectronic supplementary information (ESI) available Pearson correlation matrix between...
	Machine learning to predict gold nanostar optical propertiesElectronic supplementary information (ESI) available Pearson correlation matrix between...
	Machine learning to predict gold nanostar optical propertiesElectronic supplementary information (ESI) available Pearson correlation matrix between...
	Machine learning to predict gold nanostar optical propertiesElectronic supplementary information (ESI) available Pearson correlation matrix between...
	Machine learning to predict gold nanostar optical propertiesElectronic supplementary information (ESI) available Pearson correlation matrix between...

	Machine learning to predict gold nanostar optical propertiesElectronic supplementary information (ESI) available Pearson correlation matrix between...
	Machine learning to predict gold nanostar optical propertiesElectronic supplementary information (ESI) available Pearson correlation matrix between...
	Machine learning to predict gold nanostar optical propertiesElectronic supplementary information (ESI) available Pearson correlation matrix between...
	Machine learning to predict gold nanostar optical propertiesElectronic supplementary information (ESI) available Pearson correlation matrix between...
	Machine learning to predict gold nanostar optical propertiesElectronic supplementary information (ESI) available Pearson correlation matrix between...

	Machine learning to predict gold nanostar optical propertiesElectronic supplementary information (ESI) available Pearson correlation matrix between...
	Machine learning to predict gold nanostar optical propertiesElectronic supplementary information (ESI) available Pearson correlation matrix between...
	Machine learning to predict gold nanostar optical propertiesElectronic supplementary information (ESI) available Pearson correlation matrix between...
	Machine learning to predict gold nanostar optical propertiesElectronic supplementary information (ESI) available Pearson correlation matrix between...


