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14 Abstract: Chronic wasting disease (CWD) is a contagious neurodegenerative disease in cervids and its 
15 spread threatens the health of wild and farm-raised animals. A rapid screening method for CWD is in 
16 great demand. Compared to current diagnostic methods, ELISA and immunohistochemistry, Raman 
17 spectroscopic biosensing offers a potential approach to screen for CWD in real time and onsite, which is 
18 currently lacking. In this study, to evaluate the effectiveness of Raman spectroscopic biosensing for CWD 
19 detection, Raman spectra were collected by a Raman microscope as well as a portable Raman 
20 spectrometer from cervid skin tissue samples sprayed by gold nanoparticle signal enhancers collected 
21 from both heathy (i.e., control, CWD-negative) and diseased (i.e., CWD-positive) white-tailed deer. The 
22 spectral data were subject to analysis by two machine learning (ML) algorithms, i.e., support vector 
23 machine (SVM) and artificial neural network (ANN). The results suggest that ML-assisted Raman 
24 spectroscopic biosensing can indeed offer a rapid first screening for CWD, with a highest accuracy of 
25 88% which is comparable to existing methods. It has the potential to become a useful tool for in-field 
26 screening and detection of CWD.

27 Keywords: biosensing, chronic wasting disease (CWD), cervid, machine learning, prion disease, Raman 
28 Spectroscopy 

29

30 1. Introduction

31 In 1967, the first case of chronic wasting disease (CWD) was identified in Colorado, USA. Since then, 
32 CWD has emerged in wild and captive cervids in North America, Norway, and South Korea.1,2 It is a 
33 transmissible spongiform encephalopathy (TSE), or prion disease, causing fatal neurodegeneration. The 
34 disease is caused by an abnormal form of prion protein (PrP scrapie, PrPSc) that is transmitted to the 
35 host animal by exposure to excreta containing PrPSc. The PrPSc then templates the misfolding of the 
36 animal's normal cellular prion protein (PrP) to the pathologic PrPSc form that then accumulates in neural 
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37 and lymphoid tissues. The conformational change of normal PrP (PrPc) to PrPSc primarily involves a shift 
38 from α-helices to β-sheets within the protein structures.3 CWD is incurable and poses a fatal threat to 
39 animal health.4,5 

40 The prion gene (PRNP) encodes PrP in mammalian species. Studies of the PRNP gene in mule deer and 
41 white-tailed deer have identified several amino acid and nucleotide sequence polymorphisms. Previous 
42 studies identified PRNP polymorphisms in white-tailed deer (WTD) at codon positions 96, 132, 138, and 
43 226.6,7 Polymorphisms in PRNP could affect CWD susceptibility and tissue distribution in cervids,8 
44 impacting the degree to which cervid populations are vulnerable to disease transmission and 
45 progression.7,8

46 Chronic wasting disease has long incubation period, which typically lasts 18 months to 3 years.2 CWD is 
47 extremely contagious and can be transmitted from one animal to the next by contact with various 
48 excreta. CWD-infected animals have a relatively long preclinical period of disease where they show no 
49 clinical signs, but are shedding infectious material. Control of CWD within captive populations could play 
50 an essential role to protect the wild population. Thus, control of CWD depends on identification and 
51 removal of infected animals as early as possible during their preclinical period. PrPSc can be detected by 
52 immunohistochemistry (IHC), western blotting, enzyme-linked immunosorbent assay (ELISA), prion 
53 misfolding cyclic amplification (PMCA), and real-time quaking induced conversion (RT-QuIC).4 According 
54 to USDA, IHC testing of the obex area of the brain stem or the medical retropharyngeal lymph nodes is 
55 applied for definitive diagnosis.4,9 In mule deer, PrPSc can be detected in lymphoid tissues by IHC as early 
56 as 6 months.9 However, the diagnostic sensitivity of the IHC test on lymphoid tissues (postmortem) 
57 reached 100% in the last 2 stages of preclinical disease but was only 36% for the earliest stage.9

58 Despite availability of postemortem testing, antemortem diagnostic assays are limited. The rectal 
59 mucosa biopsy sampling test (with rectoanal mucosa-associated lymphoid tissue (RAMALT)) was used to 
60 detect the CWD in white-tailed deer, in which immunohistochemical (IHC) detection of disease-
61 associated prion protein in postmortem RAMALT biopsy samples was compared to the CWD status of 
62 each deer as determined by immunodiagnostic evaluation of the brainstem at the obex, the medial 
63 retropharyngeal lymph node, and the palatine tonsil.10 The diagnostic sensitivity ranged from 63% to 
64 100%, which was dependent on genotype at PRNP codon 96, and the stage of disease as assessed by 
65 obex grade. Yet, USDA has not approved the rectal biopsy test for routine regulatory testing. Besides, 
66 this test was still an invasive test which requires cutting the skin, and needs to be completed by a 
67 trained practitioner with the animal restrained or anesthetized. It further added to the difficulty of it 
68 being applied to living animals. More recent development was to detect CWD prions in environmental 
69 and biological specimens (e.g., blood,11 saliva,12 feces13 etc.) by concentrating CWD prions with direct 
70 spiking of the sample into the protein misfolded cyclic amplification (PMCA) reactions. Reports showed 
71 that CWD prion detection in feces using PMCA was the best in the absence of sample pre-treatments, 
72 achieving diagnostic sensitivity and specificity of 54.81% and 98.46%, respectively.13 Yet, these methods 
73 were only tested in controlled laboratory environment, not for in-field applications.11-13 

74 Another technology that has been explored for CWD diagnosis and screening is real-time quaking-
75 induced conversion (RT-QuIC), which was originally developed a decade ago for detecting abnormal 
76 form of prion proteins in diagnosis of sporadic Creutzfeldt–Jakob disease (sCJD)14. A few studies have 
77 investigated the utility of RT-QuIC in comparison to current immunodetection assays on free-ranging 
78 cervids15-18. As an amplification-based molecular assay, RT-QuIC takes advantage of the propensity of the 
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79 abnormal PrPsc isoform to convert recombinant PrPC in vitro,19 which is then detected via fluorescence. 
80 The RT-QuIC has been reported to amply PrPres seeds present in brain dilutions in the femtogram 
81 range17,18. Holz et al.20 demonstrated that RT-QuIC is comparable to ELISA and IHC as molecular assay for 
82 CWD surveillance and screening. The RT-QuIC test has the potential to be applicable to test body fluid, 
83 blood and/or feces collected from live animals. A more recent development was a RT-QuIC assay 
84 conducted on ear pinna punches from asymptomatic mule and white-tailed deer.21 The RT-QuIC 
85 analyses of ear samples provided apparent diagnostic sensitivity (81%) and specificity (91%) that were as 
86 good as those observed in previous analyses of rectal biopsies using RT-QuIC.21 Christenson et al. also 
87 developed a nanoparticle-enhanced RT-QuIC test that could produce a result for CWD-positive tissue 
88 seeds in 4.1 hours, and no false-negatives,22 which was much faster than all reported alternatives. 
89 However, despite the growing interest in RT-QuIC-based diagnostics, there is currently no consensus 
90 regarding the interpretation of the assay’s output.23 Similar to other molecular assays, the RT-QuIC test 
91 is sophisticated and requires skilled and trained personnel as well as specialized equipment, which 
92 further limits its accessibility to meet field testing needs.   

93 Raman Spectroscopy is a non-destructive vibrational spectroscopic technique which provides detailed 
94 information about chemical structure, phase and polymorphism, crystallinity and molecular 
95 interactions.20 It has been used for determining the biochemical changes in the bio-macromolecules of 
96 cells and tissues, as well as body fluids, like blood plasma/serum and urine, for the diagnosis of various 
97 diseases, with the help of machine-learning (ML) based data analysis.24-31 Among them, diseases caused 
98 by amyloid accumulation26, and neurodegenerative Parkinson’s disease31 are especially relevant as they 
99 are, like CWD, protein misfolding diseases. As CWD primarily affects the brain, it remains to be seen 

100 whether PrPSc related changes could be detected in skin tissues, which could then serve as a basis for 
101 the development of non-invasive CWD screening methods. 

102 In this study, to evaluate the effectiveness of ML-assisted Raman spectroscopic biosensing as a tool for 
103 CWD diagnosis on skin tissues, Raman spectra from skin tissue samples from both heathy (i.e., control, 
104 CWD-negative) and diseased (i.e., CWD-positive) cervids (whitetail deer) were collected using both a 
105 dispersive Raman microscope and a portable Raman spectrometer. To enhance the Raman signal, gold 
106 nanoparticle serving as surface-enhanced Raman spectroscopic (SERS) enhancers were sprayed onto 
107 tissue surfaces before signal acquisition. The spectral data were then classified by two ML algorithms, 
108 support vector machine (SVM) and artificial neural network (ANN). The results suggest that SERS 
109 biosensing in conjunction with ML can indeed offer a rapid first screening for CWD, with the highest 
110 accuracy of 88%, comparable, or even superior, to existing methods reported in literature.

111

112 2. Materials and methods 

113 2.1 Skin tissue samples

114 Two sets of samples (A and B, described below) were used for this study. CWD is considered a highly 
115 contagious disease, and CWD samples are strictly regulated by USDA. Therefore, the design of our 
116 approach must be flexible to accommodate the limited availability of samples. 

117 The first set of samples (set A) were paraffin-embedded skin samples collected from white-tailed deer 
118 (Odocoileus virginianus, WTD) in captivity. Ear notches (~1.0 cm X 1.0 cm pieces from the middle of the 
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119 ear) were taken post-mortem from farmed WTD that were under quarantine with a history of CWD. The 
120 study population consisted of 11 positive and 13 non-detect deer (referred to as “negative” from here 
121 on); all were males. Each sample was put into 10% neutral buffered formalin and held in formalin for 6 
122 months until they were embedded in paraffin. All work was done in accordance with and had the 
123 approval of the Iowa State University Institutional Biosafety Committee (IBC-19-021). After embedding, 
124 3-4 µm sections for spectral acquisition with a dispersive Raman microscope (DXR Raman microscope, 
125 Thermo Scientific Inc., Madison, WI, USA) were mounted on gold slides. 

126 The section thickness of 3-4 µm was chosen for two reasons: firstly, this thickness would allow the 
127 sections to be de-paraffined easily, as the thickness of the section went up, more paraffin (hence 
128 stronger paraffin signals) remained with the sample after de-paraffining (data not shown); and secondly, 
129 as the sections were mounted onto gold-coated slides, the 3-4 µm thickness was sufficient to yield good 
130 quality spectra. The Raman spectra were acquired with the DXR microspectrometer using a 100x 
131 objective with a 1.25 NA, at a spectral resolution of 1 cm-1, with a 780 nm excitation laser. 

132 The second set of samples (set B) were skin samples collected during a depopulation of a farmed cervid 
133 premises that went through the diagnostic screening by U.S. Department of Agriculture Animal and 
134 Plant Health Inspection Service (APHIS) Veterinary Services. They were also ear notches taken post-
135 mortem, with similar size to the samples in set A. The study population consisted of 10 positive and 10 
136 negative deer, the population was sex-blind, as no sex information was available. Each sample was put 
137 into 10% neutral buffered formalin and held in formalin until spectral acquisition. They were rinsed with 
138 distilled water for 15 mins before spectral acquisition. To enhance the Raman spectra collected from the 
139 tissue samples, Au nanoparticle solution (20 nm spherical particles at 1 nM PBS buffer, cat. 753610, 
140 Sigma-Aldrich, St. Louis, MO, USA) were sprayed onto the surfaces of the tissue samples, and then the 
141 samples were air-dried. These samples were not paraffin-embedded. Spectral acquisition using a 
142 portable Raman spectrometer (iRaman plus, Metrohm USA Inc., Riverview, FL, USA) was done on the cut 
143 face of the formalin-fixed tissue samples. 

144 All animals investigated in this study, including both the first set and the second set, were screened by 
145 ELISA and confirmed by immunohistochemistry using samples of brain stem at the level of the obex, 
146 retropharyngeal lymph node, and palatine tonsil, for their positive/negative status following the 
147 diagnostic procedures adopted by USDA regulation. The animals were then labelled as either positive or 
148 negative, and the ear notch skin of each animal was then collected as described later for Raman 
149 spectroscopic analysis. The standard screening using immunohistochemistry was 100% accurate for 
150 animals that died from CWD. Both ELISA and immunohistochemistry were conducted with brainstem, 
151 lymph node and/or palatine tonsil, which were acquired from carcasses of animals, they did not work 
152 with skin tissues. 

153 2.2. Data acquisition with Raman micro-spectroscopy and portable i-Raman spectrometer 

154 Raman spectra were collected from each of the Au-slide mounted tissue section samples before/after 
155 de-paraffinization. Paraffin wax used for tissue embedment was also measured with in the same 
156 spectral range using both spectrometers to identify key paraffin peaks. Samples were deparaffinized to 
157 reduce the back-ground interference from the paraffin. The procedure was as follows: 10 min incubation 
158 in Xylene, 10 min incubation in 100% ethanol, 10 min incubation in 95% ethanol, 10 min incubation in 
159 70% ethanol and then 10 min incubation in DI water. 
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160 After deparaffinization, these de-paraffined skin samples (DSS) were subject to data acquisition using 
161 780 nm laser with 14 mW laser power. Aperture is 25 μm pinholes. 20 spectra were acquired from each 
162 sample. Each spectrum was obtained with 20 seconds exposure time and 2 replicates. 

163 The ultimate goal is to develop a rapid-screening method for CWD that can be applied for quick, onsite 
164 interrogation. Hence, a portable Raman spectrometer was also used to directly collect spectral data 
165 from WTD tissue samples. The portable Raman spectrometer used a laser excitation of 785 nm with 340 
166 mW nominal power at the exit of the fiber optical probe. The laser power was adjusted to 10% of the 
167 full power to minimize potential photo damage to the samples. The fiber probe (1.0 m long, with 105 
168 μm core for excitation, and 300 μm core for collection) collects photonic signals through a shaft with 
169 9.42 mm diameter from a large 4 mm diameter measurement area. Spectra were collected 65 and 2800 
170 cm-1, with a spectral resolution at 3.5 cm-1. 10 spectra were acquired from each tissue sample. Each 
171 spectrum was obtained with 5 second integration time and 2 replicates. The small number of spectra 
172 (10) per sample were selected purposedly to mimic situations in practical applications for in-field 
173 screening, where not much time would be available to acquire large numbers of spectra. The short 
174 integration time (5 s) was used to minimize photodamage to the samples, this would be important for 
175 eventually developing an in vivo screening method for live animals.    

176 All spectra collected with both XDR and iRaman systems were automatically corrected for dark current 
177 and background noises (e.g., optical system) with the system software provided by the manufacturers. 
178 Data acquisition was conducted in a dark room to minimize ambient light. The spectra were then 
179 subjected to data preprocessing described below.

180 2.3 Data preprocessing and PCA

181 The data preprocessing was then conducted, including smoothing, polynomial baseline correction, and 
182 normalization. Smoothing was performed with a 10-point moving average; baseline correction was 
183 implemented based on an iterative polynomial fitting32; and normalization was conducted using the 
184 function in the open source “scikit-learn” machine learning library in Python. 

185 After preprocessing, principal component analysis (PCA) was conducted to reduce the dimensionality of 
186 data, increase interpretation, and minimize information loss. PCA has been used in ML-assisted 
187 spectroscopic classification for differentiation of a variety of disease-related tissues, such as normal vs. 
188 malignant mucosal tissues24, parathyroid tissue,25 breast tumor tissues 28, glaucomatous retina29,30, and 
189 brain tissues with Alzheimer disease31, 33. After PCA transformation of the spectral data, classification 
190 models were constructed based on ML algorithms to differentiate disease positive vs. negative samples, 
191 and PCA transformed data were randomly assigned into training and testing groups to evaluate the 
192 classification accuracy. 

193 2.4 ML-assisted classification

194 Classification is a supervised ML process of predicting the class of given data points, namely, negative or 
195 positive for CWD. There are a lot of ML classification algorithms available, including linear and logistic 
196 regression, multi-class classification, decision trees, SVM, and ANN etc. In this study, SVM and ANN were 
197 chosen as the ML algorithms for developing the classification models, and their performance was 
198 compared for the same group of samples. As shown in fig.1, the original spectral data went through pre-
199 processing, and the de-noised data were then subject to PCA-based dimension reduction. The PCA data 
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200 were then fed to either the SVM or the ANN models. These two models were trained independently, 
201 and the classification performance of the two models was then compared.

202

203 Fig. 1. A flowchart of the data analysis process used in the ML-assisted CWD screening 

204 2.4.1 SVM

205 A SVM is a supervised machine learning method used for classification, regression, and outlier detection, 
206 which was first developed by Vapnik and his group at AT&T Bell Laboratories.34 The objective of the SVM 
207 method is to find a hyperplane in an N-dimensional space that distinctly classifies the data points into two 
208 clusters. A good classifier is achieved by the hyperplane that has the largest distance to the nearest 
209 training data points of any class (so-called functional margin), since in general the larger the margin the 
210 lower the generalization error of the classifier. In this study, classifiers are constructed by sklearn.svm.SVC 
211 in Python. Giving training vectors xi ∈  ℝp, i = 1,⋯, n, in two classes, and a vector y ∈ {1, ― 1}n, the goal 
212 is to find ω ∈ ℝp and b ∈ ℝp such that the prediction given by sign (ωTϕ(x) +b) is correct for most 
213 samples. SVC solves the following primal problem:36

214 min
ω,  b,  ζ

1
2

ωTω + C ∑n
i=1 ζi                                  (Equation 1.11)

215 subject to yi ωTϕ(xi) + b ≥ 1 ― ζi,  ζi ≥ 0, i = 1, ⋯, n
216 2.4.2 ANN

217 An ANN is a series of algorithms appropriate for complex classification and pattern recognition problems 
218 in a set of data through a process that mimics the operation of the human brain. The feedforward ANN 
219 was utilized for the data classification in this research, shown in Fig 2. This class of network is composed 
220 of one input layer that receives the vector to be classified, one output layer that presents the classification 
221 results and a set of intermediate layers named hidden layers. In this model, the number of hidden layers 
222 is 8, and the number of neurons in each intermediate layer decreases to half of the previous layer. 
223
224
225 The SVM and ANN classifiers were developed using Python. The code could be downloaded at 
226 https://github.com/juliachu216/Research.
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227 3. Results and discussions

228 3.1 Analysis of Raman spectra collected from the skin samples 

229 Spectra of negative and positive skin samples prior to de-paraffin exhibited five obvious peaks at 1067 
230 cm-1, 1136 cm-1, 1300 cm-1, 1445 cm-1, and 1464 cm-1. However, spectrum of paraffin wax contains ν(CC) 
231 band around 1107 cm-1 and ν(CO) features around 1060 cm-1, CH2 deformation contributes peaks at 
232 1445 cm-1, and 1464 cm-1.37 Thus, the strong background signal of the paraffin wax could interfere with 
233 the spectral signals from the cellular components including PrPSc prions. As shown in Figure 2a, average 
234 spectrum from positive paraffin embedded skin samples cannot be differentiated from that of negative 
235 skin samples by simple visual inspection. To highlight major differences between the two sample groups, 
236 the welch’s t-test using p-value less than 0.01 as a significance level was utilized to identify peaks that 
237 showed significant differences. Only the peaks at the 1420-1450 cm-1 range had significant p-values of 
238 ~0.005, which as mentioned could be due to the paraffin wax and did not reflect any physiological 
239 differences between the two groups. 

240  

241 (a)

242  

243 (b)

244 Figure 2. Average spectra of negative (260 spectra in total) and positive (220 spectra in total) PSS of set 
245 A with p-value of t-test. (a). Before de-paraffin; (b). After de-paraffin. Shaded areas around the average 

Page 7 of 19 Nanoscale Advances

N
an

os
ca

le
A

dv
an

ce
s

A
cc

ep
te

d
M

an
us

cr
ip

t

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

8 
O

ct
ob

er
 2

02
5.

 D
ow

nl
oa

de
d 

on
 1

1/
3/

20
25

 1
2:

06
:3

5 
A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online

DOI: 10.1039/D5NA00252D

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5na00252d


8

246 spectra showed the standard deviation of all the spectra in the group. Peaks labeled in (b) are listed in 
247 table 1.

248 Since paraffin wax seemed to dominate the Raman spectra collected from the tissue section samples, a 
249 de-paraffinization procedure was used to remove the paraffin. Figure 2b showed average spectra of 
250 negative and positive deparaffinized skin samples, which were significantly different from the spectra of 
251 paraffin skin samples. The welch’s t-test was again utilized to analyze the peaks showing significant 
252 differences between the P/N groups. Five peaks were identified at 863 cm-1, 944 cm-1, 1252 cm-1, 1457 
253 cm-1, and 1673 cm-1, none of these peaks belonged to paraffin. The amide I band was identified by the 
254 characteristic peak around 1673 cm−1, which was associated with secondary structure such as β turns,35, 

255 37 and a strong band at 1252 cm−1 in the amide III region was also reported to be related to secondary 
256 (e.g., β-sheet) structure of proteins.35, 37 The band of CH2 and CH3 bending in proteins was observed around 
257 1457 cm−1. The peak at 944 cm-1 was assigned to the C-C skeletal mode of α-helix structure. The bands 
258 associated with tyrosine were observed around 863 cm-1. 26, 35, 37 Changes of these peaks on positive 
259 samples, as listed in table 1, appeared to be correlated to the structural changes of PrPSc prions (e.g., -
260 helices to -sheets) in the skin samples.39

261

262 Table 1. The wavelength, intensity, P-value and assignment of peaks for key Raman bands in 
263 Positive/Negative DSS samples

Raman 
shift

(cm-1)

Peak 
Intensity 

(Negative)

Peak 
Intensity 
(Postive)

P-value Assignments

1 863 0.000743 0.000809 0.000283 Tyrosine

2 944 0.000595 0.000672 0.000655
C-C α-helix in 

proteins

3 1252 0.00135 0.00141 0.000782 Amide III 

4 1457 0.00196 0.00199 0.000874
CH2, CH3 

bending in 
proteins 

5 1673 0.00125 0.00136 0.000581 Amide I 

264

265 When the portable Raman spectrometer was used to test direct spectral acquisition, since the samples 
266 were NOT embedded in paraffin, a de-paraffinization process was not needed. In addition, gold 
267 nanoparticles were sprayed onto the exposed tissue surface, and then air-dried to generate a thin-layer 
268 of Au nanoparticles on the surface to serve as enhancers to the Raman signals, as surface enhanced 
269 Raman spectroscopy (SERS) could lead to 106-107 times of enhancement to spectral signals collected 
270 from nanoparticle-bound cellular samples.40, 41 However, with simply spraying the Au particles onto the 
271 samples, the spectra collected were at best a mixture of SERS features around hotspots, and 
272 spontaneous Raman features. Our reasoning was that even with a limited level of enhancement, it 
273 would still help with the differentiation between CWD positive/negative samples. As shown in Figure 3, 
274 the average spectra for both negative and positive tissues from set B bear great similarities to the 
275 spectra of the de-paraffined samples of set A (shown in fig.2b), indicating the effectiveness of the de-
276 paraffin processed used for the first set of samples. A closer investigation revealed that among the 5 
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277 bands showing significant differences between the negative and positive groups for set A, four bands 
278 (No.1, 3, 4 and 5) also showed significant differences between the negative and positive samples of set 
279 B. Only band no.2 at ~944 cm-1 did not show a significant difference among the two groups, with a p-
280 value of >0.01. In addition, three more peaks exhibited significant differences: peak No. 6 at ~1060-1085 
281 cm-1, peak No.7 at ~1310 cm-1, and peak No. 8 at ~1500-1550 cm-1. All three peaks showed significant 
282 differences with p-values of <0.005. Among these three, Peak No.6 is assigned to C-C skeletal stretching 
283 of lipids, Peak No.7 at ~1310 cm-1 is assigned to C-O stretching of aromatic ester, and Peak No.8 at 1500-
284 1550 cm-1 is assigned to strong N-O stretching. These 7 peaks showing significant differences could 
285 provide the basis for successfully differentiating samples between the CWD positive and negative 
286 groups.

287

288  Fig. 3 Au-enhanced average spectra of negative (150 spectra in total) and positive (150 spectra in total) 
289 tissue samples acquired using a portable Raman spectrometer with p-value of t-test. Shaded areas 
290 around the average spectra showed the standard deviation of all the spectra in the group. Peaks labeled 
291 are listed in table 1.

292 3.2 Classification of the spectral data of samples using SVM and ANN

293 Principal component analysis (PCA) was applied for dimensionality reduction and features extraction for 
294 these two sets of data (post de-paraffinization). It is essential to estimate how many principal components 
295 (PCs) are needed to describe the spectral data. This can be determined by looking at the cumulative 
296 explained variance ratio as a function of the number of components. PCA on the deparaffinized datasets 
297 (DSS) showed that ten PCs were responsible for less than 50% of the total variance, 50 PCs only retained 
298 about 70% of the variance, and 200 PCs accounted for almost 100% of the variance. Dis-crimination 
299 between negative and positive groups still cannot be achieved easily with a simple 2-D projection plot. As 
300 shown in Figure 4a and b, with 1st PC (PC0) and 2nd PC (PC1), no separation of the two groups was visible 
301 for either the microscopic (deparaffinized) or the portable Raman (paraffin embedded block) data sets. 
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302    

303 (a)                                                  (b)

304 Figure 4. Clustering of PC0 and PC1 for negative and positive (a) Deparaffinized skin and (b) paraffin-
305 embedded skin tissue.

306 To classify the deparaffinized spectral data (DSS), 520 spectra were used among which 272 spectra were 
307 from negative samples, and 248 spectra were from positive samples. Then, 75% of all spectra from each 
308 group (204 negative, 186 positive) were randomly selected from the set, and these 390 spectra were 
309 used as the training set for the SVM classifiers. The remaining 25% of the spectra (130 with 68/N and 
310 62/P) were used as a testing set to evaluate the accuracy of the SVM models. 10 repetitions with 
311 separate training/testing sets were conducted to calculate the average accuracy.

312 SVM classifiers were constructed by using 10 PCs, 50 PCs, 200 PCs, and the original deparaffinized 
313 spectra (DSS), respectively. The SVM was implemented with Python, and a grid search was performed 
314 first to find the best SVM for each of the dataset, which are listed in Table 2. For the 10 PCs dataset, a 
315 polynomial kernel (poly) was used, for the other three datasets, a radial basis function (RBF) kernel was 
316 used. 10 replicates (each with re-assigned training/testing sets) were run to calculate the average 
317 accuracy for each dataset. The classifier constructed by 50 PCs yielded the best prediction accuracy, at 
318 0.731.

319 Table 2 Support vector machine results for DSS and PSS

10 PCs 50 PCs 200 PCs Spectral Data
SVM Model 

kernel
poly RBF RBF RBF

SVM Model 
parameters

degree=5, 
coef0=2

C=10, 
gamma=1

C=100, 
gamma=0.1

C=100, 
gamma=0.1

Accuracy, DSS 0.700 0.731 0.692 0.685

Accuracy, PSS 0.662 0.685 0.600 0.585

320

321 In ANN, the same 10 PCs, 50 PCs, 200 PCs, and the original deparaffinized skin spectra (DSS; 1556 
322 variables) datasets were used, and the 75%/25% random split was again used for training/testing sets. 
323 10 repetitions were run and the average prediction accuracies were calculated. The results were 
324 improved accuracy for all four datasets for the DSS (and for the PSS data, Table 3). The classifier with the 
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325 lowest accuracy was the 200 PCs’ model. The 10 PC classifier and the 50 PC classifier both yielded an 
326 accuracy of 0.762, all were better than that of SVM models. 

327 The spectroscopic method was developed to eventually interrogate skins of live animals, so the de-
328 paraffined samples were a better representation of what would be present on a live animal. The 76.2% 
329 classification accuracy, hence, is an indicator for potential diagnostic applications. It should be noted 
330 that micro spectroscopic investigation was more susceptible to localized chemical variations within the 
331 skin biopsy samples, as the spectral acquisition was from a small area (a spot of 10 m X 10 m), which 
332 could further reduce the classification accuracy. For microscopic Raman investigation, to improve the 
333 classification accuracy, either more data are collected from more localities randomly selected from the 
334 tissue surface, or mapping (i.e., Raman imaging) is explored to generate chemical images of the surface, 
335 using Raman peaks identified in table 1, then subject the Raman images to ML-assisted data analysis. 
336 The main drawback of Raman mapping was the long time (2~3 hours) it takes to create an image for 
337 even a small area of 10 mm×10 mm. It is expected that better classification accuracy may be possible 
338 with larger spectral acquisition areas in fiber-optic based portable Raman systems, which would be 
339 more suitable for on-site deployment for in-field CWD screening. 

340 Table 3. Artificial Neural Network results for DSS and PSS 
10 PCs 50 PCs 200 PCs Spectral Data

Accuracy, 
DSS 0.762 0.762 0.723 0.746

Accuracy, 
PSS 0.700 0.723 0.685 0.692

341 Fig.5 showed the receiver operating characteristic (ROC) curves for both the SVM and ANN models. To 
342 compare the ROCs for the best performance, the ROCs shown were for classifiers with 50 PCs. The areas 
343 under the curve (AUCs) were calculated for both SVM and ANN models, with either DSS or PSS samples. 
344 Fig.5a shows the ROC for the SVM classifier for PSS samples, the AUC was 0.679; fig.5b shows the ROC 
345 for the SVM classifier for the DSS samples, and the AUC was 0.731; apparently the classification accuracy 
346 of the SVM model was better for the DSS samples than that of the PSS samples, consistent with the 
347 results reported earlier. Fig.5c and d show the ROCs for the ANN model, with PSS and DSS samples, 
348 respectively. Similar trend as for the SVM model was observed. The classification was more accurate for 
349 the DSS samples (AUC=0.807) than that of the PSS samples (AUC=0.695), further confirmed our 
350 discussion on the effects of the de-paraffining. For the same types of the samples, the AUCs of the ANN 
351 model were also slightly larger than that of the SVM model, suggesting that overall ANN model 
352 performed slightly better than that of the SVM model. Nonetheless, the AUCs for the de-paraffined 
353 samples (DSS) were 0.731 and 0.807 for the SVM and ANN classifiers, respectively, which were both 
354 acceptable as classifiers.

355 In addition, taking a closer look at the ROCs for the DSS samples, when the sensitivity (i.e., the positive 
356 rate) reached 0.8, the specificity for the SVM classifier was 0.6 (i.e., 1-false positive rate), and for the 
357 ANN classifier was 0.74, also suggesting that the ANN model performed better than that of the SVM 
358 model. Similar trend was also observed for the data set no.2, which was the un-paraffined skin tissue 
359 samples. Overall, the ANN classifier worked better than the SVM classifier for our samples, and both 
360 yielded acceptable classification accuracy. 
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361  

362 (a)   SVM for PSS                                                                (b) SVM for DSS

363

364      (c) ANN for PSS                                                         (d)  ANN for DSS

365 Fig.5 ROC curves for the best performing classifiers with 50 PCs (a). SVM for PSS samples; (b). SVM for 
366 DSS samples; (c). ANN for PSS samples; (d).ANN for DSS samples.

367 3.3 Classification of the tissue spectral data of samples from set no.2 using SVM and ANN

368 The dataset for samples in set B had 200 spectra in total, the training set had 150 spectra (75 
369 negative/75 positive), and the testing set had 50 spectra (25 negative/25 positive). As in the case of the 
370 set A samples, the split between training/testing sets was random, and 10 replicates were conducted 
371 with reassignment of training/testing sets for each replicate.   

372 A PCA was conducted for dimensionality reduction and features extraction as well with the set B 
373 spectral data. 50 PCs were responsible for 91.3% of the total variance. Classifiers (SVM and ANN) were 
374 constructed using 10 PCs, 50 PCs, and the original spectral data, respectively. A grid search for SVM 
375 suggested that the radial basis function (RBF) kernel yielded the best classification accuracy for all 
376 datasets.

377 Table 4. SVM and ANN results for FFPE samples

10 PCs 50 PCs Whole spectrum
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SVM Model kernel rbf rbf rbf

SVM Model parameters
C=1000, 

gamma=0.1
C=1000, 

gamma=0.1
C=1000, gamma=0.1

Accuracy, SVM 0.840 0.720 0.720

Accuracy, ANN 0.840 0.880 0.720

378

379 As shown in table 4, SVM classifiers constructed by 10 principal components yielded the best prediction 
380 accuracy, which reached 0.84. 

381 The prediction accuracy of the ANN algorithm also improved in all three datasets for the set B compared 
382 to the DSS data from set A. The classifier with the highest accuracy was with the 50 PCs dataset, which 
383 reached 0.88. 10 PCs’ classifier yielded 0.84 accuracy, and the lowest accuracy was with whole spectral 
384 data, at 0.72. The confusion table for the best performer (accuracy 0.88, 50 PC dataset with ANN) was 
385 shown in table 5. The classification for the CWD positive samples had an average accuracy slightly higher 
386 than that for the negative samples, suggesting the Raman method has the ability to detect CWD positive 
387 samples with the highest accuracy, which is very desirable as missing a negative CWD case is less 
388 troublesome than missing a positive one. 

389 Table 5. Confusion table of average prediction accuracy for the ANN test with 50 PCs

Actual Positive Actual Negative
Predicted Positive 0.91 0.09
Predicted Negative 0.15 0.85

390    

391 With the portable Raman spectrometer, laser spot diameter at the focal plane of the fiber probe was 85 
392 m (comparing to 1-2 m on the Raman microscope used for DSS and PSS samples), with a 
393 measurement area on the tissue sample of 4 mm diameter. Larger laser spot translates into a bigger 
394 sampling area on the tissue sample, which will collect Raman photons from more cells and significantly 
395 reduce the variations due to local compositional differences Thus, the portable Raman spectrometer 
396 system would be more suitable for onsite deployment for in-field CWD screening. 

397 In addition, the application of surface enhancement via Au nanoparticles could have increased the signal 
398 intensity collected from the tissue samples and contributed to the increase of the classification accuracy. 
399 The approach developed involves easy spraying of Au nanoparticle solution onto the skin tissue sample, 
400 which can be readily applied to live animal testing. In this scenario, the skin underneath the ear (where 
401 there is not much hair) of a sedated live animal will be shaved to expose the skin, and the Au 
402 nanoparticle solution will then be sprayed onto it. Once the surface dries up, spectral acquisition can be 
403 conducted. It is expected that the whole process should take less than 30 minutes for an animal, and a 
404 field worker can be easily trained to undertake the task. As mentioned earlier, this simple approach does 
405 not assure acquisition of SERS signals, rather it is most likely that a mixed spectrum of SERS and 
406 spontaneous Raman will be obtained. However, as shown in this study, these spectral data contained 
407 enough information to allow a rapid yet relatively accurate differentiation of the CWD positives from the 
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408 CWD negatives. Until now, there is no method that can offer a fast screening for CWD in live animals. 
409 ELISA, PMCA and similar molecular tests can provide accurate CWD diagnosis, but these methods 
410 interrogate samples obtained from the brain stem or the lymph nodes of the animal, which usually are 
411 collected from an animal that was already dead. Nano-QuIC22 was reported to have the potential of 
412 analyzing samples collected from live animal, but even with its “2.5X reduced” time comparing to 
413 regular RT-QuIC, the Nano-QuIC test still took 4.1 hours to yield a result.22 In comparison, Raman-based 
414 test can be done within 10 minutes. The only test that has been tested in field for live animals was the 
415 rectal mucosa biopsy sampling test (RMBST), which requires a biopsy sample to be taken from the rectal 
416 mucosa, a quite invasive procedure comparing to the foreseen approach with the Raman screening. 
417 Besides, the accuracy of the RMBST was dependent on the stage of the disease, it was reported at only 
418 36% for early CWD cases.8 The Raman approach demonstrated here compared favorably to the RMBST, 
419 although more validation is certainly needed, and in vivo testing is the natural next step.

420 What would also be helpful is to further explore the powers of deep learning. The simple ANN reported 
421 in this study offered reasonable classification accuracy. The simple ANN and SVM we used in this study 
422 were designed for homogeneous data sets (i.e., Raman spectral data). With deep learning and more 
423 advanced algorithms, it would be possible to pool heterogeneous data sets together, for example, 
424 imaging data showing motion postures of the animal in question, metabolic panel for the animal in 
425 question, etc., can be used alongside with Raman spectral data to train a ML-powered classification 
426 model to achieve better prediction accuracy. 

427 The portable Raman spectrometer costs at ~$15,000 in the current market, the amount of Au 
428 nanoparticles used for each test is less than $1. The Raman screening could be quite cost effective for 
429 deer farmers who need to conduct screening for their herds, on a year-round basis. This approach, once 
430 fully developed, could add a powerful tool to the battle against CWD. 

431 4. Conclusions

432 In this study, two Raman spectrometer systems, A Thermo XTR Raman micro spectrometer, and a 
433 Matrohm i-Raman plus portable Raman spectrometer, were utilized to compare CWD-positive skin 
434 tissues to CWD-negative samples of white-tail deer. After spectral collection, support vector machine 
435 (SVM) and artificial neural network (ANN) classifiers were generated based on PCs calculated from the 
436 spectral data sets to classify the spectra kept in testing sets into positive/negative groups. Data collected 
437 with a Raman microscope from deparaffinized skin tissue samples (DSS) yielded a 76.2% classification 
438 accuracy with the ANN model, which was the highest among the results obtained for the DSS samples. In 
439 comparison, the discrimination of paraffined skin tissues (PSS) using Raman microspectroscopic data 
440 was not as good, suggesting for microscopic spectral acquisition, the presence of paraffin would 
441 interfere with the signals from the actual biological samples to complicate the differentiation and 
442 classification. In addition, the microscopic spectra data were more susceptible to intra-tissue variations 
443 due to spot-to-spot differences. A spectral acquisition technique with larger sampling area was expected 
444 to generate better classification accuracy by minimizing intra-tissue variations, which was confirmed 
445 with the portable Raman spectrometer. The portable Raman spectrometer smoothed over intra-tissue 
446 variants due to a bigger laser spot diameter at focal plane. In addition, Au nanoparticles were utilized to 
447 generate surface enhanced Raman scattering (SERS) to further improve the spectral signals. By this 
448 approach, an artificial neural network (ANN) generated the best classification accuracy at 88%. These 
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449 results suggest that Raman spectroscopic screening potentially can offer a rapid, and quite accurate 
450 screening of CWD in skin biopsies for onsite identification of diseased animals.

451

452 Data Availability Statement: The code for the SVM and ANN classifiers developed in this project could be 
453 downloaded at https://github.com/juliachu216/Research.
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