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lidation of prediction models for
the controlled syntheses of exfoliated nanosheets†

Yuka Kitamura,a Yuki Namiuchi,b Hiroaki Imai, a Yasuhiko Igarashi *b

and Yuya Oaki *a

Exfoliated nanosheets have attracted considerable interest as two-dimensional (2D) building blocks. In

general, the yield, size, and size distribution of the exfoliated nanosheets cannot be easily controlled or

predicted because of the complexity in the processes. Our group studied the prediction models of the

yield, size, and size distribution based on the small experimental data available. Sparse modeling for small

data (SpM-S) combining machine learning (ML) and chemical insight was used for the construction of

predictors. In SpM-S, the weight diagram visualizing the significance of explanatory variables plays an

important role in variable selection to construct the models. However, the processes of variable

selection were not validated in a data-scientific manner. In the present work, the significance of data

size, visualization method, and chemical insight for variable selection was studied to validate the

processes of model construction. The data size had a lower limit to extract appropriate descriptors. The

weight diagram had an appropriate visualizing range for variable selection. Chemical insight as domain

knowledge supplemented the limitation caused by the data size. These studies indicated that SpM-S can

be applied to construct predictors, straightforward linear regression models, for the controlled syntheses

of other 2D materials, even based on small data.
1. Introduction

Liquid-phase exfoliation is a general method used to obtain 2D
materials, including monolayers and few-layers.1–9 Various
precursor layered materials can be exfoliated into nanosheets.
However, the exfoliation behavior cannot be easily controlled
because of the complex and random downsizing processes in
both the lateral and thickness directions. For example, the
yield, size, and size distribution of the exfoliated nanosheets are
not easily controlled by specic parameters based only on
professional experience. In recent years, data-scientic
approaches have been applied to the eld of 2D materials for
their design, synthesis, and characterization.10–14 Our group has
focused on the construction of prediction models to control the
yield, size, and size distribution of surface-modied nanosheets
exfoliated from precursor layered composites (Fig. 1a–c).4,10,15–18

The precursor layered composites are typically synthesized by
the intercalation of the guest organic molecules in the interlayer
space of host layered transition-metal oxides (Fig. 1a). The
surface-modied nanosheets are then obtained through
Fig. 1 Overview of the small-data-driven exfoliation experiments. (a)
Precursor layered composites of inorganic hosts and organic guests
and their exfoliation in organic dispersion media. (b) Yield (y1), lateral
size (y2), and size distribution (y3) of the surface-functionalized
nanosheets. (c) Explanatory variables (xn) and objective variables (y: y1,
y2, y3). (d) Small datasets and their contents. (e and f) Variable selection
using ES-LiR (e) and our chemical insight (f) as ML and domain
knowledge, respectively, for the construction of predictors.
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exfoliation by the dispersion of the layered composites in
organic dispersion media (Fig. 1b). Although the exfoliation
behavior could be changed by varying the combinations of the
host, guest, and medium, their effects on the yield, size, and
size distribution of the nanosheets were unclear. In recent
years, prediction models for the control of these parameters
have been constructed by combining machine learning and our
chemical insight on small experimental data.4,10,15–18 Moreover,
controlled syntheses have been achieved using the predictors in
a limited number of experiments. However, the model
construction processes have not yet been fully studied in a data-
scientic manner. If the model construction processes could be
validated, then similar predictors could be constructed by SpM-
S for various other 2D materials.

Data-driven approaches have been used in a broad range of
chemistry and materials science areas.19–27 For instance, the
combination of big data, machine learning (ML), and a robotic
system has been studied to develop fully automated AI
chemists.28–32 These AI-oriented methods are supported by the
availability of a sufficient size of data for the ML. However,
a sufficient size of data is not always available for all experimental
systems. For example, big data is not efficiently collected from
conventional experimental works including batch processes.
Specic methods are thus required to apply ML to small data.

ML for small data has been increasingly studied in recent
years.33–45 Specic approaches, such as transfer learning, have
been developed for the use of small data.33–45 However, the
interpretability and generalizability are lower for modeling based
on complex modeling algorithms. Recent reports have indicated
the signicance of domain knowledge and the use of simple
regressionmodels.43–45Our group has focused on sparsemodeling
(SpM), a method for describing whole high-dimensional data by
a small number of signicant descriptors.46–48 SpM has already
been applied in a variety of elds, such as image compression and
materials science.15–18,49–54 We have studied SpM for small data
(SpM-S) combining ML and domain knowledge.10,45 The method
was applied to controlled the synthesis of nanosheets and the
exploration of electrode active materials based on small
data.15–18,51–54 In SpM-S, the descriptors are extracted from a small
training dataset using a ML algorithm, and an exhaustive search
with linear regression (ES-LiR), as mentioned later (Fig. 1c–e).
Then, the descriptors are further selected based on our domain
knowledge as chemists (Fig. 1f). A straightforward linear regres-
sion model is then constructed using the selected descriptors. In
our previous work,45 the prediction results of SpM-S combining
linear regression and our chemical insight were compared with
those obtained from other linear and nonlinear algorithms, such
as least absolute shrinkage and selection operate (LASSO) and
neural network regression (NN-R), in terms of the accuracy,
interpretability, and generalizability, especially for small data.
Although nonlinear algorithms, such as NN-R, generally exhibit
high expressive power, they tend to overt small chemical
experimental datasets because of the insufficient generaliz-
ability.45 However, the processes remain unclear with problems
persisting regarding the variable selection, one of the signicant
steps for modeling (problems (i)–(iii) in Fig. 1d–f) regarding the
required data size (problem (i)), visualization method of the
© 2025 The Author(s). Published by the Royal Society of Chemistry
weight diagram (problem (ii)), and the signicance of domain
knowledge (problem (iii)). The present study aimed to solve these
problems to improve the understanding of SpM-S. The results
indicated that similar predictors could be constructed by SpM-S
based on small experimental data for various other 2D materials.
2. Results and discussion
2.1. Prediction models for exfoliated nanosheets

The prediction models of the yield, size, and size distribution
were constructed using the small training datasets I–III in our
previous works, respectively (Fig. 1 and Tables S1–S3 in the
ESI†).16–18,45 The objective variables (y) were the yield (y1), lateral
size (y2), and lateral-size distribution (y3) of the nanosheets
(Fig. 1a and b). The yield (y1 = 100 × W/W0) was calculated from
the weight of the collected nanosheets with the ltration (W) and
that of the precursor layered materials (W0).16 The average lateral
size (Lave) and its standard deviation (Lsd) were measured by
dynamic light scattering as for a high-throughput method. The
lateral size (y2 = RL) is dened as its reduction rate RL = Lave/L0,17

where L0 is the lateral size of the precursor layered materials. The
size distribution (y3 = LCV), polydispersity, is represented by the
coefficient of variation about the lateral size (LCV = Lsd/Lave).18

The explanatory variables (xn: n = 1–41), such as the physi-
cochemical parameters of the guests and media, were the
related physicochemical parameters selected by our chemical
insights (Table 1). In the total 41xn, the selected xn were used as
the potential descriptors for y1–y3. The datasets contained the
following numbers of y and xn (Table 1): 30y1 and 11xn (n = 2, 4,
5, 8, 10, 14, 16–18, 36, 40) (dataset I), 48y2 and 18xn (n = 1, 3–5,
14–21, 30–32, 34, 36, 40) (dataset II), 54y3 and 15xn (n = 4, 8, 10,
13, 14, 16–18, 21, 30–32, 36, 40, 41) (dataset III) (Fig. 1c and d).
In our previous works, the descriptors were extracted from xn by
SpM using ES-LiR (Fig. 1d and e). Then, the descriptors were
further selected with the assistance of our chemical insights
(Fig. 1e and f). The linear regression models eqn (1)–(3) were
constructed using the selected two to eight xn.16–18

y1 = 35.00x3 − 32.33x5 + 34.07 (1)

y2 = −0.159x3 − 0.096x4 + 0.257x7 − 0.017x8 − 0.018x10
+ 0.028x13 − 0.050x14 + 0.061x18 + 0.267 (2)

y3 = −0.0599x7 + 0.0802x9 + 0.0699x20 − 0.0681x28
− 0.0623x37 + 0.266 (3)

As the coefficients are converted to the normalized frequency
distribution with mean 0 and standard deviation 1 for the
variables in each model, the weight of the contribution is rep-
resented by the coefficients. In the present work, the processes
of the variable selection were studied to validate the models
themselves and their construction processes.
2.2. Effects of the data size on the extraction of the
descriptors

The extractability of the descriptors generally depends on the
data size. In the present work, the descriptors were extracted
Nanoscale Adv., 2025, 7, 4620–4627 | 4621
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Table 1 List of xn (n = 1–41) for y1, y2, and y3 (ref. 45)

n Parameters xn for

Dispersion media
1 Molecular weight y1, y2, y3
2 Molecular lengthb y1
3 Melting pointa y1, y2, y3
4 Boiling pointa y1, y2, y3
5 Densitya y1, y2, y3
6 Relative permittivitya y1, y2, y3
7 Vapor pressurea y1, y2, y3
8 Viscositya y1, y2, y3
9 Refractive indexa y1, y2, y3
10 Surface tensiona y1, y2, y3
11 Heat capacityb y1, y2, y3
12 Entropyb y1, y2, y3
13 Enthalpyb y1, y2, y3
14 Dipole momentb y1, y2, y3
15 Polarizabilityb y1, y2, y3
16 HSP-dispersionb y1, y2, y3
17 HSP-polarityb y1, y2, y3
18 HSP-hydrogen bondingb y1, y2, y3

Guest molecules
19 Molecular weight y1, y2, y3
20 Polarizabilityb y1, y2, y3
21 Dipole momentb y1, y2, y3
22 Heat capacityb y1, y2, y3
23 Entropyb y1, y2, y3
24 Enthalpyb y1, y2, y3
25 Molecular lengthb y1
26 Layer distancec y1, y2, y3
27 Layer distance expansionc y3
28 Composition (x)c y1, y2
29 Interlayer densityc y1, y2
30 HSP-dispersion termsb y1, y2, y3
31 HSP-polarity termsb y1, y2, y3
32 HSP-hydrogen bonding termsb y1, y2, y3

Guest-medium combinations
33 D polarizability (=x15 − x20)

b y3
34 D polarizability (=jx33j)b y1, y2, y3
35 D dipole moment (=x14 − x21)

b y3
36 D dipole moment (=jx35j)b y1, y2, y3
37 Product of dipole moment

(=x14 × x21)
b

y3

38 D heat capacity (=x11 − x22)
b y3

39 D heat capacity (=jx38j)b y1, y2, y3
40 HSP distanceb y1, y2, y3

Host
41 Bulk sizec y3
a Literature data. b Calculation data. c Experimental data.
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with reducing the data size in datasets I–III to study whether the
data size was sufficient for the extraction of the descriptors
(Fig. 2). The detailed procedure is described in the ESI.† The
number of y (N) was decreased step-by-step (Fig. 2a and Tables
S1–S3 in the ESI†). For example, the original 30y1 was reduced to
25y1 with the random subtraction of ve y1. Then, reduced
datasets with 20y1 were prepared with a further subtraction of
5y1. The ve subtracting data items were randomly selected and
4622 | Nanoscale Adv., 2025, 7, 4620–4627
six different datasets were prepared at each N. In this manner,
reduced datasets were prepared for each of y1, y2, and y3.

The extractability of the descriptors was then studied using
the reduced datasets. Weight diagrams were prepared by ES-
LiR. Linear regression models were prepared by all the
possible combinations of xn (n = 1, 2, ., j), i.e., total 2j − 1
combinations, on each dataset with ve-fold cross-validation
(Fig. 2b). As pointed out, Hastie et al. suggested “ten-fold
cross-validation achieves an acceptable trade-off between bias
and variance,”55 and this has since become standard practice.56

However, both 5- and 10-fold cross-validation are generally
recognized as appropriate choices due to their superior stability
compared to leave-one-out cross-validation (LOOCV). Despite
its theoretical appeal, LOOCV exhibits high variance in perfor-
mance estimates and is thus less reliable for model selection.57

In our study, ve-fold cross-validation was used in terms of its
computational efficiency and as standard practice. Aer the
models were sorted in ascending order of cross-validation error
(CVE), i.e., CVE ranking, the values of the coefficients for each
regression model were visualized in the weight diagram
(Fig. 2c). Conventional ML algorithms require tuning the
hyperparameters to optimize the models.58,59 Whereas, as ES-
LiR just prepares all the possible linear regression models,
the modeling method has no hyperparameters to be tuned
compared with other ML algorithms. The contribution of each
xn was color-coded by the magnitude of the coefficients with
their positive and negative values. The more deeply colored xn
with warmer and cooler colors have potential as more signi-
cantly contributed descriptors with the positive and negative
correlations, respectively. The more densely colored xn corre-
spond to the more frequently used descriptors, implying
a signicant contribution to y. Weight diagrams were prepared
for all the reduced datasets (Fig. S1–S3 in the ESI†). Based on
the weight diagrams, we extracted xn as the descriptors with
reference to the deepness and density of the color (Fig. 2c and
d). Here xn in the already constructed models eqn (1)–(3) were
assumed to be the true ones (Fig. 2e). If the visually extracted xn
from the weight diagram was found in the already constructed
models, the extracted xn here could be regarded as the correct
ones. In contrast, the extracted xn that were not found in the
constructed models were regarded as incorrect ones (Fig. 2d
and e). Aer the weight diagrams were prepared for the six
different reduced datasets at each data size (N) (Fig. S1 in the
ESI†), the numbers of correctly and incorrectly extracted xn (nc
and ni, respectively) were counted and are summarized in
Fig. 2f–h. The mean and standard deviation of nc and ni were
calculated for the six different datasets.

When N was reduced, nc decreased and ni increased (Fig. 2f–
h). Here the threshold N to extract the correct descriptors (Nmin)
is dened as follows: the average ni is less than two and nc is
more than 80% of the true nc before the data reduction. The
threshold data size to extract the correct xn, Nmin, was 20 for y1
(the original data size: N0 = 30), 45 for y2 (N0 = 48), and 45 for y3
(N0 = 54) (red-colored areas in Fig. 2f–h). These results indicate
that the correct xn can be extracted from the weight diagrams
based on datasets with Nmin < N. Nmin can be regarded as the
minimum required data size to extract the correct descriptors
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 2 Effect of data size on variable selection. (a) Reduction of the data size, the number of y (N). (b) Scheme of ES-LiR. (c) Weight diagram
visually representing the contribution of each xn. (d) Extraction of xn from the weight diagrams with reducing N as shown in panels (a–c). (e)
Counting nc and ni based on comparison of the extracted xn with that in the already constructed predictors in our previous works as the correct
models. (f–h) Summary of nc and ni with reducing N for y1 (f), y2 (g), and y3 (h).
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from the weight diagram. As Nmin < N0 was achieved for y1, y2,
and y3, the original datasets already had a sufficient data size for
the model construction. Therefore, the generalizable xn could
be extracted from the weight diagrams even based on the small
dataset at Nmin < N. These results support the prediction models
for the yield, size, and lateral size, and so eqn (1)–(3) were
constructed with a sufficient size of data. Moreover, this data-
reduction method can be applied to validate the sufficiency of
the data size for the variable selection in small data.

2.3. Visualization method of weight diagrams

As discussed in Section 2.1, in SpM-S, the coefficients of xn are
visualized in the weight diagram based on the CVE values
(Fig. 3a–c). In contrast, the other ML algorithms for SpM, such
as LASSO and minimax concave penalty and penalized linear
unbiased selection (MCP), only focus on a certain model with
the smallest CVE values. Such algorithms raise concerns about
the false extraction of descriptors, particularly in small data. ES-
LiR visualizes a large number of models using the weight
diagram in the ascending order of the CVE values. However, the
preparation method of the weight diagram is somewhat arbi-
trary; in particular, the visualizing range of the CVE rank in the
© 2025 The Author(s). Published by the Royal Society of Chemistry
horizontal axis is arbitrary (Fig. 3b and c). If the appearance of
the weight diagram is changed depending on the visualizing
range, then different xn can be extracted. Here the range dis-
playing CVE rank in the horizontal axis was changed to study
the effects on the appearance of the weight diagram for
extractability of the descriptors (Fig. 3b and c).

The relationship between the CVE rank and CVE value was
determined to visualize the increasing trend of the CVE value
(Fig. 3b). Then, the weight diagrams were prepared within the
different CVE ranks as the thresholds (Fig. 3c). The CVE values
gradually increased with lowering the rank and then jumped
near the bottom (Fig. 3d, h and l). As the datasets contained 11,
18, and 15xn for y1, y2, and y3, respectively, the total number of
exhaustively constructed models (2j − 1 combinations) was 2.0
× 103 for y1, 2.6 × 105 for y2, and 3.3 × 104 for y3. Whereas the
correct xn (n = 18, 40) were clearly visible in the weight diagram
within the CVE rank 1.0 × 102 for y1 (Fig. 3e), the weight
diagrams became unclear in the ranks 1.0 × 103 and 2.0 × 103

(Fig. 3f and g). The correct xn (n = 18, 40) could not be extracted
from these unclear weight diagrams. Clear weight diagrams
were observed in the ranks 1.0 × 104 for y2 and 1.0 × 103 for y3
(Fig. 3i, j and m). The visibility was lowered in the weight
Nanoscale Adv., 2025, 7, 4620–4627 | 4623
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Fig. 3 Visualizationmethod of weight diagrams. (a) All possible linear regressionmodels, 2n− 1 patterns, sorted in an ascending order of the CVE
rank. (b) Relationship between the CVE rank and value. (c) Preparation of the weight diagrams with the different threshold of the CVE rank. (d, h
and l) Relationship between the CVE rank and values for y1 (d), y2 (h), y3 (l). (e–g) Weight diagrams of y1 within the top CVE rank 1.0× 102 (e), 1.0×
103 (f), and 2.0× 103 (g). (i–k) Weight diagrams of y2 within the top CVE rank 1.0× 103 (i), 1.0× 104 (j), and 2.6× 105 (k). (m–o) Weight diagrams of
y3 within the top CVE rank 1.0 × 103 (m), 1.0 × 104 (n), and 3.3 × 104 (o).
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diagrams in the CVE ranks lower than 1.0 × 105 for y2 and 1.0 ×

104 for y3 (Fig. 3k, n and o).
Based on these results, it could be seen that the visibility of

the weight diagrams and extractability of the descriptors were
changed by the range of the CVE rank. The weight diagrams
within the CVE ranks about the top 10%, namely 102 for y1, 10

4

for y2, and 103 for y3, allowed a clear extraction of the descrip-
tors. The CVE ranks achieving one standard error rule were
calculated to be 2.3 × 102 for y1, 4.6 × 104 for y2 and 2.0 × 103

for y3. In the present work, the top 10% of the CVE rank was
coincident with one standard error rule. Here, one standard
error rule was used to estimate the range of the CVE ranks for
visualization. The scheme means that all models having a CVE
within one standard deviation of the minimum CVE were
considered, resulting in the selection of approximately the top
10% of the CVE rankings. However, this coincide was not
necessary. In general, the one standard error rule is used to
optimize the regularization parameter (l) in ML.60 When
a larger penalty term is set, the one standard error rule is used to
optimize l instead of the minimum CVE value. These facts
imply that a similar scheme can be applied to estimate the
threshold for distinctly increasing the CVE by one standard
error rule. In contrast, the visibility becomes unclear when the
range was expanded to the CVE rank over the top 50%. Whereas
4624 | Nanoscale Adv., 2025, 7, 4620–4627
the correct descriptors could be extracted from the clear weight
diagram, the unclear weight diagram caused an extraction of
the wrong descriptors and an oversight of the correct ones. As
clear weight diagrams with the top 10% rank were used in our
previous works,16–18 appropriate descriptors were extracted for
the construction of the models in eqn (1)–(3).

2.4. Effects of the domain knowledge on the variable
selection

As demonstrated in Sections 2.1 and 2.2, the appearance of the
weight diagrams, such as the color density and intensity, easily
varied by the data size and noise resulting from the small data.
Therefore, our chemical insight as experimental scientists was
used for the further selection and rejection of the descriptors in
addition to the weight diagrams. Such domain knowledge
facilitates robust modeling based on small data. As a reference,
here an exhaustive search with Bayesian model averaging (ES-
BMA) was used to extract the descriptors without the assis-
tance of our domain knowledge. The variable selection using
ES-BMA was then compared with that using ES-LiR combined
with our domain knowledge.

In ES-BMA, the probability of a descriptor (p) being the
signicant descriptor was 0.5 for all xn at the initial state
(Fig. 4a). The descriptors were not extracted because p = 0.5.
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4 Variable selection using ES-BMA. (a) Probability (p) before ES-BMA. (b) BMA based on small data. (c) p after ES-BMA. (d) p of each xn for y1
(d), y2 (e), y3 (f) after ES-BMA.
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The probability p of each xn was calculated using the prediction
accuracy and coefficient of the 2n − 1 models prepared by ES-
LiR (Fig. 4b and c). In ES-BMA, we consider the uncertainty
for all 2n combinations of variables and introduce a method for
quantitatively evaluating the condence level of variable selec-
tion using a weighted average of the model posterior probabil-
ities, which is called Bayesian model averaging (BMA)
(Fig. 4b).61 This method enables evaluating the condence level
of the variable selection and quantifying the importance eval-
uation of the features, whereas the processes quantitatively
depend on the visibility of the weight diagram for ES-LiR.
Furthermore, this approach quantitatively assesses the plausi-
bility of the descriptors under the assumption of uniform prior
knowledge without relying on the expertise of chemists. The
summation over all combinations of indicator vectors can be
calculated using the result of the exhaustive search, which is
called ES-BMA.61

Fig. 4d–f shows the p of each xn. The descriptors for y1 and y2
were not extracted from the probability of each xn because p was
almost 0.5 (Fig. 4d and e). On the other hand, x10, x13, x21, x32,
x36, x40, and x41 for y3 showed p > 0.5 (Fig. 4f). Four descriptors
x10, x21, x32, and x41 of ve correct xn in eqn (3) were extractable
by the p value based on ES-BMA. These results imply that the
data size was insufficient to extract the true descriptors only
using ES-BMA without the domain knowledge. The combina-
tion of ES-LiR and domain knowledge facilitated the extraction
of the descriptors. In SpM-S, the domain knowledge contributed
to being able to extract the descriptors and construct the
models.

In SpM-S, professional experience and chemical insights, as
domain knowledge, are mainly used in the processes of variable
selection based on the weight diagram. Although the weight
diagram indicated the strong contribution of certain variables,
some variables were not used as the descriptors for modeling
© 2025 The Author(s). Published by the Royal Society of Chemistry
based on our chemical insight. For example, this scheme
provides a more accurate prediction model for the specic
capacity of organic anode active materials of lithium-ion
batteries.53 On the other hand, some chemically signicant
descriptors were not extractable only from the weight diagram.
In such a case, the descriptors were manually added for the
model. For example, the yield predictionmodel was constructed
by this scheme.16 However, it is not easy to quantify the physical
signicance, not just the correlation, of the variables based on
chemical insights. In ES-BMA, such physical meaning is repre-
sented by the probability value (p). However, p is not estimated
from the small data, as shown in Fig. 4d and e. The develop-
ment of a new quantitative method is required to extract and
select the more signicant descriptors quantitatively.
2.5. Advantages of SpM-S compared with other algorithms

In linear regression models, ES-LiR contributes to providing
accurate models using weight diagrams compared with other
algorithms, such as LASSO with variable selection and multiple
linear regression (MLR) without variable selection. In ES-LiR,
linear regression models are exhaustively prepared using all
the possible combinations of xn. The potential models are
selected based on weight diagrams visualizing the contribution
of each coefficient. As MLR-based models include the irrelevant
xn, there may be an overtting that causes a lowering of the
prediction accuracy and generalizability. In the present study,
the variable selection problem involved a relatively small
number of variables. It is feasible to arduously search all the
possible combinations and directly identify the optimal
model.47 As other algorithms with variable selection construct
specic models with certain CVE values based on approxima-
tions, the appropriate variables may not be extracted particu-
larly in noisy and small training data. In our previous
works,45,52,53 prediction models were constructed by LASSO to
Nanoscale Adv., 2025, 7, 4620–4627 | 4625
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compare the prediction accuracy, which was calculated by ve-
fold CVE. The models using LASSO generally showed larger
RMSE values to the test data compared with those using SpM-S,
even though smaller RMSE values were achieved from some
training data. The other modeling techniques use certain
approximations to reduce the calculation cost. On the other
hand, ES-LiR is applicable to small data at a realistic calculation
cost. More accurate descriptors can be selected with our
chemical insights from all the possible regression models.

The accuracy, generalizability, and interpretability of the
sparse linear models based on small data were compared with
those of other nonlinear algorithms in our previous works.45

The results imply that nonlinear models have concerns about
overtraining linked to the training data and a lowering of the
generalizability, particularly in the case of small data. In such
a case, linear models are preferable to describe the whole trend
of the data. We recognize the importance of frameworks, such
as sure independent screening and sparsifying operator
(SISSO),62 which integrates sure independent screening (SIS)
with LASSO-based variable selection to efficiently manage ultra-
high-dimensional descriptor spaces. However, in our current
study, the dimensionality of the descriptor space was limited to
several tens of dimensions, enabling an exhaustive search
approach rather than requiring dimensionality reduction using
SIS. Furthermore, as demonstrated in a recent work,63 a Monte
Carlo-based approximate exhaustive search method could be
employed for moderately high-dimensional scenarios. Our
ongoing research efforts are directed toward integrating SIS and
exhaustive search strategies to enhance the descriptor selection
efficiency and effectiveness, particularly in high-dimensional
and correlated descriptor spaces.

3. Conclusions

Linear regression prediction models for the yield, size, and size
distribution of exfoliated nanosheets were constructed by SpM-
S combining ES-LiR and domain knowledge on small data. The
present work validated the model construction method and
process, such as the signicance of the data size, visualization
method, and use of chemical insights for the variable selection.
Weight diagrams were constructed that visualized the signi-
cance of the variables by color. Then, the signicant descriptors
were selected with the assistance of our chemical insight. The
appearance of the weight diagram was changed with reducing
the data size. The data size had a specic lower limit to extract
the same appropriate descriptors. This method can be widely
applied to validate whether the data size is sufficient or not.
Whereas conventional ML algorithms with variable selection
focus on a certain model with the minimum CVE value, the
weight diagram of ES-LiR overviews a large number of models in
ascending order of the CVE values. The visualization range of
the CVE values had an effect on the appearance of the weight
diagram leading to the extraction of the descriptors. A clear
weight diagram suitable for the variable selection was obtained
within about top 10% of the CVE rank, which was consistent
with the one standard error rule. When the variables were
selected using the probability of ES-BMA without the assistance
4626 | Nanoscale Adv., 2025, 7, 4620–4627
of our domain knowledge, the descriptors could not be extrac-
ted only from the probability value. The fact implies that the
domain knowledge could be effectively used for the variable
selection to supplement the deciency of data. The present
study supports the validity of the prediction models for the
yield, size, and size distribution of exfoliated nanosheets re-
ported in our previous works. Moreover, SpM-S combining ES-
LiR and chemical insight is a suitable method for small data
in a variety of elds. In the present work, the models were
constructed based on the data about the exfoliation of layered
inorganic–organic composites into surface-modied nano-
sheets, as shown in Fig. 1a and b. The yield prediction model
has also been applied to the exfoliation of other layered
compounds, such as graphite and layered organic polymers.64

As the chemical features of the layer surface and dispersion
media are used as the descriptors, the models can be applied to
other types of the layered materials.
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