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This study aimed to analyze the application of Gaussian Process Regression (GPR) modeling to improve the
accuracy of degradation response predictions in wastewater treatment. Three crucial factors, i.e., catalyst
(CFA-ZnF), oxidant (H,O,), and pollutant (MB) concentration, were selected to evaluate their impact on
the response variable (degradation) using the GPR model. The range of factors was 5-15 mg/100 mL for
CFA-ZnF, 5-15 mM for H,O,, and 5-15 ppm for MB concentration. The GPR model predicted the
pairwise correlations of CFA-ZnF (0.4499, p = 0.0465) and H,O, (0.4543, p = 0.0442) with degradation,
which are moderately positive, while MB showed a weak negative correlation (—0.1686, p = 0.4774).
Partial correlations also indicated strong positive correlations with degradation for CFA-ZnF (0.5143, p =
0.0290) and H,0O, (0.5180, p = 0.0277). The superiority of the GPR model was validated by comparing
the Gaussian Process Regression Mean (RPAE value) of 0.92689 with the Polynomial Regression Mean
(RPAE value of 2.2947). Besides, the simultaneous interpretation of the effects of the three predictors on
the response variable was enabled using the GPR model, which is impossible when interpreting the
polynomial regression model. Therefore, the GPR offers superior modeling, deeper insights, and reliable
predictions, proving it to be a more sustainable and effective method for pollutant degradation in
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1 Introduction

The application of nanomaterials in photocatalysis has been
studied extensively owing to their particle size and remarkable
photo-driven response.”™ The potential of various semi-
conductor materials as efficient photocatalysts has been
exploited in wastewater treatment.®”® The limitations associated
with pristine semiconductor metal oxides can be overcome by
compositing with value-added materials like coal fly ash (CFA).*
Various researchers have exploited the potential of CFA in
wastewater treatment."* Several researchers also exploited the
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wastewater treatment than polynomial modeling.

sunlight-driven response of pristine semiconductor photo-
catalysts when compositing with CFA.”>** CFA is a residual
material left after coal combustion with a high content of
alumina silicates and other metal oxides, serving as an excellent
material to be used in compositing with other semiconductor
metal oxides in various fields of energy and environments.™
Therefore, this is also recommended as a sustainable approach
to waste management.

Artificial intelligence (AI) has recently enriched the field of
environmental sciences, including wastewater treatment, owing
to its ability to improve process efficiency, parameter optimi-
zation, and prediction of treatment outcomes. In the optimi-
zation and prediction of wastewater treatment, several machine
learning tools are usually employed, including Artificial Neural
Networks (ANN),*”* Decision Trees (DTs),"* Random Forests
(RFs),"” and Support Vector Machines (SVMs).*® Deep learning
algorithms have improved the precision of data analysis,
enabling real-time monitoring and adaptive control of treat-
ment processes.'” For example, Al-driven hybrid models inte-
grated with ML and computational fluid dynamics (CFD) have
been promising models for optimizing electrochemical and
photocatalytic treatment processes.”” These also provide
sustainable approaches to wastewater management and reduce
energy and chemical consumption during pollutant removal.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Al-driven tools like extreme gradient boosting (XGBoost) are
powerful algorithms with improved predictive accuracy by
reducing bias and variance in complex data sets.”* K-Nearest
neighbors (KNN) help classify water quality data by analyzing
the pollutant concentration patterns based on previous data-
sets.”” Recurrent neural networks (RNNs) are effective for time-
series prediction in wastewater monitoring. This helps with
real-time monitoring of treatment efficiency. Long short-term
memory networks (LSTMs) are a type of RNN and ideal for the
long-term prediction of wastewater treatment trends.*
Although these tools are capable of handling multidimensional
data, the Gaussian Process Regression (GPR) model is supe-
rior.** Numerous systematic reviews of Gaussian process
regression (GPR) have demonstrated its capability to model
interval prediction and handle missing and abnormal data
effectively.” Additionally, GPR has been found to possess the
capacity to address challenges associated with high-
dimensional and small-sample problems.*** GPR provides
a probabilistic and non-parametric approach to capture non-
linear and complex relationships with quantified uncertainty
in prediction.”** The application of GPR modeling in photo-
catalytic degradation studies is of significant advantage over
traditional polynomial regression modeling.** Polynomial
models are often constrained by their parametric nature and
can be complex when interpreting non-linear relationships
among various predictors. GPR modeling, on the other hand,
provides a non-parametric, non-linear approach that can
handle multidimensional datasets. The flexibility of GPR in
capturing the complex interactions among predictors provides
robust and accurate predictions with better reliability than the
polynomial model.>"*?

This research highlights the importance of GPR modeling
in data predictions using several simulations and correlation
methods with polynomial modeling. This research delivers
a comprehensive understanding of the factors influencing
degradation by analyzing the simultaneous interaction of the
catalyst, oxidizing agent, and dye concentration. Predicting
consumer-defined responses ensures that the outcomes are
tailored to real-world applications, enhancing the practical
relevance of the study. Furthermore, extensive simulations
using Monte Carlo modeling provide robust statistical vali-
dation, highlighting the reliability and accuracy of the
predictive models. Together, these elements underscore the
significance of this work in advancing the field of wastewater
treatment through sophisticated machine-learning
approaches. Various machine learning tools have been
employed in GPR modeling, including linear and partial
correlations, partial dependence plots (PDPs), and 3D illus-
trations of comparative analysis of degradation predictions.
This study involves running 100 unique simulations to assess
the performance and reliability of the GPR model. In addition,
the study also highlights the importance of Shapley values and
feature importance metrics in interpreting the model predic-
tions and analyzing the important contributing factors in
degradation performance. The optimization segment lever-
ages these insights to predict the optimal conditions of all
factors, providing practical implications for all findings.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Therefore, GPR offers superior modeling, deeper insights, and
reliable predictions, proving it to be a more sustainable and
effective method for pollutant degradation in wastewater
treatment. The novelty of the proposed research lies in inte-
grating GPR with Monte Carlo simulations to improve
predictive accuracy in wastewater treatment modeling. This is
a more reliable and data-driven optimization approach than
conventional statistical and machine learning methods.

2 Methodology
2.1 Fabrication of influencing factor X (CFA-ZnF)

The facile hydrothermal approach was accessed for the fabri-
cation of a CFA-ZnF composite (CFA-ZnFe,0, (1:1)). Step 1:1:
2 molar ratios (0.01:0.02) of Zn(NO;),-6H,0 and Fe(NO;);-
-9H,0 were mixed in 50 mL of distilled water. After mixing CFA
(1.2 g) was added, followed by the dropwise addition of 50 mL of
8 M NaOH under constant stirring. The reaction was magneti-
cally stirred for 1 h at 80 °C. The precursors were transferred
into a Teflon-lined stainless steel autoclave reactor (250 mL)
and placed in a heating oven for 24 h at 110 °C. After cooling,
the obtained magnetic precursors were washed with distilled
water and ethanol to remove impurities until neutralized. The
magnetic CFA-ZnF was air dried at 70 °C.

2.2 Characterization

The CFA chemical composition was evaluated using X-ray
fluorescence (XRF) spectroscopy. The chemical bonding and
availability of surface functional groups in CFA-ZnF were
analyzed using Fourier Transformed Infrared (FTIR) spectros-
copy (PerkinElmer: spectrum 100: range 500-4000 cm ™ ‘). The
crystal phase analysis of CFA-ZnF was performed using an X-ray
diffractometer (XRD, Rigaku) coupled with a CuKa (1 =
0.154056 nm) radiation source at an operating voltage of 45 kv
and a current of 40 mM. The XRD data were used to determine
the crystallite size using the Debye-Scherrer equation. The
morphology of the composite catalyst was determined using
near-surface elemental analysis using a scanning electron
microscope (SEM JSM-7000 F, ACCEL VOLT 15.0) equipped with
energy-dispersive X-rays (EDX). To check the light response of
the prepared catalysts, their energy band gaps were determined
using a UV-UV-visible spectrophotometer (CECIL CE 7200). The
magnetic characteristics of the composite introduced by the
addition of ZnF were evaluated using a vibrating sample
magnetometer (VSM) through an M-H curve under a 25 kOe
applied magnetic field.

2.3 Conduction of the experiment (set-up details)

The photocatalytic dye degradation was performed under UV-
254 nm in a digital chamber (ZamZam Micro Technologies
ZM144W) with 8 UV lamps, each with a power of 18 W. The light
intensity of the UV lamps was evaluated using a digital radi-
ometer (UVX; UVP Analytic Jena) with a 254 nm probe. Methy-
lene blue (MB: as a model pollutant: Factor Y) with a specific
amount of CFA-ZnF was sonicated for a few seconds to attain
good dispersion, followed by the addition of an oxidizing agent

Nanoscale Adv., 2025, 7, 4436-4449 | 4437
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Table 1 Design of experiment generated by RSM

Factor 1 Factor 2 Factor 3 Response 1
X: CFA-ZnF Y: Z: Degradation

Run (mgL™) H,0, (mM) MB (ppm) (%)

1 15 15 15 80.978
2 18.41 10 10 78.75
3 10 10 18.41 75.98
4 1.59 10 10 43.78
5 10 10 10 97.32
6 15 5 15 73.69
7 5 5 15 40.98
8 15 5 5 78.46
9 10 18.41 10 78.78
10 15 15 5 85.89
11 10 10 10 94.98
12 5 5 5 45.87
13 5 15 15 73.98
14 10 10 10 93.89
15 10 10 10 90.34
16 5 15 5 78.98
17 10 10 10 96.65
18 10 10 10 96.76
19 10 1.59 10 43.98
20 10 10 1.59 95.09

(H,O,: Factor Z). Then, the reaction mixture was placed in a UV
chamber for 60 minutes. The details of the experiment are given
in our previous publication.' The design of the experiment was
modulated using Design Expert-7 software, which used central
composite design (CCD) under response surface methodology
(RSM), with the range of the data set given in S-Table 1 (ESI).}
The actual design generated by the software is given in Table 1,
and the response is generated by experimentation.

2.4 Machine learning

2.4.1 Geometrical representation. Geometric representa-
tion in data analysis and machine learning refers to visualizing
data points in a geometrical space. Geometrical representation
helps in understanding the relationships and patterns within
the data. Fig. 1 shows the geometrical representation of the data
set. The heatmap given at the right side of the figure helps in
presenting the degradation response through visually mapping
reaction parameter interaction using solar gradients, which
helps in trend identification and optimization. Here, the rela-
tionship between the predictors (X: CFA-ZnF, Y: H,0,, and Z:
MB) and response variable is given in the form of 3D
(Fig. 1a)(interaction of all 3 predictors) and 2D (Fig. 1a-d)
(interaction in terms of XY, YZ, and ZX) relationships. The 3D
plot of predictors highlights where specific degradation values
are prominent, indicating the regions in the predictor space
associated with higher or lower degradation (presented by color
variations). Meanwhile, in the 2D representation (i.e., XY, YZ,
and ZX plane projections), the plots represent the relationship
of 2 predictors while keeping the third predictor at a certain
constant value. It facilitates determining the dependency of 2
predictors in degradation response.
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3 Results and discussion

3.1 Characterization

XRF analysis confirms the F-type of CFA with the Al,O; + SiO, +
Fe,0; cumulative composition greater than 70%. The success-
ful insertion of ZnF into CFA has been confirmed by XRD
analysis as the composite catalyst showed characteristic peaks
of ZnF (JCPDS 002-4496) including the characteristic peaks of
CFA (ie., quartz (Q) and mullite (M)). The Debye-Scherrer
equation was used for the calculation of crystallite size, which
was found to be 29.43 nm for CFA-ZnF. The identification of
surface functional groups in CFA-ZnF by FTIR showed
a stretching vibrational mode of Fe-O around ~621 cm ™. The
peaks at ~820 cm-820 cm ™' and ~970 cm™ " are attributed to
the stretching and bending vibrational modes of Al-O and Si-O
bonds, respectively. The comprehensive details of all the peaks
present in the FTIR spectra of CFA-ZnF are discussed else-
where. Considering the result of surface morphological analysis
via SEM, the irregularity in the composite structure has been
observed due to the insertion of CFA into pristine ZnF NPs. This
amorphous structure modification is responsible for better
adsorption followed by effective photocatalytic degradation of
pollutant molecules. The high roughness in the catalyst surface
provides better fractional dimensions, resulting in improved
interaction between the adsorbent and adsorbate. The EDX
results confirmed the presence of essential elemental compo-
nents in CFA-ZnF, including C, O, Al, Si, Zn, Fe, and Ca. The
characterization results can be found in the ESI document
(Fig. S-5)1 as well as in previously published work*

The magnetic response of CFA-ZnF is confirmed by VSM
analysis with a saturation magnetization (M) value of 4.18005 +
0.04901 emu g~ * for CFA-ZnF. A considerable reduction in the
M, value has been observed after the addition of CFA into ZnF
(i.e., from 34.01834 + 0.24815 emu g ' for ZnF to 4.18005 =+
0.04901 emu g~ ' for CFA-ZnF). This is ascribed to the fact that
the CFA contains only ~15 wt% magnetic constituents. When
an equal amount of CFA is added into ZnF. The elemental
composition of CFA-ZnF was evaluated using XPS analysis. The
results clearly showed a high-intensity C 1s peak attributed to
the existence of CFA. Other characteristic peaks corresponding
to ZnF were also successfully detected.

The optical response of CFA-ZnF was studied using UV-Vis
spectroscopic analysis. The UV-Vis scan data of CFA-ZnF were
used to compute the energy bandgap (Ey) using the Tauc plot
method. The E, of CFA-ZnF was 3.10 €V, suggesting the better
response of the composite catalyst under UV irradiations.
Therefore, UV-254 nm lamps were used for the estimation of
photocatalytic response by CFA-ZnF. The results of all the above
characterization analyses with further details are presented in
our previous publication.

3.2 Linear and partial correlations

The linear and partial correlations help understand how the
predictors alone and collectively influence the degradation
process (i.e., response variable). The given p-value represents
the statistical importance of correlations where a p-value less

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig.1 Geometrical representation of the model, 3D plot of all predictors colored by degradation (a), XY plane projection (b), XZ plane projection

(c), YZ plane projection (d).

than 0.05 indicates a significant relationship. Fig. 2 illustrates
the heatmap of pairwise correlation between all three predic-
tors, i.e., (CFA-ZnF X, H,0, Y, and MB Z). The heatmap shows
that correlation values range from —1 to 1. A perfect positive
correlation has been observed with the predictors (yellow area
with a value of 1). This showed that all predictors X, Y, and Z
showed a significant influence (individually) on the response
variable. No correlations between CFA/ZnF and H,0,, CFA/ZnF
and MB, and H,0, and MB have been observed. Similarly, the
pairwise and partial correlations of the predictors are presented
in Fig. 2 (right side). The pairwise correlation of CFA-ZnF and
H,0, with degradation was found to be 0.4499 (p = 0.0465) and

Pairwise Correlations between Predictors

CFAZnF

H202

CFAZnF

H202 MB

0.4543 (p = 0.0442), reflecting a moderate positive correlation.
Meanwhile, the pairwise correlation of MB with degradation is
—0.1686 (p = 0.4774), indicating a weak negative correlation. A
similar trend of partial correlation with degradation was
observed; for example, CFA-ZnF and H,O, present a strong
positive correlation with degradation (when controlling another
predictor) with the values of 0.5143 (p = 0.0290) and 0.5180 (p =
0.0277), respectively. A weak negative partial correlation of MB
(—0.2192, p = 0.3821) with degradation was observed.

Hence, CFA-ZnF and H,0, showed a moderate pairwise
correlation with degradation when considered individually
while MB exerted a slightly negative effect. The positive partial

Correlation Analysis for Degradation

0.4499 0.4543 .
Pairwise Correlation
p=0.0465  p=0.0442 ’
0.5143 05180
Partial Correlation
p=0.0290  p=0.0277
CFAZnF H202 MB

Fig. 2 Correlation analysis: pairwise correlations within predictors (left panel). Pairwise and partial correlations of predictors with degradation

(right panel).
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correlation of CFA-ZnF and H,0, with degradation, while
considering the impact of other predictors, indicates that these
two variables independently contribute towards the degrada-
tion process. Meanwhile, MB exerts no significant effect on
degradation, which is advantageous in terms of pollutant
concentration. This suggests that the dose or concentration of
MB is not a significant factor that contributes towards degra-
dation processes up to a certain limit.

3.3 Machine learning model and response surface
methodology

Fig. 3 presents a comparative analysis of two model perfor-
mances, i.e., between the polynomial model and Gaussian
Process Regression (GPR) over 100 simulations (Monte Carlo
simulation). Monte Carlo simulation serves as a robust statis-
tical tool that enhances the reliability of our predictive model by
repeatedly sampling the input space (100 simulations in our
case). Monte Carlo methods help to generate a probabilistic
distribution of performance metrics (e.g., R-squared, RPAE, and
failure rates), thereby offering insights into the variability and
risk associated with predictions. The approach allows us to
assess the stability and robustness of the Gaussian Process
Regression (GPR) model under different experimental condi-
tions, which is crucial for optimizing the treatment process.
Repeated simulations help validate that the GPR model's
superior performance over traditional polynomial regression is
consistent, reinforcing the practical reliability of the model in
complex, multidimensional datasets such as those encountered
in wastewater treatment. Wan and colleagues® developed
a water quality prediction model for papermaking wastewater
treatment by combining Gaussian Process Regression with deep
learning methods.** Monte Carlo simulation was employed to
quantify model uncertainties and enhance prediction

View Article Online
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robustness. Li and coworkers® utilized Bayesian neural
networks in material property prediction, incorporating Monte
Carlo methods for uncertainty quantification. Their approach
underscores how Monte Carlo sampling can be effectively
coupled with machine learning to manage the intrinsic uncer-
tainties in complex datasets.

The performance metrics include R-squared, RPAE (Relative
Prediction Absolute Error), and failures. The coefficient of
determination (i.e., R-square) determines the percentage of
variance in the dependent variable, which is predictable from
the independent variable. The blue circle presents the perfor-
mance of the polynomial model, whereas the red crosses
represent the performance of the GPR model. As reflected, the
R?values in the GPR model are consistently higher than those of
the polynomial model across most simulations (Fig. 3a). The
GPR model demonstrates stable and higher R values present-
ing the ability of the model to explain a larger proportion of
variance in data as compared to the polynomial model. The
relative prediction absolute error (RPAE) measures the predic-
tion error relative to the actual value. In the polynomial model,
the RPAE values vary significantly with relatively higher errors
compared to the GPR model, which has relatively accurate
predictions compared to the polynomial model over many
simulations (Fig. 3b). The GPR model consistently achieves
lower RPAE values, highlighting its superior prediction accu-
racy. Failures in the model present how many times the model
prediction errors exceed its threshold limit. As depicted, the
GPR model consistently showed fewer failures than the poly-
nomial model across simulations (Fig. 3c). It represents the
higher reliability of the GPR model with less chance of signifi-
cant prediction errors.

The consistent performance improvements of the GPR
model over the polynomial model across different metrics

=
o

o
e

o
[}

—o— Polynomial

Mean R-sauared

N
o

40 50 60 70 80

Mean RPAE

'

Failures

No. of simulations

Fig. 3 Model performance comparison: R-squared values, RPAE and no. of failures for polynomial and GPR models over 100 simulations.
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validate the effectiveness and robustness of the GPR approach.
This makes GPR more suitable for modelling and predicting
complex data patterns, especially where accuracy and reliability
are critical.

Fig. 4 displays the prediction of degradation analysis by the
GPR model in four distinct plots. The scatter plot represents the
measured degradation values (red circles) and predicted
degradation values (blue circles) for several indices. The better
agreement of both values suggests the proficiency of the GPR
model in predicting the underlying data pattern, demonstrating
extremely high accuracy in prediction (Fig. 4a). Fig. 4b repre-
sents the regression line between predicted and measured
values. The figure proposes the model's reliability and high
precision. The red regression line follows the close diagonal
with a strong linear relationship. Similarly, narrow confidence
bounds further highlight the model's consistency. The Relative
Absolute Percentage Error (RPAE) for the individual index is
presented in the Fig. 4c plot. On average, the RAPE values
remain low with narrow fluctuation, highlighting the model's
prediction accuracy. The RAPE histogram with frequency
distribution (Fig. 4d) showed most of the values near 0-1%. The
high data concentration point indicates that most of the
predictions are accurate with only a few instances showing high
errors.

On average, these plots present the GPR model's superior
performance in predicting degradation. The alignment between

Measured vs. Predicted Degradation (GPR)
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measured and predicted values, the strong linear relationship,
and the low and concentrated RPAE values all demonstrate the
model's high accuracy, precision, and reliability. Therefore, the
GPR model proves to be a highly effective and robust tool for
predicting degradation, standing out as a superior choice to
other models.

Fig. 5 illustrates the assessment of polynomial model
performance in predicting the response variable (degradation).
In the figure, the measured values are denoted with red dots,
and predicted degradation values are represented by blue dots.
The proximity between the measured and predicted values is
evident from the graph. However, some discrepancies suggest
room for improvement in model prediction. While comparing
the results of the GPR model of predicted and measured values,
in the GPR model, the variation is even smaller, ensuring the
better performance of the model in predicting the degradation
results. The plot of the regression line between measured and
predicted degradation suggests that, as compared to the GPR
model, the polynomial model shows less ‘fit’ and ‘confidence
bounds’ with a comparatively high prediction uncertainty
range. By examining the RAPE plot, the polynomial model
exhibits varying percentage errors around several indices with
different points of relatively high errors. In the GPR model,
consistently low percentage errors with minor spikes predict
better uniformity and small prediction errors. This trend is
strengthened by the frequency plot of relatively absolute

Regression Line between Measured and Predicted Degradation (GPR)
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Fig. 4 GPR model performance: (a) scatter plot of measured vs. predicted degradation. (b) Regression line between measured and predicted

degradation. (c) Line plot of RPAE. (d) Frequency histogram of RPAE.
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Regression Line between Measured and Predicted Degradation (Polynomial)
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percentage error, where the broad spread of RAPE values is
present in a polynomial model with considerable high-
frequency error. Meanwhile, the frequency distribution of the
GPR model is intense at the lower end of the RAPE scale, sug-
gesting the relatively low prediction error in most of its matrices
and smaller instances of high errors.

The comparison of the polynomial and the GPR model
suggests that the GPR model constantly outperforms the poly-
nomial model in terms of model reliability, error consistency,
and prediction error. The relative proximity of measured vs.
predicted values, tighter clustering around the regression line,
and fewer and uniform errors in the GPR model suggest its
superior performance over the polynomial model. Similarly,
narrow confidence bounds confirm the reliability of the GPR
model. These findings endorse the high accuracy and suitability
of the GPR model in predicting degradation, making it a highly
recommended approach for precise and reliable predictions.

The Gaussian Process Regression (GPR) approach models an
unknown function as a Gaussian process defined by a mean and
a covariance (kernel) function, implying that any finite collec-
tion of function values follows a joint Gaussian distribution.**
This assumption underpins the model's ability to quantify
uncertainty in predictions, making it especially attractive for
applications such as wastewater treatment, where decision-
making benefits from probabilistic estimates. However, GPR
assumes that the noise in the data is independently and iden-
tically distributed and follows a Gaussian distribution, which
may not hold true when the data contain extreme values or
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outliers; such deviations can lead to biased predictions and
misestimated uncertainties. Moreover, while GPR excels in
capturing non-linear relationships, its performance can deteri-
orate in high-dimensional settings—a challenge often referred
to as the “curse of dimensionality”—where the kernel may
struggle to encapsulate the complex structure of the data
without additional dimensionality reduction or regularization
techniques.” These limitations highlight the need for careful
data preprocessing and model validation, ensuring that the
assumptions inherent in GPR are reasonably met, especially in
environmental applications where data variability is
common.>**

Gaussian Process Regression (GPR) is a non-parametric
Bayesian approach that models complex, nonlinear relation-
ships by placing a probability distribution over possible func-
tions that can explain the observed data, thus providing point
estimates and associated uncertainty measures. This probabi-
listic framework is particularly valuable in applications like
wastewater treatment, where understanding the uncertainty in
predictions can guide risk assessment and process optimiza-
tion.*® Using kernel functions, GPR captures the similarity
between data points and flexibly models intricate interactions
among multiple predictors without assuming a fixed functional
form. This inherent flexibility makes GPR especially effective
when working with limited or noisy datasets, as it can adapt to
the complexity of the data while mitigating overfitting issues.*
Furthermore, the built-in hyperparameter optimization process
fine-tunes parameters that govern the kernel's behavior,
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enhancing both the fit's accuracy and the reliability of uncer-
tainty estimates.*® This is crucial when predictions must be
validated through Monte Carlo simulations, demonstrating that
GPR consistently outperforms traditional methods like poly-
nomial regression by providing more robust predictions and
detailed confidence intervals.”?>** Additional studies have rein-
forced GPR's efficacy in complex environmental systems; for
example, research by Hvala and Kocijan®* highlighted its capa-
bility in a hybrid mechanistic/GPR model for predicting
wastewater treatment plant effluent, underscoring the method's
practical relevance in real-world applications. These attri-
butes—the ability to model nonlinearity, quantify uncertainty,
and optimize hyperparameters—underscore why GPR is an
indispensable tool in advanced predictive modeling, particu-
larly in fields that demand high reliability and detailed risk
assessment (Fig. 6).
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3.3.1 Linear regression model. Degradation ~1 + §;-
CFAZnNF + $,H,0, + 3;MB + §,CFAZnF> + 35H,0,> + ScMB? +
B-,CFAZnF x H,0, +¢

Here

e 34, Bo, B3, B4, O5, Bs, and B are coefficients of variables

e ¢ is the error term

3.3. 2Estimated coefficients.

Term Estimate SE tStat p-Value
(Intercept) —67.309 6.2527 —10.765  1.6061 x 10~
CFAZnF 13.789 0.68111 20.244  1.2103 x 10 *°
H,0, 13.776 0.68111 20.225 1.2237 x 10~ 1°
MB 1.5778  0.57105 2.763  0.017183
CFAZnF_sq —0.4599  0.027655 —16.63 1.1882 x 107°
H,0,_sq —0.45827 0.027655 —16.571  1.2377 x 10°°
MB_sq —0.11675  0.027655 —4.2218  0.001185
CFAZnF _H,0, —0.25696 0.037124  —6.9217 1.6013 x 10>

Algorithm 1 Gaussian Process Regression with Hyperparameter Optimization

1: Input: Training data X = Error! Bookmark not defined. target values Y = {y;}]-, test

data X, = {x*}?z*l, initial hyperparameters 6

2: Output: Mean prediction f;, prediction variance Var(f,), log marginal likelihood logp(y|X).

3: Step 1: Optimize hyperparameters 6 = {l;, o7, 0, } by minimizing the negative log marginal

likelihood:
0 pe=ars Min_log, (v1X,6) 2
4: Step 2: Compute the ARD squared exponential kernel matrix K:
D d _ ,d\2 3
K = k(xi,xj) = a}%exp(—%z %)
d=1
5: Step 3: Add noise variance to the diagonal of the kernel matrix:
K=K+ a2l 4
6: Step 4: Perform Cholesky decomposition of the kernel matrix:
L = chol(K) 5
7: Step S: Solve for a:
a=LT(L)\y 6
8: Step 6: Compute the mean of the posterior:
fe =Kla 7
9: Step 7: Solve for v:
v =L\K, 8
10: Step 8: Compute the variance of the posterior:
Var(f,) = K,, —vTv 9
11: Step 9: Compute the log marginal likelihood:
10

1 n
n
logpG/I1X) = == yTa— Z loglyi = log2m
i=1

12: Return: Mean prediction f,, prediction variance Var(f.), log marginal likelihood

logp(y[X).
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Fig. 6 A stepwise schematic for Gaussian process regression with ARD kernel and hyperparameter optimization.

3.3.3 Model summary. ¢ Number of observations: 20

e Error degrees of freedom: 12

e Root mean squared error: 2.63

e R-Squared: 0.988

o Adjusted R-squared: 0.981

e F-Statistic vs. constant model: 141

e p-Value: 1.45 x 107 '°

The table shows the results of regression analysis. The esti-
mated coefficient represents the change in the independent
variable for a one-unit change in the predictor, keeping the rest of
the predictors constant. For example, the coefficient for CFAZnF
is 13.789, which means that a one-unit increase in the value of
CFAZnPF results in a 13.789-unit increase in the response variable,
i.e., degradation efficiency, by keeping all other factors constant.
The standard error (SE) suggests precision in the estimation of
the estimate coefficient, as SE is relatively quite small. The value
of tStat for CFAZnF is quite large (ie., 20.244), presenting
potential impact on dependent variables. Similarly, the signifi-
cance of the model term CFAZnF is also evident from the p-value,
i.e., extremely small (1.2103 x 10~ '°).

3.4 Partial dependence plots (PDPs)

Fig. 7 presents the PDPs and heatmaps for CFA-ZnF, H,0,, and
MB. Here, the marginal effect of individual features on
percentage degradation is analyzed. The plots in Fig. 7a present
a partial dependence on a single feature. These graphs show the
marginal effect of individual features on the model's prediction.
For features CFA-ZnF and H,0,, a non-linear relationship has
been observed after the optimum achievement of response.
Both these features positively affect the response value up to
a specific limit, after which a decrease in response is observed.
This defines the optimum concentration of CFA-ZnF and H,0,,
where the maximum influence of both factors effectively
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achieves the best result for degradation values. Above the
optimum point, the effectiveness weakens due to the saturation
effect, leading to a decrease in the response variable. The
decrease in response variable above the certainly optimized
point is also attributed to the overlapping of catalyst active
surfaces, causing the agglomeration of nanoparticles and
resulting in low dye degradation. Considering the impact of MB
on degradation, the negative impact is above a specific value. At
low MB levels, the degradation is maximum and starts to
decrease above the optimized concentration. This suggests that
the high MB dosage (above a certain limit) is unsuitable for
achieving a high response value. Therefore, managing the
concentration of MB is crucial to avoid its adverse impact on
treatment efficiency.

The 3D surface plots in Fig. 7b illustrate the pairwise inter-
action between features. For example, the interaction of CFA-ZnF
and H,0, is complex with a nuanced prediction pattern as
compared to the facile prediction when considered individually.
Similarly, other interactions of CFA-ZnF and MB, MB, and H,0,
highlight the area of antagonism and synergy, which is important
in understanding the mutual influence on the response variable.

The heat maps presented in Fig. 7c provide a more intuitive
presentation of mutual effects. Here, the combined effect of two
features on degradation is presented using a color gradient,
with warmer colors representing high degradation values. From
this presentation, the most useful and most effective feature
combination can be selected, aiding in model optimization and
feature engineering strategy.

3.5 Comparative analysis of degradation prediction in 3D
models

Fig. 8 illustrates the efficiency of the GPR model for a system
consisting of three variables and their cumulative impact on
degradation values. This model is not achievable by a polynomial

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 7 Visualizations depicting the partial dependence of CFAZF, H,O,, and MB on model predictions, showing individual (a) and interaction

effects through 2D and 3D plot (b), 3D plot top view (c).

model where the three-factor response can be studied simulta-
neously. The 3D plot of predictors colored by degradation in Fig. 8a
presents the color-coded degradation for clarity. The successive
plots present a series of 3D interpretations, each consisting of

different quadrants that present the predicted degradation distri-
bution across spatial parameters. The color gradient in 3D plots
represents varying levels of dye degradation from blue to yellow.
On average, the core of the individual quadrant shows the highest

3-D Plot of Predi Colored by Deg 3-DI lation (First Quadrant) 3-D I lation (Second Quadrant)
(b) (©)

95
20

@

=
85
80

5
H202 CFAZnF

Degradation

( d) 3-D Color Interpolation with GPR

15
10 15
5 10

5
H202 CFAZnF H202

(f) 3-D1 lation (Fourth Q )

15

10

2
CFAZnF H202 CFAZnF

Fig. 8 Degradation 3-D presentation with respect to predictors: (a) 3-D geometric representation of data. 3-D heat maps of degradation in four
quadrants are shown (b, c, e and f). (d) 3-D full view of the heat map of degradation.
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degradation value. The consistent gradient and smooth transition
in the first (Fig. 8b), second (Fig. 8c), third (Fig. 8e), and fourth
quadrants (Fig. 8f) suggest the strong capability of the GPR model
in capturing the underlined data accurately. To further illustrate
the predicted degradation along the entire parameter space in
a comprehensive way, 3D color interpolation with GPR is provided,
which shows the model's robustness in predicting response. The
spherical representation provides a well-distributed interpretation,
providing the GPR model's ability to generalize data well across the
different regions. This is in stark contrast to polynomial models,
which often struggle with overfitting and underfitting in complex,
multi-dimensional spaces. The GPR's ability to present complex
relationships more effectively than the polynomial model makes
this model a more suitable choice for this type of application study,
with more precise and reliable predictions crucial for control and
optimization. The GPR model demonstrates superior interpolation
and prediction accuracy compared to polynomial models, high-
lighting its robustness in modeling complex degradation patterns.

3.6 Shapley values

The Shapley values provide visualization of 20 different query
points, which helps in understanding the role of every feature in
the model's prediction in particular instances. The Shapley bar
chart presents the influence of each feature on the prediction

Query Point 1 Query Point 2

Query Point 3
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for each query point (Fig. 9). Positive Shapley values suggest
a high prediction of features and negative values suggest a lower
impact. For example, in query point 1, CFA-ZnF and H,O,
positively contribute towards the prediction, while MB has
a negative effect. Similarly, in query point 2, H,O, has a negative
impact, reducing prediction. The diverse Shapley values across
20 query points showed the relationship of each feature at
a particular instance. This diversity of the model indicates the
reliability and context dependency of each feature. For example,
in query points 6 and 8, CFA-ZnF exhibits a consistently high
positive Shapley value, presenting its significant contribution in
these cases. The chart also helps in predicting the interactions
among all features. For example, in query point 11, CFA-ZnF
and H,0, possess high Shapley values, predicting their positive
synergistic effect at a certain level. Contrarily, in query point 3,
MB exhibits a high negative Shapley value at specific positive
values of CFA-ZnF and H,0,. Similarly, other query points can
be addressed. On average, in most of the query points, CFA-ZnF
showed a positive contribution, indicating that it plays a key
role in the degradation process. Moreover, CFA-ZnF offers
a diverse condition range, suggesting its effectiveness in
degradation. Meanwhile, H,0, offers both the positive and
negative Shapley values around different query points, indi-
cating its dual role in the degradation process. This also
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Percentage Contribution of Each Predictor Based on Shapley Values
MB

11.68%

Fig. 10 Pie chart showing the percentage contribution of CFAZF
(44.06%), HOQ2 (44.26%), and MB (11.68%) to the model's predictions
for degradation.

suggests that its effectiveness may also depend on the interac-
tion and concentration with another component. The high
negative values in specific query points are attributed to the
inhibitory effect of H,0, under certain conditions, which has
been verified practically. Considering the MB Shapley values, its
negative role across many query points suggests that it may
negatively impact the degradation study under certain condi-
tions. The negative role of MB in most of the prediction results
is attributed to the fact that the degradation process may not be
very effective when MB concentration varies too much.
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However, under optimized experimental conditions (including
that of MB), 98% degradation can be achieved.

3.7 Feature importance

The importance of Shapley values is further supported by the
pie chart representation (Fig. 10). The pie chart presents a rela-
tively clear picture of the importance of individual features
based on Shapley values. The graph presents the highest and
almost equal contribution of CFA-ZnF and H,0, (CFAZnF:
44.06% and H,0,: 44.26%) in the model's prediction. There-
fore, both these features can be considered as the driving
features in the model's output. The substantial influence of
these two features suggests that the model highly relies on CFA-
ZnF and H,O0, to realize accurate predictions. Meanwhile, MB
offers a significantly smaller contribution as compared to the
other two features. This suggests that although MB affects the
model's prediction, its role is less critical as compared to CFA-
ZnF and H,0,. The percentage variations also suggest that
almost equal contributions of both CFA-ZnF and H,0, are
required in predicting the degradation response, while MB has
a more specialized role (i.e., high dependency on concentra-
tion). Considering the relative contribution of individual
features can help in scheming a better, efficient, and cost-
effective treatment process.

3.8 Optimization

Fig. 11 represents the #D illustration of the relationship
between predictors (i.e., CFA-ZnF, H,0,, and MB) and response
(i.e., degradation). The blue-to-yellow color scale presents the

3D Plot of Predictors with Degradation

6 8 10 1
CFAZnF

170

H202
14 16 18

Fig. 11 3D heat coloring map of degradation with respect to CFA-ZnF, H,O,, and MB. Maximum degradation is at the red dot.
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degradation values from lower to higher, respectively. The data
point represents the combined effect of these predictors on
degradation with the specification of degradation values deno-
ted by a specific color. The numbering of data points is the
specific experimental condition with the color gradient repre-
senting the degradation level. The red dot represents the point
of maximum degradation at the optimized level of predictors
and the point close to red (i.e., yellow) represents high levels of
degradation. The central point 5 with a green color represents
a medium degradation value proposing the mid-range for all
three predictors on average degradation. The data point with
light blue surfaces illustrates the interactions among predictors
and it helps in understanding the impact of change in the
concentration of one predictor on another predictor while
keeping the other predictor constant. The contour lines help
analyze the gradient and transition of degradation values across
various combinations. This plot aids in categorizing the
optimum conditions of all predictors in achieving maximum
degradation. By carefully analyzing the color shift region
towards yellow, the researchers can find out the best combi-
nation of all predictors. It also helps in validating the predictive
models. The model is suitable for designing the customer-
defined response values as the model accuracy is confirmed
by the perfect alignment of experimental data with that of
predicted surfaces.

4 Conclusion

This research underscores the pivotal role of advanced machine
learning techniques in optimizing wastewater treatment
degradation processes using a CFA-ZnF composite catalyst. By
analyzing the simultaneous interaction of three key predic-
tors—catalyst type, oxidizing agent, and dye concentration—
this study provides a nuanced understanding of their combined
effects on degradation efficiency. The Gaussian Process
Regression (GPR) model demonstrates superior performance in
capturing intricate, non-linear relationships. The consumer-
defined response prediction ensures that the developed
models are highly applicable to real-world scenarios, enhancing
practical utility. Additionally, 100 Monte Carlo simulations
bolster the statistical robustness of the findings, offering
a comprehensive validation framework and elucidating the
variability and uncertainty associated with the predictors. This
approach allowed for exploring various reaction conditions,
providing a more comprehensive understanding of the degra-
dation process. Tailored reaction conditions were identified,
maximizing degradation efficiency by leveraging the predictive
power of the GPR model. This consumer-defined approach
ensures theoretical robustness and practical relevance, offering
valuable insights for real-world applications in wastewater
treatment. Overall, this study advances the field by demon-
strating the efficacy of sophisticated machine learning meth-
odologies in optimizing and predicting degradation outcomes,
holding substantial promise for developing more efficient,
reliable, and consumer-responsive wastewater treatment
processes. The integration of GPR modeling, consumer-defined
response prediction, and Monte Carlo simulations offers

4448 | Nanoscale Adv.,, 2025, 7, 4436-4449

View Article Online

Paper

a powerful framework for addressing complex environmental
challenges, contributing to sustainable wastewater manage-
ment. These findings pave the way for future research and
practical applications in environmental management and
sustainability, highlighting the potential of advanced machine
learning techniques in environmental science. The combined
use of GPR and Monte Carlo analysis advances data-driven
approaches in environmental remediations, particularly in
wastewater treatment (in this research), therefore providing
more efficient and cost-effective remediation technologies.
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