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d polysulfonamide-modified UiO-
66-NH2/sodium alginate nanocatalyst for
sustainable synthesis of 1,2,3-triazoles†

Samaneh Koosha,a Ramin Ghorbani-Vaghei *ab and Sedigheh Alaviniaa

An effective nanocomposite comprising a metal–organic framework and porous polysulfonamide-sodium

alginate (SA-PS) was developed for phenyl triazole production. The Cu(I) ions were uniformly distributed on

the as-prepared UiO-66-NH2@SA-PS matrix, coordinated by sulfonamide groups in a bidentate bridging

pattern (UiO-66-NH2@SA-PS/CuI). The nanocatalyst UiO-66-NH2@SA-PS/CuI demonstrated exceptional

performance in the synthesis of 1,2,3-triazole derivatives, facilitating high product yields in the reaction

of various aryl boronic acids, phenylacetylene, and sodium azide under mild conditions.
1. Introduction

The 1,2,3-triazoles are versatile compounds with signicant bio-
logical and industrial importance. Due to their many potential
structural and pharmacological characteristics, they have
become a preferred scaffold in medicinal chemistry.1 Their
synthesis, primarily through Huisgen cycloaddition, provides
a robust method for accessing a variety of derivatives, thereby
supporting extensive research and development inmultiple elds
of chemistry and medicine.2 Click chemistry utilizes small
fundamental molecular units compiled in combinatorial
libraries. These structures rely on selective, straightforward
carbon–heteroatom bonds (C–X–C), allowing them to recombine
in one-step reactions.3 This approach aligns with green chemistry
principles by enabling the rapid creation of a wide variety of
compounds. Click chemistry is currently more prevalent in bio-
logical contexts than it is in the chemical phase of drug devel-
opment, which offers an opportunity to enhance the reactions
(Scheme 1).4 Recent reviews have comprehensively examined the
progress of CuAAC reactions, and numerous catalytic copper
systems have been reported.5–8 These systems are categorized into
Cu(I) sources, Cu(II) salts or complexes, Cu nanoparticles, Cu
MOFs6 and others. Typical catalysts include Cu(I) sources such as
CuI, CuBr, and CuCl.5–9 Homogeneous Cu(II) salts such as CuSO4,
CuCl2 and Cu(OAc)2, in combination with sodium ascorbate,
have been shown to be effective catalysts for CuAAC reactions.10

Therefore, a variety of polymer-supported copper catalysts, such
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as mPAN-Cu(II),11 Cu(I)/PVPP-Fe3O4,12 Cu@CB-n,13 Cu(I)
NVPMBA,14 PS-PEG-TD2-CuSO4,15 PANFPABuBuX@CuX,16 and
CuX-PBPTP17 have been successfully employed for this reaction.

The development of biodegradable solid catalysts utilizing
renewable biopolymers presents a feasible approach to
achieving safer and more sustainable organic synthesis
methods, aligning with the principles of green chemistry.18 In
recent decades, heterogeneous catalytic processes have
garnered signicant interest for their potential to improve the
sustainability of chemical reactions.19,20 By leveraging renew-
able biopolymers, these catalysts provide an environmentally
friendly alternative to conventional systems, enhancing both
the safety and efficiency of organic synthesis.21

Sodium alginate is a water-soluble biopolymer commonly
found in aquatic phytoplankton. This biodegradable polymer
consists of chains comprising two monomeric components: 1,4-
linked b-D-mannuronic acid and a-L-guluronic acid. Due to the
presence of hydroxy (–OH) and carboxylate (–COO−) functional
groups along its chain, alginate exhibits electrostatic interac-
tions.22 However, similar to other polymeric gels, pure ionically
cross-linked alginate hydrogels possess certain disadvantages,
such as structural instability and lowmechanical strength, which
can limit their practical applications. To improve the physical
properties of sodium alginate, gra copolymerization and
nanocasting techniques are practical and efficient methods.23

MOFs are highly promising materials due to the versatility
and tunability of their orderly crystalline structures.24,25

Through the integration with carefully engineered polymers to
form MOF composites, the shortcomings of pure MOFs can be
compensated for, thus achieving synergistic effects for the
enhancement and expansion of their performance. MOF/
polymer nanocomposites have emerged as promising mate-
rials for various applications, including organic reactions.26–28

The combination of sodium alginate, polysulfonamide and
the metal–organic framework provides an amphiphilic
Nanoscale Adv., 2025, 7, 1937–1945 | 1937
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Scheme 1 Triazole derivatives with biological activity.
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environment for the reaction catalyst. The prepared substrate
facilitates effective loading of copper iodide by forming strong
bonds with copper iodide nanoparticles. Copper iodide nano-
particles also play a crucial role in improving the reaction
conditions as active catalytic species.

In this study, a novel catalyst was designed using the readily
accessible UiO-66-NH2-functionalized porous sodium alginate-
polysulfonamide as a multifunctional heterogeneous support
for the immobilization of CuI NPs. The MOF@polymer core–
shell catalyst offers a tailored and selective environment for the
synthesis of 1,2,3-triazole compounds from the reaction of aryl
boronic acids, phenylacetylene, and sodium azide through
Huisgen cycloaddition. This study reports the 1,2,3-triazole
synthesis, emphasizing the use of a porous sodium alginate-
polysulfonamide/copper nanocatalyst supported by a metal–
organic framework. This method synthesizes compounds with
high efficiency in the presence of an environmentally friendly
catalyst (Scheme 1).
1938 | Nanoscale Adv., 2025, 7, 1937–1945
2. Experimental section
2.1 UiO-66-NH2 synthesis

UiO-66-NH2 was synthesized using a solvothermal method.
Initially, a mixture of 2-aminoterephthalic acid (0.12 g) and
zirconium chloride (0.14 g) was dispersed in DMF solvent (50
mL). Subsequently, the solution was transferred to a Teon-
lined autoclave and maintained at 130 °C for 24 h. The
sample was immersed in 10 mL of hot EtOH and 10 mL of DMF
for 24 h to remove any residual acids trapped inside the pores.
Subsequently, it was ltered and dried at 100 °C overnight to
obtain the UiO-66-NH2.29,30

2.2 Porous SA-PS synthesis

For polymerization, sodium alginate (0.25 g), p-styrene sulfon-
amide (1.00 g), and SiO2 nanoparticles (0.05 g) were stirred with
a magnet in distilled water (10 mL) at 70 °C. Aer 10 min, 0.04 g
of ammonium persulfate was added to the mixture, and the
© 2025 The Author(s). Published by the Royal Society of Chemistry
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reaction mixture was stirred for 2 h with a magnetic stirrer until
SiO2/SA-PS nanoparticles were synthesized and washed with
H2O (5 mL) and EtOH (5 mL) to obtain a solid material, which
was dried at room temperature under vacuum conditions.
Then, the silica in the SiO2/SA-PS was selectively removed with
HF solution. HF solution (10 mL), deionized water (10 mL), and
SiO2/SA-PS nanoparticles (0.5 g) were added in a container.
Then, the mixture was stirred at room temperature for 6 h to
obtain the prepared porous polymer, washed with H2O (50 mL)
and dried at 50 °C. 31
2.3 Preparation of UiO-66-NH2@SA-PS nanocomposite

The new nanocomposite UiO-66-NH2@SA-PS was synthesized
by the reaction of UiO-66-NH2 with porous SA-PS. UiO-66-NH2

(0.15 g) was dispersed in DMF (5 mL). Then, porous SA-PS (0.12
g) in 5 mL DMF was added dropwise to the mixture and stirred
for 24 h at 50 °C with a magnetic stirrer. Finally, the sediment
obtained was dried in an oven at 110 °C for 24 h to remove the
residual solvent to gain UiO-66-NH2@SA-PS.31
2.4 Preparation of UiO-66-NH2@SA-PS/CuI nanocomposite

Subsequently, the resulting UiO-66-NH2@SA-PS powder (0.1 g)
and CuI nanoparticles (0.05 g) were added to 20 mL acetonitrile,
and the mixture was stirred at 50 °C with a magnetic stir bar for
12 h. The resulting powder was collected by ltration and
Scheme 2 Schematic pathway for the fabrication of UiO-66-NH2@SA-P

© 2025 The Author(s). Published by the Royal Society of Chemistry
washed thoroughly with deionized water (20 mL) and ethanol
(20 mL) to remove the unreacted reactant, and then dried
(Scheme 2).31
2.5 General procedure for 1,2,3-triazole synthesis

A mixture of potassium carbonate (138 mg, 1 mmol), phenyl-
boronic acid (122 mg, 1 mmol), sodium azide (195 mg, 3 mmol)
and UiO-66@SA/PSA@CuI (10 mg, 0.64 mol%) in H2O/EtOH (2
mL) was stirred at 80 °C for 1 h. Then, phenylacetylene (102 mg,
1 mmol) was added to the mixture and stirred for an appro-
priate time. The progress of reaction was checked using TLC (n-
hexane/ethyl acetate = 10 : 3). Aer completion of the reaction,
the mixture was cooled and then centrifuged to separate the
catalyst. Aer drying, the sediment from the reaction was
extracted (ethyl acetate/water = 1 : 2, 30 mL), dried and evapo-
rated, and nally, the crude product was washed with hot n-
hexane (Scheme 3). The amount of copper incorporated in the
support was 4.064%, as corroborated using inductively coupled
plasma optical emission spectroscopy (ICP-OES).
3. Result and discussion
3.1 Catalyst activity

Optimization reactions were performed for the reaction of
phenylboronic acid 1a, sodium azide 2a, and phenylacetylene
S/CuI.31

Nanoscale Adv., 2025, 7, 1937–1945 | 1939
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Scheme 3 Schematic pathway for the fabrication of 1,2,3-triazole using UiO-66-NH2@SA-PS/CuI nanocomposite.
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3a to determine the best reaction conditions to yield 1,2,3-tri-
azoles (Table 1) in K2CO3. UiO-66-NH2@SA-PS/CuI is essential
for the abovementioned reaction. The best result was achieved
when employing 10 mg of UiO-66-NH2@SA-PS/CuI catalyst
(entry 3), which produced yields of 98%. Further increasing the
catalyst dosage beyond 10 mg did not signicantly elevate the
product yields (entry 4). The reaction did not proceed in the
absence of K2CO3 (entry 5). In addition, we performed experi-
ments to investigate different bases for the model reaction.
Notably, K2CO3 emerged as the most advantageous base,
yielding both the highest output and the shortest reaction time
when the model reaction was conducted. This highlights the
critical role of base selection in optimizing reaction conditions
for the click reaction (entries 6–8).

The choice of solvent signicantly inuenced the effective-
ness of the click reaction, as evidenced by the varying yields
Table 1 Model reaction optimizationa

Entry Cat. (mol%) Base (mm

1 — K2CO3 (1)
2 0.32 K2CO3 (1)
3 0.64 K2CO3 (1)
4 0.96 K2CO3 (1)
5 0.64 —
6 0.64 KOH (1)
7 0.64 Na2CO3 (1
8 0.64 Cs2CO3 (1
9 0.64 K2CO3 (1)
10 0.64 K2CO3 (1)
11 0.64 K2CO3 (1)
12 0.64 K2CO3 (1)
13 0.64 K2CO3 (1)
14 (0.64 K2CO3 (1)
15 0.64 K2CO3 (1)
16 0.64 K2CO3 (2)
17 0.64 K2CO3 (0.

a Reaction conditions: phenylboronic acid (1 mmol), NaN3 (3 mmol), ph
(0.64 mol%) in H2O/EtOH (1 : 1, 2 mL) for 90 min. b Isolated yield. c The

1940 | Nanoscale Adv., 2025, 7, 1937–1945
observed across different solvents, which are summarized in
Table 1. The catalytic potential in a model reaction was studied
using various organic solvents, including PEG, DMF/H2O,
CH3CN/H2O, PEG/H2O, H2O/EtOH, ethanol and water (entries
9–15). When only PEG was employed, its high viscosity resulted
in low solubility for the synthesized catalyst, which conse-
quently led to a diminished yield (entry 9). In contrast, using
only water allowed phenylboronic acid and the base to dissolve
effectively; however, phenylacetylene remained insoluble,
resulting in poor yields (entry 10). Conversely, while phenyl-
acetylene dissolved well in ethanol (EtOH), the other compo-
nents did not, leading to similarly low yields (entry 11). The
results presented in Table 1 demonstrate that binary solvent
systems are signicantly more effective, as they enable the
dissolution of all catalytic components (entries 12–14). The
EtOH/H2O mixture was ultimately selected due to its high
ol) Solvent Yieldb (%)

H2O/EtOH N.R.
H2O/EtOH 85
H2O/EtOH 98
H2O/EtOH 98
H2O/EtOH 55
H2O/EtOH 42

) H2O/EtOH 39
) H2O/EtOH 27

PEG 30
H2O 10
EtOH 40
DMF/H2O 59
CH3CN/H2O 68
PEG/H2O 72
H2O/EtOH 80c

H2O/EtOH 84
5) H2O/EtOH 60

enylacetylene (1 mmol), K2CO3 (1 mmol), and UiO-66-NH2@SA-PS/CuI
reaction was performed at 80 °C.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Table 2 Comparison efficiency of UiO-66-NH2@SA-PS/CuI with
different catalysts

Entry Catalyst Base (mmol) Yield (%)

1 UiO-66-NH2 (10 mg) K2CO3 40
2 UiO-66-NH2@SA (10 mg) K2CO3 48
3 UiO-66-NH2@ SA-PS (10 mg) K2CO3 50
4 CuI (10 mg) K2CO3 60
5 UiO-66-NH2@CuI (10 mg) K2CO3 70
6 UiO-66-NH2@SA-PS/CuI (0.64 mol%) K2CO3 98
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catalytic activity and the fact that both solvents are environ-
mentally friendly (entry 2). The evaluation of temperature
indicated that 80 °C provides the highest yield (entries 15 vs. 2).
Table 3 UiO-66-NH2@SA-PS/CuI-catalyzed CuAAC reactions based on

a Reaction conditions: phenylboronic acid (1 mmol), NaN3 (3 mmol), ph
(0.64 mol%) in H2O/EtOH (1 : 1, 2 mL). Isolated yield.

© 2025 The Author(s). Published by the Royal Society of Chemistry
Ultimately, our results revealed that the optimal dosage of
K2CO3 catalyst for this reaction was 1 mol (entries 16–17).

Furthermore, the efficiency of the UiO-66-NH2@SA-PS/CuI
catalyst was compared as shown in Table 2, entries 1–6. The
results indicate that the high performance of the synthesized
catalyst is related to synergistic effects of UiO-66-NH2, porous
SA-PS, and CuI NPs (entry 6 vs. 1–5).

To investigate the generality of the copper-catalyzed alkyne–
azide cycloaddition reaction, the scope and limitations of this
method were investigated using 10 diverse phenylboronic acids.
The one-pot reaction of different substituted aryl boronic acids
in the presence of H2O/EtOH and K2CO3 inMeOH using UiO-66-
NH2@SA-PS/CuI at 80 °C gave 1,2,3-triazoles. In this catalytic
the various boronic acids and alkynesa

enylacetylene (1 mmol), K2CO3 (1 mmol) and UiO-66-NH2@SA-PS/CuI

Nanoscale Adv., 2025, 7, 1937–1945 | 1941
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Fig. 1 Recyclability performance of UiO-66-NH2@SA-PS/CuI.
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system, the aryl boronic acids bearing either electron-donating
or electron-withdrawing groups on the aromatic ring (F, Br, Cl,
COOH, OMe, and OH) readily undergo the reaction to afford the
corresponding products in good to excellent yields. As shown in
Table 3, the presence of an electron-withdrawing substitute in
phenylboronic acid extended the reaction time. A simple
process to purify the products, without chromatographic puri-
cation, was achieved in this study.

Based on literature reports,32 a plausible mechanism for one-
pot CuAAC synthesis has been proposed (Scheme 3), wherein
NaN3 plays the role of azide precursor. Cu(I) species are prone to
oxidation to Cu(II) due to their thermodynamic instability.9 The
reaction begins with a boronic acid derivative reacting with
sodium azide (NaN3) to create an azide group. The UiO-66-
NH2@SA-PS/CuI catalyst then coordinates with the terminal
alkyne, forming a copper–acetylide complex A and releasing
a proton (intermediate A). Subsequently, the azide group coor-
dinates with the copper–acetylide complex, leading to a cyclo-
addition reaction between the azide and the alkyne to produce
a triazole ring (intermediates B and C). Thirdly, rearrangement
of intermediate C leads to the formation of the copper-
metalated triazolide D and releases the catalytic Cu(I) species.
Finally, the intermediate C captures a proton to produce the
target triazole and regenerate the Cu(I) intermediate. In addi-
tion, UiO-66-NH2@SA-PS in this catalytic cycle serves as an
efficient ligand to tune the activity of Cu(I) species on the
catalyst (Scheme 4).33

Finally, for practical applications, the recycling of the cata-
lyst was investigated using the model reaction. Aer completion
of the reaction, the catalyst was conveniently and efficiently
recovered from the reaction mixture by suction and then sub-
jected to the next run directly without further treatment. As
shown in Fig. 1, the catalyst can be reused consecutively at least
seven times with comparatively little loss of its catalytic activity.
The ICP-AES analysis showed that Cu content in the catalyst
Scheme 4 Proposed mechanism for the UiO-66-NH2@SA-PS/CuI-cata

1942 | Nanoscale Adv., 2025, 7, 1937–1945
aer the rst run is 3.88%, which is slightly lower than the
4.064% Cu content in fresh catalyst. The slight decrease of the
catalytic activity during recycling may be owing to the leaching
of copper from the catalyst.

The ndings from the click reaction conducted under
different conditions are presented in Table 4. This investigation
proposes UiO-66-NH2@SA-PS/CuI as an environmentally favor-
able nanocatalyst, leading to improved reaction conditions and
enhanced performance (entry 7). The synergy of UiO-66-NH2,
porous SA-PS and copper iodide nanoparticles shows higher
efficiencies and superior catalyst utilization. The UiO-66-
NH2@SA-PS/CuI catalyst exhibits high yields in short reaction
times at mild temperature, with high loading of the catalyst,
making performing the reaction effective with only a small
amount of the catalyst. Moreover, the UiO-66-NH2@SA-PS/CuI
lyzed CuAAC reaction.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Table 4 Comparison studies

Entry Catalyst Base Solvent T (oC) Time (h) Yield (%) Ref.

1 Cu(C4H3N(CHNCH3))2 — EtOH/H2O 30 11.5 96 34
2 Cu–NHC@SiO2 Sodium ascorbate Ethylene glycol 60 1 96 35
3 Copper diacetate — H2O 20 1 94 36
4 CuO–NiO — H2O 60 3 85 37
5 Cu/PANI Ethylene glycol 20 3 75 38
6 Cu/Al2O3 K2CO3 Ball-milling condition 2 91 39
7 UiO-66-NH2@SA-PS/CuI K2CO3 H2O/EtOH 80 0.64 98 This Work
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catalyst is partly formed by sodium alginate and poly-
sulfonamide as a non-toxic biopolymer, which makes the cata-
lyst more biodegradable and environmentally friendly.
Additionally, the UiO-66-NH2@SA-PS/CuI catalyst can be sepa-
rated from the reaction mixture by centrifugation and easily
reused seven times. This suggests that the current method may
be a more ideal choice for achieving optimal results in the click
reaction.

4. Conclusion

An efficient and environmentally friendly method was intro-
duced for 1,4-disubstituted-1,2,3-triazole synthesis using
utilizing UiO-66-NH2@SA-PS/CuI through click reactions. The
easy process avoids the use of hazardous azides, with simple
purication. It could be studied for other reactions to be applied
for high-yield processes. The excellent activity of the catalyst has
been ascribed to the coordination of sulfonamide groups with
copper species. Moreover, there is no signicant loss of catalytic
activity when the catalyst is reused up to seven runs. Therefore,
the high catalytic performance, reusability of catalyst, wide
substrate scope, short reaction time, and mild conditions are
the salient features of this green catalytic process, whichmake it
more competitive for practical applications.
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