



Cite this: *Nanoscale Adv.*, 2025, 7, 2248

## An ultra-violet and infrared dual-band photodetector using a $\text{Ga}_2\text{O}_3$ thin film and HgTe colloidal quantum dots†

Qiqi Zheng,<sup>a</sup> Yu Yang,<sup>b</sup> Liansheng Li,<sup>b</sup> Qing-An Xu,<sup>b</sup> Kenan Zhang,<sup>c</sup> Xiaomeng Xue,<sup>a</sup> Lisha Ma,<sup>a</sup> Jianhao Yu,<sup>d</sup> Wanjun Li<sup>\*d</sup> and Menglu Chen                                                                                                                                                                                                                                                                                                                                                          <img alt="ORCID iD icon" data-bbox="7620 265 7

characteristics. The a-Ga<sub>2</sub>O<sub>3</sub> solar-blind photodetector (SBPD) was prepared by sequentially sputtering the Ga<sub>2</sub>O<sub>3</sub> film and ITO electrodes using RF magnetron sputtering at room temperature, which exhibited a high responsivity of 1808 A W<sup>-1</sup>, detectivity of  $3.88 \times 10^{14}$  Jones, and external quantum efficiency of  $8.8 \times 10^5\%$ . The HgTe CQD was then spin-coated on ITO electrodes, which showed a responsivity of 0.25 A W<sup>-1</sup>, detectivity of  $1.45 \times 10^{10}$  Jones, and external quantum efficiency of 15.5%. Furthermore, the capability of this dual-band coupled photodetector to detect corona discharge was investigated.

## 2. Experimental section

### 2.1 a-Ga<sub>2</sub>O<sub>3</sub> SBPD

First, amorphous Ga<sub>2</sub>O<sub>3</sub> thin films were deposited on (0001) sapphire (c-Al<sub>2</sub>O<sub>3</sub>) substrates *via* RF magnetron sputtering at room temperature. The Ga<sub>2</sub>O<sub>3</sub> material is a commercial ceramic target with a purity of 4 N (99.99%). Prior to sputtering, the chamber background pressure was  $5 \times 10^{-4}$  Pa and the high-purity Ar (99.99%) flow rate was 40 sccm. During sputtering, the vacuum was maintained at 1.0 Pa, and the power and time of sputtering were 150 W and 1.5 h, respectively. Subsequently, a simple mask process combined with RF magnetron sputtering was performed to deposit indium tin oxide (ITO) transparent electrodes under an Ar<sub>2</sub> atmosphere and with a power of 120 W for 10 minutes. The effective photosensitive area of the devices was  $0.00234 \text{ cm}^2$ , with electrode dimensions of 30  $\mu\text{m}$  (spacing and width) and 1 mm (length).

### 2.2 HgTe CQD photoconductor

**HgTe CQD synthesis.** 108.8 mg of HgCl<sub>2</sub> salt was dissolved in 16 mL oleylamine and heated at 100 °C for 1 h until complete dissolution, and the reaction temperature was adjusted to 64 °C. 400  $\mu\text{L}$  (0.4 mmol) of TOPTe was injected and reacted for 5 min to obtain 2  $\mu\text{m}$  CQD.

**Preparation of single-pixel devices.** HgTe CQD devices are prepared by spin-coating the CQD on the sapphire substrates with interdigital electrodes. Each layer is treated with an EDT/HCl/IPA solution (1:1:50 by volume) for 10 s, rinsed with IPA, and dried. The effective device area is  $0.5 \text{ mm}^2$ , where the 50 pairs of interdigitated electrodes have a finger width of 10  $\mu\text{m}$ , a gap of 10  $\mu\text{m}$ , and a finger length of 1 mm.

### 2.3 Material and device characterization

**Material characterization.** The absorption spectrum is obtained using a Fourier Transform Infrared spectrometer (FTIR) and an N4S UV-Vis spectrophotometer. The a-Ga<sub>2</sub>O<sub>3</sub> and HgTe CQD thin films were analysed using a Bruker D8 Advance XRD system, employing Cu K $\alpha$ 1 radiation ( $\lambda = 1.540598 \text{ nm}$ ).

**Device characterization.** Electrical properties of devices, including voltammetric (*I*-*V*) characteristic curves and transient response (*I*-*t*) curves, were assessed using a Keithley 2450 and Keithley 2602 B source meter. A xenon lamp emitting at 254 nm served as the deep ultraviolet light source. A 600 °C blackbody radiation source was used as the IR light source. Additionally, an arc simulator was employed to mimic a corona source in high voltage discharge experiments for testing the devices at

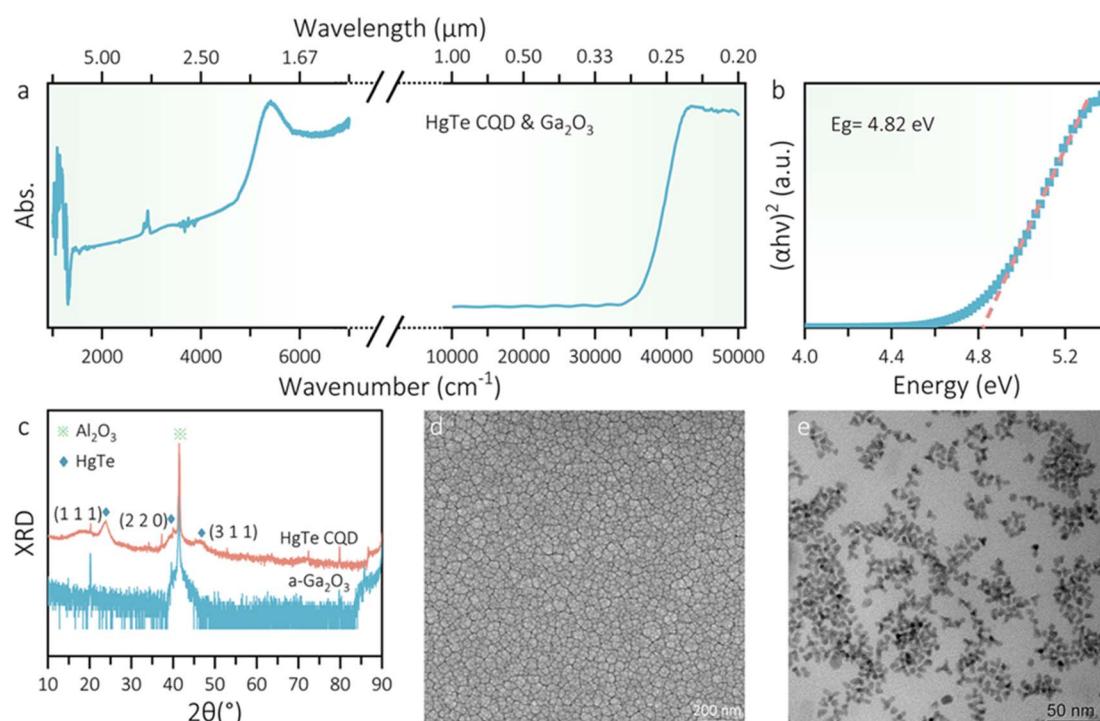



Fig. 1 Material characterization. (a) Absorption spectra of a-Ga<sub>2</sub>O<sub>3</sub> and HgTe CQDs; (b) optical bandgap of a-Ga<sub>2</sub>O<sub>3</sub> thin film; (c) XRD of a-Ga<sub>2</sub>O<sub>3</sub> thin film and HgTe CQDs; (d) SEM images of a-Ga<sub>2</sub>O<sub>3</sub>; (e) TEM images of HgTe CQDs.



various distances. All characterizations and tests were conducted under ambient room temperature conditions.

### 3. Results and discussion

$\text{Ga}_2\text{O}_3$  SBPD and HgTe CQD photoconductive devices were combined parallelly to achieve dual-band photodetection. Among them, the cutoff wavelengths of the  $\text{Ga}_2\text{O}_3$  thin film and HgTe CQD film are approximately  $40\,000\,\text{cm}^{-1}$  and  $5000\,\text{cm}^{-1}$ , respectively, as shown in Fig. 1a, allowing for dual absorption in the solar-blind UV and short-wave infrared regions. To evaluate the optical band gap ( $E_g$ ) of the  $\text{Ga}_2\text{O}_3$  film,  $(\alpha h\nu)^2$  was plotted with  $h\nu^{11}$  to produce a Tauc plot of the sample (Fig. 1b). The predicted optical band gap of  $\text{Ga}_2\text{O}_3$  is 4.82 eV. Additionally, no characteristic diffraction peaks associated with the structure of the  $\text{Ga}_2\text{O}_3$  crystal phase are detected (Fig. 1c), showing that the  $\text{Ga}_2\text{O}_3$  film is an amorphous phase (a- $\text{Ga}_2\text{O}_3$ ).<sup>24</sup> On the other hand, diffraction peaks are identified at  $23.7^\circ$ ,  $39.82^\circ$ , and  $46.74^\circ$  for the HgTe CQD film (Fig. 1d), corresponding to the (1 1 1), (2 2 0), and (3 1 1) planes, respectively.<sup>25</sup> Fig. 1d shows the scanning electron microscope (SEM) images of the samples,

demonstrating the smooth surface of the  $\text{Ga}_2\text{O}_3$  film and the uniform distribution of grain sizes. Fig. 1e shows the transmission electron microscopy (TEM) image of HgTe colloidal quantum dots (CQDs), revealing that the quantum dot size is approximately less than 10 nm.

$\text{Ga}_2\text{O}_3$ -based photodetectors with ITO as the interdigital electrode have an effective photosensitive area of  $0.234\,\text{mm}^2$  with electrode dimensions of  $30\,\mu\text{m}$  (spacing and width) and  $1\,\text{mm}$  (length) under specific incident light irradiation, and hence the resistance of the semiconductor material will change accordingly, and the optoelectronic performance of the device mainly depends on the photoresistive properties of the semiconductor material.<sup>26,27</sup> Thus, under various light intensities, the  $I$ - $V$  characteristics of the solar-blind DUV photodetector based on a totally transparent a- $\text{Ga}_2\text{O}_3$  film were evaluated (Fig. 2a). The photocurrent of the device progressively increases from  $21\,\mu\text{A}$  to  $67\,\mu\text{A}$  as the light intensity is increased from 5 to  $500\,\mu\text{W}\,\text{cm}^{-2}$  with  $10\,\text{V}$  bias and  $254\,\text{nm}$ , demonstrating a notable photoresponse to  $254\,\text{nm}$  UVC light. The linearity of the  $I$ - $V$  curves from  $-0.1$  to  $0.1\,\text{V}$  (Fig. S1†) indicates that the ITO electrode and the a- $\text{Ga}_2\text{O}_3$  film have good ohmic contact.<sup>28</sup>

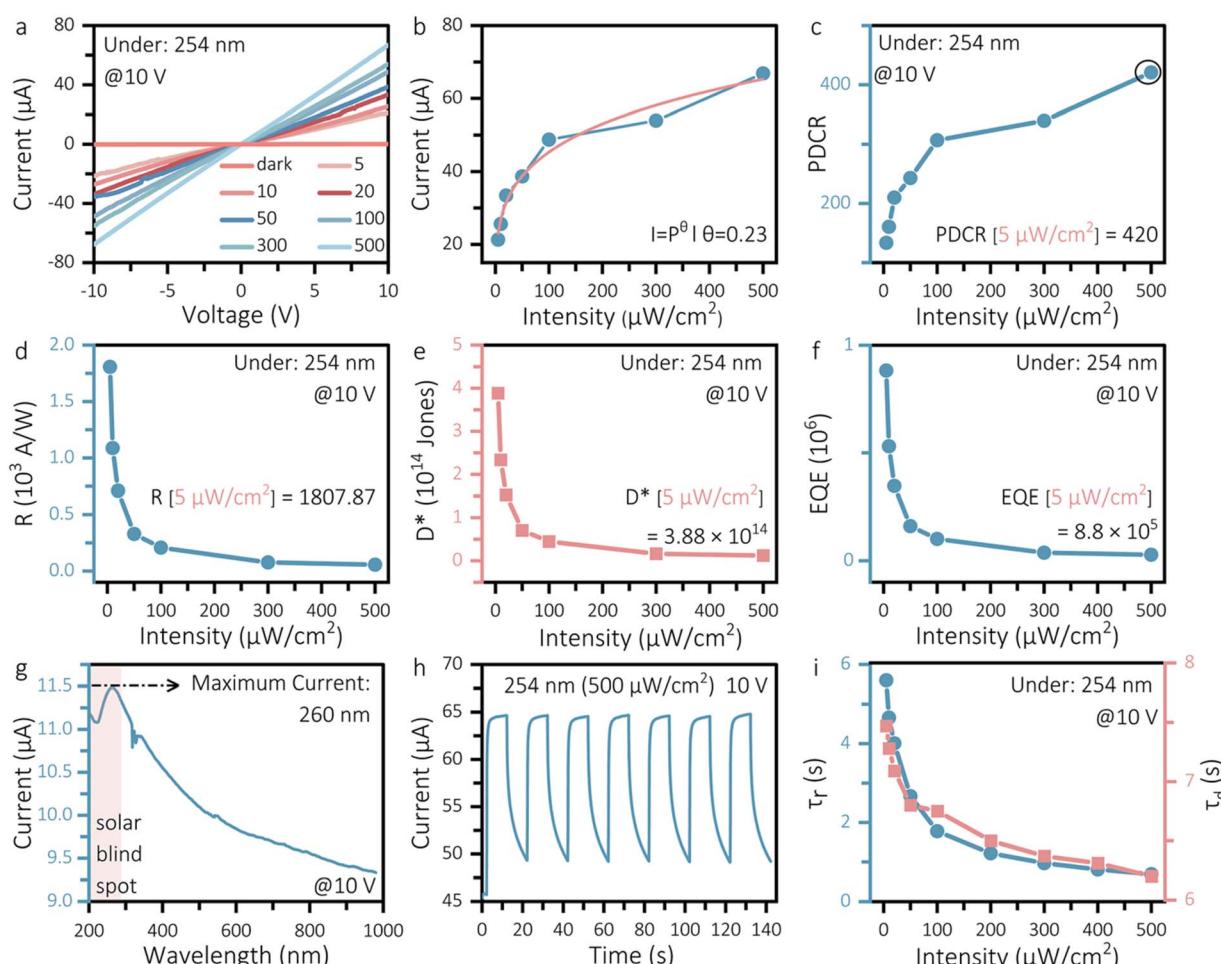



Fig. 2 Optoelectronic properties of the a- $\text{Ga}_2\text{O}_3$  SBPD. (a)  $I$ - $V$  characteristic curves of the a- $\text{Ga}_2\text{O}_3$  film-based SBPD; (b) photocurrent and fitting curve; (c) photo-to-dark current ratio; (d) responsivity and (f) EQE versus light intensity; (g) wavelength-dependent photocurrent curve of the device at a bias voltage of  $10\,\text{V}$ ; (h) transient light response curve at  $500\,\mu\text{W}\,\text{cm}^{-2}$  and  $10\,\text{V}$  bias; (i) response time of the device under  $254\,\text{nm}$  with different light intensities.



Furthermore, through the power law relationship<sup>29</sup>  $I = \alpha P^\theta$ , where  $\alpha$  is a constant,  $P$  is the incident optical power, and  $\theta$  is an exponent representing the dependence of the device on the incident optical power, the fit shows that there is a dependence of the exponent  $\theta = 0.23$  between the photocurrent change and the optical intensity (as shown in Fig. 2b), which is a large deviation from the ideal value ( $\theta = 1$ ), which is thought to be due to the fact that the a-Ga<sub>2</sub>O<sub>3</sub> film has a number of defects, which affect carrier transport and increase carrier energy loss.<sup>30</sup>

To quantitatively compare the performance of SBPDs based on a-Ga<sub>2</sub>O<sub>3</sub> thin films under different 254 nm light intensities, we performed a thorough analysis of several key parameters, including photo-dark current ratio (PDCR), responsivity ( $R$ ), detectivity ( $D^*$ ), external quantum efficiency (EQE), and device stability. Among these, the photo-dark current ratio

$$\text{PDCR} = I_p/I_d \quad (1)$$

can approximate the photodetector's signal-to-noise ratio,<sup>31</sup> and Fig. 2c shows the device's growing PDCR as the light intensity increases at a 10 V bias. This matches the changing pattern of photocurrent with intensity, which shows that increasing the unit light flux promotes the creation of electron–hole pairs in semiconductor materials.<sup>28</sup> Furthermore, responsivity ( $R$ ) is defined as the photocurrent generated per unit power of incident light over an effective area, reflecting a photodetector's ability to convert light energy into electrical energy;<sup>32</sup>  $D^*$  is related to noise equivalent power, which evaluates a device's ability to detect weak signals in noisy environments;<sup>33</sup> and EQE is defined as the ratio of electrons–holes to incident photons.

The mathematical expressions of these parameters are as follows:<sup>34–39</sup>

$$R = I_p/(S \times P) \quad (2)$$

$$D^* = (R \times \sqrt{S}) / \sqrt{(2eI_d)} \quad (3)$$

$$\text{EQE} = hcR/e\lambda \quad (4)$$

where  $I_p$ ,  $I_d$ ,  $S$ ,  $h$ ,  $e$ ,  $\lambda$ , and  $P$  represent the photocurrent, dark current, effective light area, Planck's constant, electron charge, incident light wavelength, and irradiation intensity, respectively. Fig. 2d–f demonstrates that the SBPD's performance decreases with increasing light intensity, with the optimum  $R$ ,  $D^*$ , and EQE at 5  $\mu\text{W cm}^{-2}$  light being  $1808 \text{ A W}^{-1}$ ,  $3.88 \times 10^{14}$  Jones and  $8.8 \times 10^5\%$ , respectively.

To better understand the photoelectric properties of the a-Ga<sub>2</sub>O<sub>3</sub> solar-blind UV detector, the photocurrent curves of the SBPD at different wavelengths at 10 V were examined (Fig. 2g), and the device's photocurrent increases and then decreases as the wavelength increases, with a peak at 260 nm. This means that the device has excellent solar-blind UV sensitivity and spectral selectivity. Repeatability and stability are also crucial characteristics of the solar-blind UV photodetector. To assess device stability, transient photoresponse curves were plotted at 10 V bias and 254 nm (500  $\mu\text{W cm}^{-2}$ ) with a 10 second switching cycle, as illustrated in Fig. 2h. The amplitude of the device's photocurrent remains constant after numerous switching cycles, demonstrating that the SBPD is highly stable and reproducible. Fig. S2† depicts the devices' time-dependent photoresponse curves ( $I$ – $t$  curves) at 10 V bias voltage and varying light intensities. Under

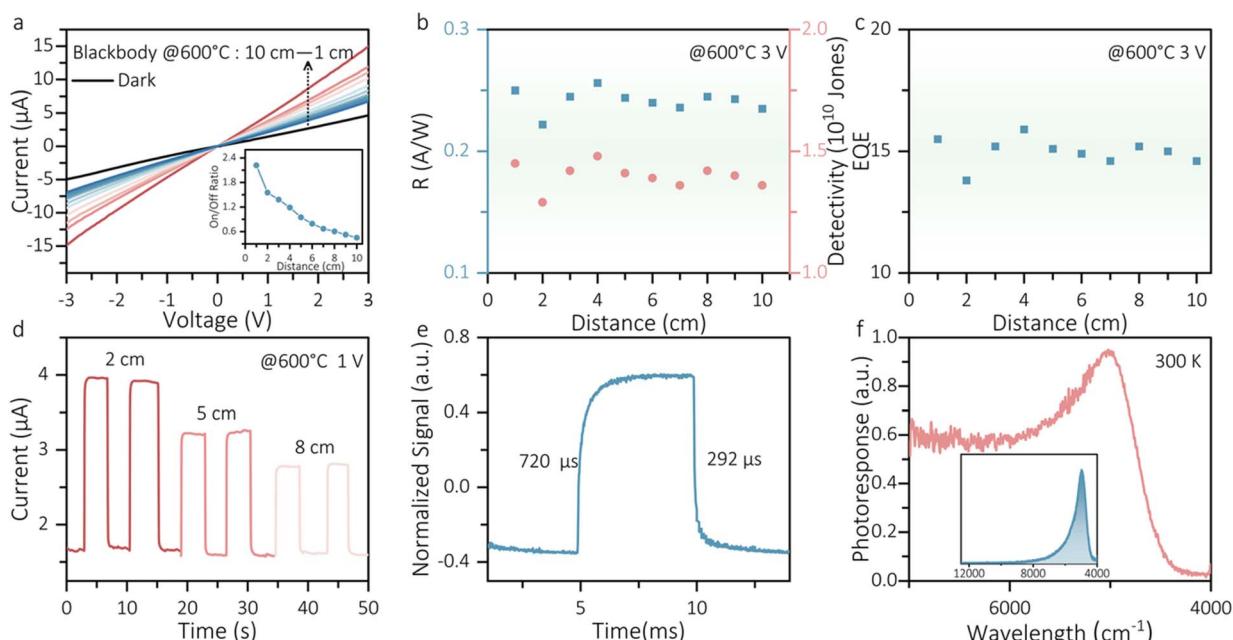



Fig. 3 HgTe CQD photodetector. (a) Current density–voltage curves and on/off ratio (inset graph) of the HgTe CQD photoconductor at different distances from the blackbody; (b) responsivity and detectivity and EQE (c) of the HgTe CQD photoconductor; (d) time-dependent light response curve of the device with different distances; (e) response speed; (f) response spectra normalized with DTGS and as-measured spectral response (inset graph) of the HgTe CQD photoconductor at 300 K.



254 nm light switching, the device shows an apparent photoresponse feature in which increased light intensity stimulates the creation of more photogenerated carriers in the photosensitive layer, resulting in a rise in photocurrent.<sup>40</sup> Additionally, the response speed is a significant factor that characterizes the PD's performance when exposed to transitory light. The photocurrent rises and falls corresponding to the light applied to and removed from the device. The rise time ( $\tau_r$ ) is the period from 10% to 90% of the maximum photocurrent, whereas the fall time ( $\tau_d$ ) is from 90% to 10% of the maximum photocurrent.<sup>41,42</sup> Fig. 2i depicts the relationship between response speed and light intensity at a fixed bias voltage. The  $\text{Ga}_2\text{O}_3$  material exhibits an inverse trend in response speed as the light intensity increases, with the device's  $\tau_r/\tau_d$  decreasing from 5.6/7.47 s to 0.69/6.2 s, due to the presence of oxygen vacancies and dislocations, which act as trap states.<sup>43</sup>

The dual-band photodetector not only performs well in the solar-blind band, but it also exhibits good optical response in the SWIR range. The  $I$ - $V$  curves of the HgTe CQD detector at various distances were measured under a 600 °C blackbody light source, as illustrated in Fig. 3a. As the distance increases, the optical power gradually drops, increasing device resistance

and producing fewer photogenerated carriers, resulting in a decreased photocurrent.<sup>44</sup> Besides, the photoconductor has the highest on/off ratio (photocurrent/dark current ratio) of 2.22 when it is closest to the blackbody.

We also estimated  $R$ , EQE and  $D^*$  with the conductor area  $S = 0.5 \text{ mm}^2$  using eqn (2)–(4), as shown in Fig. 3b and c. The HgTe CQD detector demonstrated a  $R$ , EQE and  $D^*$  of 0.25 A W<sup>-1</sup>, 15.5% and  $1.45 \times 10^{10}$  at 3 V bias, respectively. Fig. 3d shows the time-dependent photoresponse curves ( $I$ - $t$  curves) of the devices at 1 V bias voltage with various distances, demonstrating a clear photoresponse signature. The device's response speed was characterized, showing a  $\tau_r/\tau_d$  of 720/292  $\mu\text{s}$  (Fig. 3e). Fig. 3f displays the response spectra at 300 K before and after normalization with DTGS. The HgTe CQD photoconductor has a photoresponse of 2.0  $\mu\text{m}$  (5000 cm<sup>-1</sup>).

Corona discharges can damage components, resulting in transmission system failures, fires, and other unexpected hazards.<sup>45</sup> If the detector can detect signals such as electromagnetic radiation created during corona discharge consistently, effectively, and precisely, it can assist tiny and simple detectors in inspecting and maintaining high-voltage

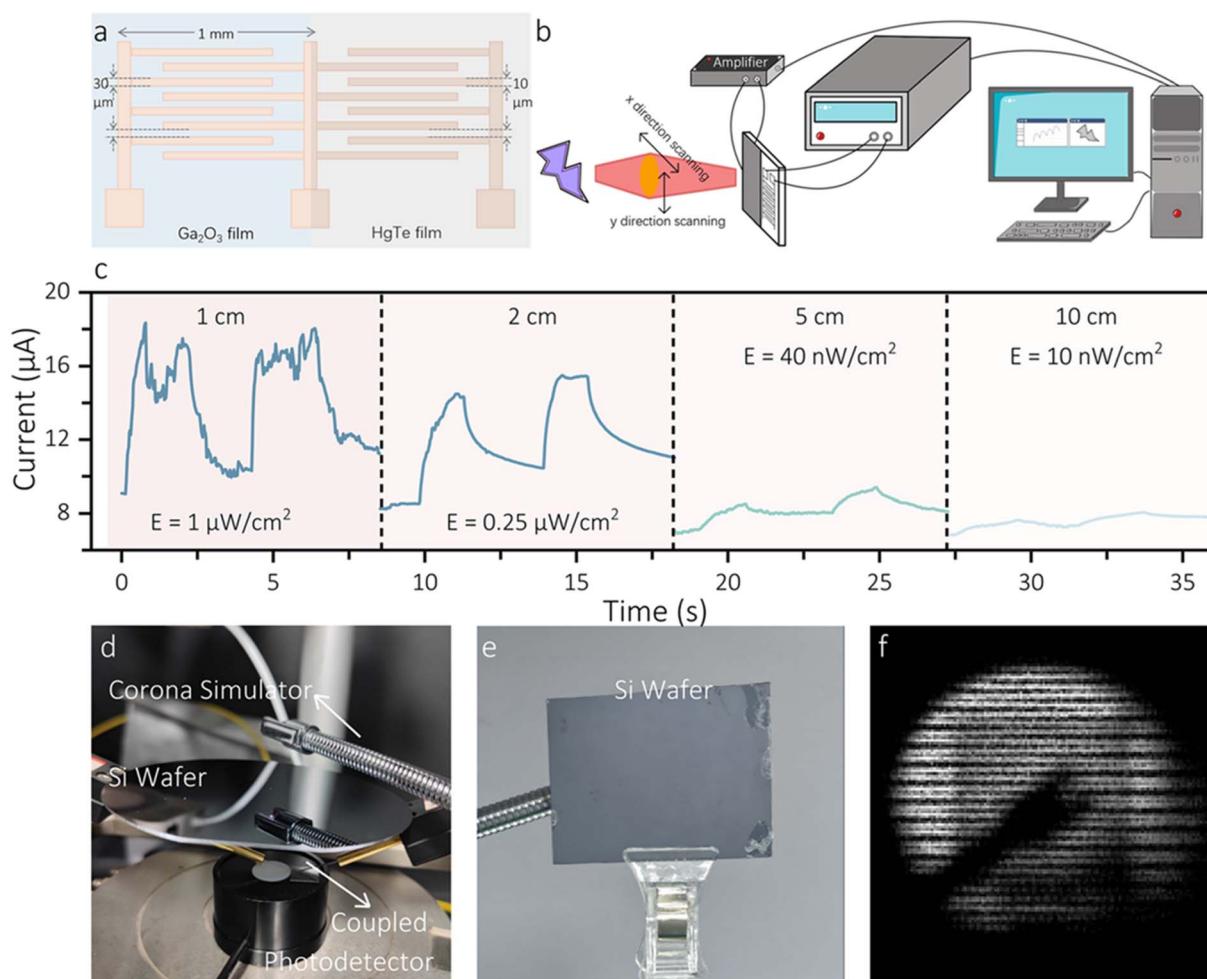



Fig. 4 Dual-band coupled photodetector for corona detection. (a) Schematic of the coupled photoconductor; (b) schematic of the detection process; (c) corona discharge detection results at different distances; (d) corona detection by the SBPD under Si wafer; visible (e) and SWIR (f) images of the arc simulator.



transmission lines from a safety standpoint. The corona detection system in this study is optimized utilizing a dual-band coupled optoelectronic device. Magnetron sputtering and spin-coating on an  $\text{Al}_2\text{O}_3$  substrate resulted in coupled devices comprising the HgTe CQD photoconductor and a- $\text{Ga}_2\text{O}_3$  thin film-based SBPD, and the schematic diagram is shown in Fig. 4a. Fig. 4b displays a model of corona detection using a dual-band photodetector. The arc simulator is employed as a corona source in a high-voltage discharge simulation system because its spectrum corresponds to the high-voltage arc standard spectrum.<sup>46</sup> The system identifies the device's UV and IR detecting capabilities for corona. When it comes to UV detection, the device is tested using a Keithley 2450 for corona discharge detection at various distances. The arc simulator is regarded as a point light source because of its adequately small power generation area, and the incident light intensity  $E$  that is irradiated on the a- $\text{Ga}_2\text{O}_3$  SBPD can be expressed as<sup>47</sup>

$$E = P_{\text{light}}/(d_{\text{LED}})^2, \quad (5)$$

where  $d_{\text{LED}}$  is the distance between the arc simulator and the SBPD while  $P_{\text{light}}$  can be roughly 1  $\mu\text{W}$  by fitting.<sup>24</sup> The test results are displayed in Fig. 4c. The device has an outstanding photoresponse to the high-voltage corona, and the photocurrent signal drops with increasing test distance, and the final detectable limit distance reaches 10 cm while the incident light intensity is 10  $\text{nW cm}^{-2}$ . Interestingly, the photon number can be calculated by<sup>48</sup>

$$N = \lambda P_{\text{l}}/hc \quad (6)$$

(in Fig. S3†), where  $c$  is the speed of light ( $c = 3 \times 10^8$ ), and  $P_{\text{l}}$  is the UV power irradiated on the a- $\text{Ga}_2\text{O}_3$  SBPD, expressed as<sup>49</sup>

$$P_{\text{l}} = (P_{\text{light}} \times S)/(d_{\text{LED}})^2. \quad (7)$$

As the distance between the simulator and the SBPD rises, the quantity of photons drops, and at a distance of 10 cm, the number of photons is roughly  $3 \times 10^7$  photons per s.

In practice, considering that corona detection can be significantly influenced by environmental factors, particularly when electromagnetic signal propagation is blocked, as in Fig. 4d, an opaque silicon wafer is used to block the signal released by the corona simulator, and the device at this point no longer has any photoresponse to the high-voltage corona, as shown in Fig. S4,† implying that the UV detection capability is completely eliminated. Instead, the reflected light of the object from the external light (such as a tungsten lamp or sunlight) is projected onto the CQD device through the lens. The opaque silicon wafer in the visible image is found to be transparent in the SWIR region as shown in Fig. 4e and f. This is an effective solution to the problem of missed detection owing to barriers between the detector and the high voltage line, and it is anticipated to be one of the options for corona discharge detection in the future.

## 4. Conclusions

In this study, we coupled a HgTe CQD photoconductive device and an a- $\text{Ga}_2\text{O}_3$  SBPD to fabricate photodetectors with dual-band detection capability. At a light intensity of 5  $\mu\text{W cm}^{-2}$ , the constructed SBPD had an ultra-high responsivity of 1808  $\text{A W}^{-1}$ , and  $D^*$  and EQE were up to  $3.88 \times 10^{14}$  and  $8.8 \times 10^5\%$ , respectively. The HgTe CQD photoconductor achieved a detectivity of  $1.45 \times 10^{10}$  and a response time of 720/292  $\mu\text{s}$ . Furthermore, we used the dual-band coupled optoelectronic device in corona detection and demonstrated high-voltage corona detection.

## Data availability

Data will be made available on request.

## Author contributions

All authors commented on the manuscript. All authors have given approval to the final version of the manuscript. Q. Z. finished the photodetector fabrication and characterization as well as drafting the manuscript, and J. Y. assisted in the characterization of the photodetectors. Y. Y., L. L. and A. X. finished data analysis. K. Z. and X. X. finished the CQD synthesis. L. M. finished imaging experiment. W. L. and M. C. worked on conceptualization, study design and data analysis.

## Conflicts of interest

The authors declare no competing financial interests.

## Acknowledgements

This work is supported by Optoelectronic Measurement and Intelligent Perception Zhongguancun Open Lab LabSOMP-2024-01, National Natural Science Foundation of China (No. 62475012); State Key Laboratory of Materials for Integrated Circuits (No. SKLJC-K2024-07); Beijing National Laboratory for Condensed Matter Physics (No. 2023BNLCMPKF012); and Westlake Institute for Optoelectronics (No. 2024GD003).

## References

- 1 D. Lee, S. Jeong, S. Moon, M. Yang, S. Kim, D. Kim, S. Lee, I. Lee, D. Jeon, J. Park, J. Kim and S. Baek, *ACS Nano*, 2024, **18**(51), 34741–34749.
- 2 G. Ariyawansa, M. B. M. Rinzan, M. Alevli, M. Strassburg, N. Dietz, A. G. U. Perera, S. G. Matsik, A. Asghak, I. T. Ferguson, H. Luo, A. Bezinger and H. C. Liu, *Appl. Phys. Lett.*, 2006, **89**, 9.
- 3 J. He, X. S. Xing, X. B. Song, S. Y. Li, C. Zhang and W. Wang, *Proceedings of the 3rd ICITEE*, 2020, pp. 202–207.
- 4 W. Zheng, R. Lin, J. X. Ran, Z. J. Zhang, X. Ji and F. Huang, *ACS Nano*, 2018, **12**, 425–431.

5 C. H. Zeng, W. K. Lin, Y. H. Sun, Q. Cui, X. Zhang, S. J. Li, B. S. Zhang and M. Kong, *Optoelectronics Letters*, 2019, **15**, 170–173.

6 Z. F. Zhang, C. N. Lin, X. Yang, J. H. Zang, K. Y. Li, Y. C. Lu, Y. Z. Li, L. Dong and C. X. Shan, *J. Mater. Chem. C*, 2022, **10**, 6488–6496.

7 M. R. Chen, S. H. Chang, T. C. Chen, C. H. Hsu, H. L. Kao and J. I. Chyi, *Phys. Status Solidi A*, 2010, **207**, 224–228.

8 J. H. Kim, C. Y. Han, K. H. Lee, K. S. An, W. Song, J. Kim, M. S. Oh, Y. R. Do and H. Yang, *Chem. Mater.*, 2015, **27**, 197–204.

9 Y. Qin, L. H. Li, Z. Yu, F. Wu, D. Dong, W. Guo, Z. F. Zhang, J. H. Yuan, K. H. Xue, X. S. Miao and S. B. Long, *Adv. Sci.*, 2021, **8**, 2101106.

10 C. Xie, X. Lu, Y. Liang, H. Chen, L. Wang, C. Wu, W. H. Yang and L. B. Luo, *J. Mater. Sci. Technol.*, 2021, **72**, 189–196.

11 S. R. Zhou, Q. Q. Zheng, C. X. Yu, Z. H. Huang, L. R. Chen, H. Zhang, H. L. Li, Y. Q. Xiong, C. Y. Kong, L. J. Ye and W. J. Li, *Mater.*, 2022, **16**, 295.

12 H. Yang, Y. Liu, X. G. Luo, Y. Li, D. S. Wuu, K. Y. He and Z. C. Feng, *Superlattices Microstruct.*, 2019, **131**, 21–29.

13 W. Y. Kong, G. A. Wu, K. Y. Wang, T. F. Zhang, Y. F. Zou, D. D. Wang and L. B. Luo, *Adv. Mater.*, 2016, **28**, 10725–10731.

14 A. Almalki, L. Madani, N. Sengouga, S. Alhassan, S. Alotaibi, A. Alhassni, A. Almunyif, J. S. Chauhan, M. Henini, H. V. A. Galetti, Y. G. Gobato, M. P. F. Godoy, M. B. Andrade, S. Souto, H. Zhou, B. Y. Wang, M. Xiao, Y. Qin and Y. H. Zhang, *Mater. Today Electron.*, 2023, **4**, 100042.

15 T. He, C. Li, X. Zhang, Y. J. Ma, X. Cao, X. Y. Shi, C. Shi, J. S. Li, L. Song, C. H. Zeng, K. Zhang, X. P. Zhang and B. S. Zhang, *Phys. Status Solidi A*, 2020, **217**, 1900861.

16 T. Chen, J. R. Zhang, X. D. Zhang, C. Chen, L. Zhang and Y. Hu, *IEEE Sens. J.*, 2023, **23**, 15504–15511.

17 X. Zhao, X. Tang, T. P. Li and M. L. Chen, *Infrared Phys. Technol.*, 2023, **133**, 104788.

18 S. G. Kumar and K. K. Rao, *Energy Environ. Sci.*, 2014, **7**, 45–102.

19 X. M. Xue, M. L. Chen, Y. N. Luo, T. L. Qin, X. Tang and Q. Hao, *Light: Sci. Appl.*, 2023, **12**, 2.

20 Y. Luo, S. Zhang, X. Tang and M. L. Chen, *J. Mater. Chem. C*, 2022, **10**, 8218–8225.

21 X. M. Xue, Q. Hao and M. L. Chen, *Light: Sci. Appl.*, 2024, **13**, 89.

22 Y. Y. Qiu, N. Q. Yan, H. F. Yao and M. L. Chen, *Infrared Phys. Technol.*, 2023, **135**, 104980.

23 S. Zhang, C. Bi, Y. M. Tan, Y. N. Luo, Y. F. Liu, J. Cao, M. L. Chen, Q. Hao and X. Tang, *ACS Nano*, 2022, **16**, 18822–18829.

24 X. D. Li, F. Y. Xu, X. Wang, J. S. Luo, K. Ding, L. Y. Ye, H. L. Li, Y. Q. Xiong, P. Yu, C. Y. Kong, L. J. Ye, H. Zhang and W. J. Li, *Phys. Status Solidi RRI*, 2024, **18**, 2200512.

25 Z. K. Liu, P. Wang, R. Dong, W. Gong, J. J. Li, D. C. Dai, H. Yan and Y. Z. Zhang, *Coatings*, 2022, **12**, 1033.

26 J. Bae, D. W. Jeon, J. H. Park and J. Kim, *J. Vac. Sci. Technol. A*, 2021, **39**, 033410.

27 H. T. Zhou, L. J. Cong, J. G. Ma, B. S. Li, M. Z. Chen, H. Y. Xu and Y. C. Liu, *J. Mater. Chem. C*, 2019, **7**, 13149–13155.

28 Z. H. Huang, S. R. Zhou, L. R. Chen, Q. Q. Zheng, H. L. Li, Y. Q. Xiong, L. J. Ye, C. Y. Kong, S. Q. Fan, H. Zhang and W. J. Li, *Crystals*, 2022, **12**, 1427.

29 S. R. Zhou, H. Zhang, X. Peng, H. W. Liu, H. L. Li, Y. Q. Xiong, W. J. Li, P. A. Yang, L. J. Ye and C. Y. Kong, *Adv. Photonics Res.*, 2022, **3**, 2202192.

30 L. Wang, J. S. Jie, Z. B. Shao, Q. Zhang, X. H. Zhang, Y. M. Wang, S. Zheng and S. Lee, *Adv. Funct. Mater.*, 2015, **25**, 2910–2919.

31 Y. Qin, L. H. Li, X. L. Zhao, G. S. Tompa, H. Dong, G. Z. Jian, Q. M. He, P. J. Tan, X. H. Hou, Z. F. Zhang, S. J. Yu, H. D. Sun, G. W. Xu, X. S. Miao, K. H. Xue, S. B. Long and M. Liu, *ACS Photonics*, 2020, **7**, 812–820.

32 J. Wang, Y. Q. Xiong, L. J. Ye, W. J. Li, G. P. Qin, H. B. Ruan, H. Zhang, L. Fang, C. Y. Kong and H. L. Li, *Opt. Mater.*, 2021, **112**, 110808.

33 C. T. Wei, J. P. Xu, S. B. Shi, R. Cao, J. Chen, H. Dong, X. S. Zhang, S. G. Yin and L. Li, *J. Mater. Chem. C*, 2019, **7**, 9369–9379.

34 Q. Q. Zheng, L. R. Chen, X. D. Li, K. Ding, D. Pang, H. L. Li, Y. Q. Xiong, H. B. Ruan, L. Fang, W. J. Li, L. J. Ye, H. Zhang and C. Y. Kong, *Sci. China: Technol. Sci.*, 2023, **66**, 2707–2715.

35 K. H. Li, X. K. Yang, F. F. Yang, J. G. He, G. Z. Zhang, S. L. Jiang, C. Chen and J. Tang, *Mater. Today Electron.*, 2022, **2**, 100011.

36 X. C. Liang, C. Hou, Z. H. Wu, Z. T. Wu and G. A. Tai, *Nanotechnology*, 2023, **34**, 205701.

37 Z. H. Wu, C. Shifan, Z. T. Wu, Y. Liu, W. Shao, X. C. Liang, C. Hou and G. A. Tai, *Nano Res.*, 2024, **17**, 3053–3060.

38 Y. Liu, G. A. Tai, C. Hou, Z. T. Wu and X. C. Liang, *ACS Appl. Mater. Interfaces*, 2023, **15**, 14566–14574.

39 G. A. Tai, B. Liu, C. Hou, Z. T. Wu and X. C. Liang, *Nanotechnology*, 2021, **32**, 505606.

40 S. Oh, C. K. Kim and J. Kim, *ACS Photonics*, 2017, **5**, 1123–1128.

41 L. Chen, B. Y. Wang, J. Q. Dong, F. L. Gao, H. W. Zheng, M. He and X. F. Wang, *Nano Energy*, 2020, **78**, 105260.

42 Y. L. Yu, Y. Hu, J. H. Yang and Z. M. Wei, *Mater. Today Electron.*, 2022, **2**, 100013.

43 Y. H. Wang, S. Y. Li, J. Cao, Y. C. Jiang, Y. Zhang, W. H. Tang and Z. P. Wu, *Mater. Des.*, 2022, **221**, 110917.

44 X. M. Xue, Y. N. Luo, Q. Hao, J. Cao, X. Tang, Y. F. Liu and M. L. Chen, *ACS Photonics*, 2023, **10**, 4290–4298.

45 M. M. Yaacob, M. A. Alsaedi, J. R. Rashed, A. M. Dakhil and S. F. Atyah, *Photonic Sens.*, 2014, **4**, 325–337.

46 H. W. Liu, S. R. Zhou, H. Zhang, L. J. Ye, Y. Q. Xiong, P. Yu, W. J. Li, X. Yang, H. L. Li and K. C. Yang, *J. Phys. D: Appl. Phys.*, 2022, **55**, 305104.

47 Y. Q. Yu, L. B. Luo, M. Z. Wang, B. Wang, L. H. Zeng, C. Y. Wu, J. S. Jie, J. W. Liu, L. Wang and S. H. Yu, *Nano Res.*, 2015, **8**, 1098–1107.

48 M. Rabia, A. M. Elsayed and M. A. Alnuwaiser, *Micromachines*, 2023, **14**, 1573.

49 Y. Q. Yu, L. B. Luo, M. Z. Wang, B. Wang, L. H. Zeng, C. Y. Wu, J. S. Jie, J. W. Liu, L. Wang and S. H. Yu, *Nano Res.*, 2015, **8**, 1098–1107.

