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plications of luminescent metal
organic frameworks (MOFs) for sensing dipicolinic
acid in biological and water samples: a review

Kawan F. Kayani, *ab Omer B. A. Shatery,*b Sewara J. Mohammed, cd

Harez Rashid Ahmed, b Rebaz F. Hamarawf b and Muhammad S. Mustafab

The detection of trace quantities of 2,6-dipicolinic acid (DPA) in real-world samples is crucial for early

disease diagnosis and routine health monitoring. Metal–organic frameworks (MOFs), recognized for their

diverse structural architectures, have emerged as advanced multifunctional hybrid materials. One of the

most notable properties of MOFs is their luminescence (L), which can arise from structural ligands, guest

molecules, and emissive metal ions. Luminescent MOFs have shown significant promise as platforms for

sensor design. This review highlights the application of luminescent MOFs in the detection of DPA in

biological and aqueous environments. It provides a comprehensive discussion of the various detection

strategies employed in luminescent MOF-based DPA sensors. Additionally, it explores the origins of L in

MOFs, their synthesis, and the mechanisms underlying their sensing capabilities. The article also

addresses key challenges and limitations in this field, offering practical insights for the development of

efficient luminescent MOFs for DPA detection.
1. Introduction

Spores, a type of biological pollutant produced by bacteria, are
highly dangerous to humans and hard to eliminate because
they resist most common treatments.1,2 Bacillus anthracis,
a spore-forming bacterium, is the pathogen responsible for
anthrax. This bacterium exists in two forms: rod-shaped
organisms and spores. In nutrient-rich environments, the rod-
shaped organisms grow and divide, but when nutrients are
depleted, they convert into spores that can persist for
decades.3–6 Bacillus spores can contaminate food and water or
be dispersed through aerosols, such as via air conditioning
systems, posing a risk for both animal and human infections.7

Diagnosing anthrax is challenging because symptoms in
humans can take 1–60 days to appear. B. anthracis spores are
protected by several layers, with dipicolinic acid (DPA) being
a key component, accounting for 5–15% of the spore's dry mass.
Consequently, DPA serves as a unique biomarker for B.
anthracis.8–12 However, detecting it is difficult because anthrax
symptoms in humans may take up to 60 days to manifest.13,14
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Currently, various approaches are used for detecting DPA,
including high-performance liquid chromatography,15 surface-
enhanced Raman spectroscopy,12,16 electrochemical
methods,17,18 and uorescence (FL).19 However, most existing
DPA detection methods struggle to achieve both high sensitivity
and a wide working range simultaneously.20–22 Therefore, it is
essential to develop a detection system that is straightforward,
fast, sensitive, and capable of detecting DPA across a broad
range. Among these methods, FL detection stands out due to its
affordability, sensitivity, speed, and the availability of portable
instrumentation.23,24 Developing new uorescent porous mate-
rials, particularly metal–organic frameworks, for DPA sensing is
of great interest, as these materials offer stability and long
emission lifetimes.25

MOFs, also referred to as porous coordination polymers
(PCPs), are two- or three-dimensional porous crystalline mate-
rials (PCMs) characterized by innite lattices.26–30 They consist
of secondary building units (SBUs), metal cation salts or clus-
ters, and polydentate organic ligands connected through coor-
dination bonds.31–33 MOFs are a relatively new class of chemical
materials with signicant potential for sensor applications due
to their large surface area, adjustable pore sizes, multiple
functional sites, high stability, and ease of
functionalization.30,34–39 Consequently, the tunable structural
and surface properties of MOFs make them promising candi-
dates for catalysis,28,40 sensing,41–43 drug delivery,44,45 gas sepa-
ration,46,47 and the detection of toxic substances.48,49

Furthermore, MOFs have shown potential for onsite analysis
and real sample analysis in various elds.50 Growing concerns
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about human safety have further motivated researchers to
investigate MOFs for analytical applications.51,52

Luminescent MOFs represent a signicant class of MOFs,
regarded as promising candidates for sensor materials capable
of detecting various substances, including heavy,53,54 mole-
cules,55,56 and toxicants.57 These luminescent MOFs feature
exible structural units, with FL emanating from both the metal
centers and ligands. Their optical properties can be modied
through interactions among these components. In addition to
the intrinsic uorescence from MOF subunits, photo-
responsive elements can be incorporated into MOFs to
enhance FL.58 Recently, a wide array of luminescent MOFs has
been synthesized using lanthanide elements,59 transition
metals,60 and main group metal ions,61 along with luminescent
sources such as carbon dots62 and dyes.63 However, advancing
luminescent MOF-based sensors for practical applications
in real-world scenarios remains an ongoing challenge.
Further research is needed to develop new uorescent MOF-
based sensing materials for detecting DPA in human serum
samples.

Several reviews have provided comprehensive overviews of
MOF-based sensors, thoroughly summarizing the applica-
tions of luminescent MOF-based sensors.64–68 In this review,
we focus on the various types of luminescent MOFs and their
synthesis methods, and we provide a detailed summary of
their sensing mechanisms. Additionally, we explore the latest
advancements in the sensing capabilities of luminescent
MOFs, particularly their effectiveness in detecting DPAs in
biological specimens and water. Lastly, we critically examine
the challenges and future prospects of MOF sensors, high-
lighting key points to demonstrate the growing interest in
utilizing luminescent MOFs as sensors within the sensing
eld.
Fig. 1 Chemical structure of DPA.
1.1 Scope of this study

Several reviews have been published on MOFs across various
elds and quality assessments in the literature. For example,
Khezerlou et al. summarized the use of MOFs for sensing
tetracycline in food and water samples,69 while Raza et al.
reviewed supercapacitor electrode materials based on BMOFs.70

Additionally, Luo et al. explored BMOFs for the detection of
water contaminants.71

Despite the signicance of previous studies, several key
aspects, such as the design and strategies for utilizing BMOFs
as sensors for DPA, have recently attracted increased atten-
tion. This review delves into the emerging eld of BMOFs,
offering a comprehensive analysis of their potential applica-
tions in DPA detection. We discuss DPA and its sources, the
luminescence properties of BMOFs, various synthesis
methods, and the sensing mechanisms. Additionally, the
review explores the applications of BMOFs for DPA detection
based on ratiometric systems, single-probe sensing, and
visual detection methods. These insights contribute to
a deeper understanding of how novel BMOF materials can
function as DPA sensors, making this review both unique and
relevant.
14 | Nanoscale Adv., 2025, 7, 13–41
2. Dipicolinic acid and its samples

Dipicolinic acid (DPA), also known as pyridine-2,6-dicarboxylic
acid (Fig. 1), is a key component of bacterial spores,
comprising 5 to 15% of their total dry mass.72 Bacterial spores
can release DPA during processes such as germination, hydro-
lysis, and heating. Consequently, DPA is commonly used as
a biomarker for detecting the presence of Bacillus and Clos-
tridium species in suspicious samples.73 Among the Bacillus
species, Bacillus anthracis is the most toxic pathogen, with the
2001 anthrax attack in the United States resulting in ve fatal-
ities.74 Anthrax remains a signicant public health concern, as
the inhalation of approximately 104 B. anthracis spores can be
fatal unless treated within 18 to 24 hours.75 While Bacillus cereus
and Bacillus subtilis are less toxic than B. anthracis, they can still
cause foodborne illnesses.76 Additionally, DPA itself has been
associated with neurotoxic effects.77

Several techniques have been utilized for the analysis and
detection of DPA, including high-performance liquid chroma-
tography,78 capillary zone electrophoresis,79 and surface-
enhanced Raman spectroscopy.80 While these methods offer
high selectivity and sensitivity, they have certain drawbacks,
such as being expensive, requiring extensive sample pretreat-
ment, and involving complex procedures.81 Therefore, there is
a need for a more cost-effective, user-friendly, time-efficient,
and highly sensitive and selective method for detecting DPA
in various matrices. Optical sensors have garnered signicant
interest due to their excellent selectivity, high sensitivity,
simplicity, speed, and the ability to provide visible detection
with the naked eye.82–84

In recent years, rapid advancements in nanotechnology have
led to the development of innovative colorimetric and uores-
cence sensors using various nanomaterials, including carbon
dots,85–87 quantum dots,88 MOFs,89,90 and BMOFs.91 The scien-
tic community has shown increasing interest in MOFs due to
their porosity, structural diversity, adjustable compositions,
and distinctive properties, which have made them widely
applicable in sensing. Furthermore, BMOFs have gained
increasing attention for their superior performance compared
to single-metal MOFs and their mixtures in similar applica-
tions.92 As such, constructing a novel BMOF remains a formi-
dable challenge for DPA sensing.

DPA is present in both biological and water samples. In
biological samples, such as tissue or bodily uids, DPA is
released when bacterial spores germinate or break down. For
instance, infections caused by Bacillus anthracis or Clostridium
© 2025 The Author(s). Published by the Royal Society of Chemistry
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difficile can introduce spores into the body, where DPA may be
detected during spore germination. Environmental exposure,
such as through contaminated surfaces or air, can also result in
spores entering biological systems.93–95 In water samples, DPA
contamination typically occurs through runoff from soil, agri-
cultural activities, or untreated wastewater, which may contain
spores from spore-forming bacteria. Spores are highly resilient,
allowing them to persist in water sources for extended periods,
and their presence can indicate contamination from bacterial
sources.96 DPA is used as a reliable biomarker to detect and
quantify spore contamination in both biological and water
environments.

As described in Table 1, this section summarizes traditional
DPA detection methods and compares their performance with
MOFs for DPA detection.
3. Luminescent sensors

Luminescence-based sensing, which relies on changes in FL
due to sensor–analyte interactions, has become a promising
technique across various applications because of its high
sensitivity, rapid response, and ease of use.97,98 Traditional
luminescent sensors typically utilize organic dyes. However, the
choice of sensor material is crucial for effective analyte detec-
tion. Conventional organic dyes used in luminescent sensors
have several drawbacks, including toxicity, a tendency to
aggregate, susceptibility to photobleaching, and limited
adsorption capacity for target analytes.64 To address these
issues, a range of L materials, such as metal complexes,99

carbon dots,100,101 nanoclusters,102 and lanthanide-doped inor-
ganic phosphors,103 have been extensively explored.104 Recently,
luminescent MOFs have garnered signicant attention in both
Table 1 Summary of traditional DPA detection methods and a comparis

Detection
method Principle Sensitivity Selectivity Ad

Fluorescence
spectroscopy

Detection of DPA-
induced
uorescence
changes

Moderate
to high

High - F
- H

UV-vis
spectroscopy

Absorbance changes
upon DPA binding

Moderate Moderate - Si
ins
- N

Chromatography
(HPLC)

Separation and
quantication of
DPA in mixtures

High High - E
sel
- A
qu

Mass
spectrometry
(MS)

Ionization and mass
analysis of DPA

High High - H
- C
det
am

Electrochemical
methods

Current changes
due to DPA redox
activity

Moderate
to high

Moderate
to high

- P

- C

© 2025 The Author(s). Published by the Royal Society of Chemistry
fundamental and practical research. These MOFs exhibit
inherent luminescence, adjustable pore sizes, high adsorption
capacities, and easily functionalizable surfaces, which enhance
host–guest interactions and translate these interactions into
detectable luminescence responses, making them an excellent
material for fabricating uorescent sensors.105,106 Typically, the
luminescence performance of MOFs can be achieved through
two main strategies. The rst strategy involves synthesizing
MOFs using luminescent metal ions (such as lanthanide ions
like Eu3+, Ln3+, Tb3+, and Dy3+) as the coordination center, or
using organic ligands that contain aromatic or conjugated
moieties as linkers.81 The second strategy involves encapsu-
lating luminescent guest molecules or luminescent nano-
particles within non-luminescent MOFs to trigger L.107
3.1 Origins of L in MOFs

Recently, different structural architectures of MOFs have been
created, showcasing their potential as multifunctional mate-
rials, particularly in designing luminescent sensors. The L of
MOFs originates from organic ligands,108 guest species,109 and
metal ions110 making it essential to choose suitable linkers,
metal nodes, and guest molecules to design and synthesize
MOFs with the best luminous properties (Fig. 2). Ligands
provide antenna effects (AEs) for lanthanide MOFs (Ln-MOFs),
and p-conjugated backbones are crucial for the L properties
of MOFs.111 Although Ln ions and light-emitting organic linkers
are commonly used to create luminescent MOFs, some non-
luminescent MOFs have also shown signicant potential as
sensors. Another effective approach to develop unique uores-
cent sensors using MOFs is to encapsulate luminous guest
molecules within their pores.112
on of their performance with MOFs for DPA detection

vantages Disadvantages Comparison with MOFs

ast response - Requires uorophores - MOFs can offer similar or
higher sensitivity with
tunable emission
properties, and lower
interference

igh sensitivity - Prone to interference

mple
trumentation

- Moderate selectivity - MOFs offer improved
selectivity through tailored
pore structures and surface
functionalization

on-destructive - May require large
sample volumes

xcellent
ectivity

- Expensive equipment - MOFs provide faster
detection and do not
require separation stepsccurate

antication
- Time-consuming

igh sensitivity - Expensive equipment - MOFs can achieve
comparable sensitivity but
with simpler, lower-cost
detection mechanisms

apable of
ecting trace
ounts

- Complex sample
preparation

ortable - Requires conductive
surfaces

- MOFs offer improved
selectivity and avoid
electrode fouling issues by
using luminescence or
capacitive sensing

ost-effective - May suffer from
fouling
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Fig. 2 Illustration of potential emission modes in MOFs.

Fig. 3 Energy absorption and transformation processes, adapted from
ref. 121.
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MOFs allow for the selection ofmetal ions and organic ligands
with specic functionalities. FL can be introduced throughmetal
ions, ligands, or guest molecules, with the FL enhanced by charge
transfer (CT) between the ligands and metals.113 The L properties
of these materials are inuenced by various processes involving
different ligands, including metal to ligand charge transfer
(MLCT), ligand to metal charge transfer (LMCT), metal-based
emission, ligand-based L emission, AEs, sensitivity, excimer or
stimulated complex emission, adsorbate emission, and surface
activity. The emissionmechanisms of coordinated dual-emission
MOFs primarily include metal-centered emission, and ligand-
centered emission.114,115 The MLCT and LMCT processes
depend on the relative energy levels of the lowest excited states in
MOFs. If the energy level of the organic ligand's lowest excited
state is lower than that of the metal ions, the CT frommetal ions
to organic ligands results in L, characterizing the MLCT process.
Conversely, if the CT occurs from organic ligands tometal ions, it
denes the LMCT process.116

3.1.1 Metal ion-based emission. Extensive research has
been conducted on Ln-MOFs as luminescent probes due to their
long L lifetimes, high color purity, and signicant Stokes shis
resulting from f–f transitions via an AE.117 In this process,
organic ligands in Ln-MOFs function as ‘antennae’, absorbing
photons from the UV-vis spectrum and transferring energy to
the Ln ions.118–120 The mechanisms of energy absorption and
transfer are illustrated in Fig. 3, with Eu3+ and Tb3+ chosen as
representative Ln ions for a detailed explanation:

1. Ligands with aromatic or large conjugated systems absorb
photons from the UV-visible spectrum, causing the ligand's
ground state (S0) to transition to the singlet excited state (S1).

2. The unstable excited state of the ligands can release energy
in two ways: rst, the excited state S1 directly returns to the S0
state, emitting a photon. The second pathway involves the
excited state S1 transferring energy to the triplet state (T1) via
intersystem crossing (ISC), where the T1 state may return to the
S0 state through phosphorescence (PH).

If the T1 state aligns with the energy level of Ln3+, the energy
is transferred through intramolecular energy transfer (IET),
effectively sensitizing Ln3+ emission. Subsequently, the excited
16 | Nanoscale Adv., 2025, 7, 13–41
Ln3+ returns to the S0 state, emitting its characteristic L. Thus,
ligands with strong photon absorption are ideal for making Ln-
MOFs, which serve as promising luminescent sensors.121

Yang et al.122 developed a novel probe for DPA detection
based on a ratiometric system, where blue light-emitting Si
nanoparticles (Si NPs) were encapsulated within green light-
emitting Tb-MOFs. The Tb metal serves as the source of uo-
rescence signals.

3.1.2 Linker-based (LB) emission. LB emission in MOFs is
achieved using various ligands and mainly relies on CT mech-
anisms, including MLCT, LLCT, and internal charge transfer of
ligands (ILCT). MLCT L occurs when metal ions, irradiated by
light, transfer energy to ligands, causing the S to shi from the
metal to the ligand before returning to the S0 state and emitting
FL. This process is common in complexes with oxidizable d6, d8,
d10 electronic congurations, and p receptor ligands.123 The
complex absorbs visible light, converting the excited MLCT
state into a triplet MLCT state via intersystem crossing. FL
© 2025 The Author(s). Published by the Royal Society of Chemistry
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emission occurs when electrons return from the excited MLCT
state to S0, and PH emission occurs when they return from the
triplet MLCT state to S0. The likelihood of MLCT increases with
the reducibility of metal ions and the oxidizability of ligands.
Organic ligands with p-conjugation signicantly contribute to
the L of LLCT. In this case, ligands form the framework's
skeleton and are the main contributors to the characteristic
emission of the MOFs.124 Fig. 4 shows common organic linkers
that exhibit luminescence.

Huo et al. developed a ratiometric probe using UiO-66-
(COOH)2–NH2/Eu, which exhibits two emission peaks: one at
Fig. 4 Some common organic linkers having luminescence characterist

© 2025 The Author(s). Published by the Royal Society of Chemistry
453 nm, originating from the 2-aminoterephthalic acid linker,
which decreases progressively, and others at 598, 621, and
705 nm, which increase with the addition of DPA. As a result, it
serves as a ratiometric uorescence sensing platform for
detecting DPA concentrations.125

3.1.3 Guest molecule based emission. Quantum dots
(QDs),126 dyes,127–130 and luminescent nanomaterials23,131 are
some common luminescent guests that can enhance the FL
properties of MOFs upon incorporation. These guest molecules,
with customizable functional groups, provide effective interac-
tion sites for binding with specic parts of analyte molecules. By
ics.

Nanoscale Adv., 2025, 7, 13–41 | 17
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leveraging the favorable design of guest-incorporated struc-
tures, researchers can develop more efficient guest@host
systems.132

In addition, incorporating QDs, such as carbon dots
(CDs),84,133,134 into a matrix creates a unique platform for CD-
based sensors with signicantly enhanced FL properties.135

Among various hosts for CDs, MOFs have shown favorable
characteristics for loading guest molecules. Combining the
inherent FL properties of CDs with the porous structure of
MOFs allows for the detection of host–guest molecular inter-
actions through changes in FL.136

Incorporating organic dyes into the structure of MOFs
utilizes the nanospace within MOF pores as a molecular ask to
create uorescent host–guest materials. However, traditional
MOF-based sensors, which rely on single-response FL, oen
suffer from inaccuracies and low sensitivity.137 To address these
limitations, incorporating dyes into MOF pores (Dye@MOF) is
a practical solution. Fluorescent dye molecules, which are cost-
effective and easy to synthesize, are typically incorporated into
luminescent MOF pores. Dye@MOF materials exhibit excellent
FL behavior with dual emissive centers. For example, organic
dyes such as uorescein, and rhodamine, are known for their
efficient uorescence properties.132,138

Luminescent nanomaterials such as metal nanoclusters
(NCs), have attracted signicant interest due to their distinct
physicochemical properties compared to conventional nano-
particles.139 NCs, which exhibit FL, consist of several atoms but
behave molecularly due to their small size. These uorescent
NCs demonstrate surface plasmon resonance absorption in the
visible light range and FL in the inner-infrared range. NCs are
characterized by a long lifetime, large Stokes shi, good pho-
tostability, and excellent electrocatalysis properties.140 Addi-
tionally, incorporation of NCs into ZIF-8 pores enhances FL
characteristics, resulting in improved FL lifetimes and higher
detection efficiencies compared to traditional ZIF-8.141,142

Ma et al.143 designed a novel probe for detecting DPA. The
initially weak red emission of Cu NCs is signicantly enhanced
by the addition of lanthanide Tb3+, attributed to the
aggregation-induced emission (AIE) effect. This probe allows
the monitoring of DPA due to the strong interaction between
DPA and Tb3+, facilitated by the clamping conguration of the
adjacent pyridine nitrogen and carboxylic acid groups; the
addition of DPA causes the dissociation Tb3+ from the Cu NCs
Fig. 5 Microwave-assisted synthesis of MOFs.

18 | Nanoscale Adv., 2025, 7, 13–41
through a stronger coordination effect. This causes the Cu NCs
to revert to a dispersed state, resulting in weakened uores-
cence. Based on this mechanism, an “off-on-off” uorescent
probe for DPA detection was developed, where Tb3+ acts as
a bridge to enhance the AIE uorescence effect in Cu NCs and
serves as a specic recognizer for DPA. This work highlights the
potential of Cu NCs as a novel luminescent material.
4. Synthesis methods of MOFs

MOFs are composed of two main elements: metal ions and
organic ligands or bridging linkers. MOFs are usually created by
gently combining metal ions with organic linkers, producing
materials that are both porous and crystalline.
4.1 Microwave assisted method

Microwave assisted methods are extensively utilized for the
rapid synthesis of MOFs under hydrothermal conditions, effi-
ciently producing small metal and oxide particles.144,145 To
achieve efficient heating, this method leverages the interaction
between mobile solvent charges, such as polar solvent ions or
molecules, and electromagnetic waves. Initially used in organic
chemistry to prepare nanosized metal oxides, this technique
involves lling a sealed Teon vessel with a substrate mixture
and an appropriate solvent, as illustrated in Fig. 5.146,147 The
Teon vessel is then microwaved for a specied duration and at
a specic temperature. By aligning the permanent dipole
moments of molecules with an electric eld, the microwave
quickly converts electromagnetic energy into thermal energy,
rapidly heating the mixture.148 This energy-efficient heating
technique increases the system's temperature and kinetic
energy by generating molecular collisions.149,150 Achieving
consistent nanocrystal sizes depends critically on the choice of
solvent and energy input. Microwaves, ranging from 300 to 300
000 MHz, facilitate rapid crystallization and the formation of
MOF products.151–153
4.2 Hydrothermal or solvothermal method

The hydrothermal or solvothermal method is widely employed
to prepare MOFs due to its simplicity, ease of use, and high
crystallinity.154 This technique involves stirring metal salts and
organic ligands in protic or aprotic organic solvents with
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 6 Schematic representation of the hydrothermal/solvothermal synthesis route.
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formamide functionality. Aprotic solvents include dimethyl
formamide, dimethyl sulfoxide, dimethylacetamide, among
others,155,156 and protic solvents encompass methanol, ethanol,
and various mixed solvents.157 To address solubility issues,
solvent mixtures can be used. When water is used as the solvent,
the process is called the hydrothermal method.158 The mixture
is placed in a closed vessel at high pressure and temperature for
several hours or a day, using glass vials for low temperatures
and autoclave reactors for high temperatures. The closed vessel
is heated above the solvent's boiling point to increase pres-
sure.159 The key parameter is temperature: it must be above the
boiling point under self-generated pressure for solvothermal
reactions and below or at the boiling point under ambient
pressure for non-solvothermal reactions. Under high pressure,
the solvent can reach temperatures above its boiling point,
whichmelts the salt and promotes the reaction. To achieve large
crystals with a high internal surface area, slow crystallization
from the solution is essential,160 as depicted in Fig. 6.
4.3 Mechanochemical methods

Mechanochemistry involves using a ball mill or a mortar and
pestle to introduce mechanical energy. Although this approach
Fig. 7 Mechanochemical synthesis of MOF structures.

© 2025 The Author(s). Published by the Royal Society of Chemistry
has been infrequently applied in MOF synthesis, it offers
advantages such as simplicity, minimal or no solvent use, and
reduced waste production.161,162 Certain MOFs can be rapidly
synthesized by mechanochemically reacting the appropriate
metal salt with an organic ligand, oen with little to no
solvent,163,164 as shown in Fig. 7. However, soluble metal salts are
typically required for these mechanochemical processes.165
4.4 Sonochemical methods

Sonochemistry studies the chemical reactions that occur when
a reaction mixture is exposed to high-energy ultrasound. The
primary aim of sonochemical synthesis in MOF research is to
develop a rapid, eco-friendly, and room-temperature method
that is easy to perform.89,166 This is particularly signicant for
future applications, as quick reactions could facilitate the scale-
up of MOFs.167,168 Additionally, the nanocrystalline particles
oen produced by sonochemical methods are expected to be
benecial for their use. Systematic investigations have focused
on the inuence of reaction time, temperature, and
solvent.169,170 It was found that short reaction times at ambient
pressure resulted in high yields of the product.171 For example,
Da-Won Jung successfully synthesized high-quality MOF-177
Nanoscale Adv., 2025, 7, 13–41 | 19
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Fig. 8 Sonochemical synthesis of MOF structures.
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crystals ranging from 5 to 20 mm using a sonochemical method,
signicantly reducing the synthesis time. This process utilized
the low-cost solvent 1-methyl-2-pyrrolidone, which has the
highest CO2 adsorption capacity.172 The sonochemical synthesis
of MOFs is illustrated in Fig. 8.
4.5 Electrochemical methods

Finally, we highlight the advancements in the electrochemical
synthesis of MOF materials, detailing both anodic and cathodic
methods.173,174 Electrodeposition is a simple, cost-effective
technique that requires milder reaction conditions and
shorter times.175 Rapid CT during synthesis results in the quick
nucleation and growth of MOF crystals on substrates.176 This
method enables the production of MOF thin lms with
adjustable morphology and crystallite size on various conduc-
tive substrates.177,178 The crystallinity and orientation of the thin
lms, which are crucial for practical applications, can be
controlled by adjusting factors such as the applied potential
energy, temperature, electrolyte, and solvent.179 The electro-
chemical synthesis of MOFs is illustrated in Fig. 9.
Fig. 9 Electrochemical synthesis of MOFs.

20 | Nanoscale Adv., 2025, 7, 13–41
Alternative methods, including layer by layer assembly,180

spray-drying,181 diffusion,182 template strategies,183 post-
synthetic modication184 and microemulsion,185 can be
employed to synthesize various types of MOFs.

5. The sensing mechanisms of
luminescent MOFs

In this section, we explain the sensing mechanisms of CM, PET,
FRET, CA, and IFE, along with their advantages, disadvantages,
and relationships with other mechanisms, as described in
Table 2.

5.1 Collapse mechanism (structural transformation, ST)

The collapse of frameworks refers to the breakdown and
transformation of the crystalline structure of luminescent
MOFs into free ligands and metal ions following the detection
of analytes.186,187 This process can be readily identied using
powder X-ray diffraction (PXRD), and ICP analyses. Aer lumi-
nescence detection, the X-ray diffraction (XRD) pattern may
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Table 2 A comprehensive comparison of CM, PET, FRET, CA, and IFE in terms of their full forms, advantages, disadvantages, and relationships
with other mechanisms

Mechanisms Full form Advantages Disadvantages
Relationships with other
mechanisms

CM Collapse
mechanism

- Sensitive to
environmental changes
(e.g., pressure,
temperature)

- May be irreversible - Can trigger or result from other
mechanisms like PET and FRET if
structural collapse alters energy or
electron transfer pathways

- Direct correlation with
structural integrity

- Limited to MOFs with specic
structural exibility

PET Photoelectron
transfer

- Highly selective - Requires specic electron
donor–acceptor pairs

- PET can compete with FRET and
IFE mechanisms, as they all rely
on changes in energy transfer or
quenching

- Strong quenching effect
due to electron transfer

- Sensitivity limited to
molecules that can engage in
electron transfer

FRET Förster
resonance
energy transfer

- High sensitivity - Requires spectral overlap
between the donor and
acceptor

- Can be inuenced by structural
collapse, which might change
donor–acceptor proximity

- Capable of detecting
interactions over long
distances (up to 10 nm)

- Distance-dependent
efficiency

- Competes with PET when both
energy and electron transfer occur

CA Competition
absorption

- Simple to implement - Requires analyte with
overlapping absorption
spectra

- Similar to IFE, but primarily
involves the analyte's absorption
of excitation energy, whereas IFE
involves reabsorption of emitted
light

- Efficient in quenching
luminescence through
absorption of excitation/
emission by the analyte

- Limited selectivity

IFE Inner lter
effect

- Does not require direct
interaction with the MOF

- Can be confused with true
quenching

- Oen confused with CA but
distinguished by its focus on
reabsorption of emitted light

- Effective for strongly
absorbing species

- Dependent on analyte
concentration and optical
density

- Can occur alongside PET or FRET
mechanisms, altering
luminescence signals
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show new peaks or the disappearance of existing ones, indi-
cating the formation of a new structure.188,189 This structural
change may lead to the loss of metal–ligand charge transfer
emission or the emergence of ligand-based emission, resulting
in signicant photoluminescence (PL) changes in MOFs. This
framework collapse mechanism poses challenges for revers-
ibility experiments, rendering the MOFs non-reusable
(Fig. 10).190,191 Pengyan Wu et al. synthesized a luminescent
MOF using a hydrothermal method for the quantication of
Hg2+. The presence of Hg2+ completely quenched the L of the
Fig. 10 Schematic diagram of the ST mechanism.

© 2025 The Author(s). Published by the Royal Society of Chemistry
luminescent MOF. Time-dependent PXRD patterns indicated
that the crystalline structure of the luminescent MOF collapsed
and transformed into a free ligand in the Hg2+ aqueous solu-
tion. This transformation was further supported by IR spectra,
EA, and ICP.186
5.2 Photoelectron transfer (PET) mechanism

PET is a process involving charge transfer in an excited state,
where a photoelectron moves from an excited donor to
Nanoscale Adv., 2025, 7, 13–41 | 21
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Fig. 11 (A) Schematic illustration of the PET mechanism. (B) Diagram showing molecular orbitals.
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a ground-state acceptor.192,193 If the donor's lowest unoccupied
molecular orbital (LUMO) has higher energy compared to the
acceptor's LUMO, the photoelectron will transfer to the ground-
state acceptor instead of returning to the donor's ground state.
This results in the quenching of the donor's emission.194 This
PL sensing mechanism has been used to detect various analy-
tes43,195 and pesticides.196,197 As shown in Fig. 11, when the
energy level of the MOF's conduction band or LUMO exceeds
that of the analyte's LUMO, photoelectrons can efficiently move
from the MOF to the analyte. This process can quench the L of
the MOF, serving as a signal for the presence of the analyte. Pan
et al. developed a new Zn-MOF designed as a uorescent sensor
for detecting nitrobenzene using the PET mechanism.198
5.3 FRET (Förster resonance energy transfer) mechanism

FRET is a distance-dependent non-radiative energy transfer
process, widely used in FL sensing.199,200 This phenomenon
occurs when the emission spectrum of a donor molecule
partially overlaps with the absorption spectrum of an acceptor
molecule, enabling energy transfer from the donor to the
acceptor (Fig. 12).201,202 The effectiveness of FRET is affected by
factors such as the extent of spectral overlap, the distance
Fig. 12 (A) Schematic illustration of the FRET mechanism. (B) The MOF'

22 | Nanoscale Adv., 2025, 7, 13–41
between the donor and acceptor, and dipole–dipole interac-
tions. When the excitation spectrum of target molecules over-
laps with the emission spectrum of MOFs, the presence of these
target molecules (acceptors) can alter the FL of the MOFs
(donors).124 There are two main types of non-radiative energy
transfer: Förster and Dexter mechanisms. FRET is a short-range
mechanism that requires signicant spectral overlap between
the donor's emission and the acceptor's absorption spectra for
efficient transfer.203 In contrast, Dexter energy transfer depends
on the orbital overlap between the donor and acceptor,
involving an electron exchange process, and its rate decreases
exponentially with distance.204 Understanding these mecha-
nisms is essential for designing energy transfer systems in
LMOFs, facilitating the development of singlet–singlet or
triplet–triplet energy transfer between linkers, metal centers,
and guest molecules.205
5.4 Competition absorption (CA) mechanism

When the absorption spectrum of an analyte coincides with the
excitation spectrum of a MOF, both the MOF and the analyte
compete for the excitation light.206 This competition causes the
analyte to absorb some of the excitation light, thereby reducing
s emission spectrum and the guest's UV-vis absorption spectrum.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 13 (A) Diagram illustrating the CA mechanism. (B) UV-visible absorption spectrum of the guest species.
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the total energy available to the MOF.207 As a consequence, fewer
excited states are populated in the MOF, leading to lumines-
cence quenching of the MOF, as illustrated in Fig. 13. This
mechanism is frequently proposed for the detection of Fe3+

ions208 and certain volatile organic compounds (VOCs) such as
acetone,209 and the detection of 6-mercaptopurine.210
5.5 The inner lter effect (IFE) mechanism

IFE happens when the absorption spectrum of a quencher in
the detection system overlaps with either the excitation or
emission spectra of LMOFs.211,212 Sometimes called apparent
quenching, IFE is not a genuine quenching process. Instead, it
arises from the attenuation of the excitation beam or the
absorption of emitted radiation due to a high concentration of
either luminescent MOFs or the quencher in solution.213 This
effect results in a decrease in the intensity of the uorescent
MOF.214 The FL response to the analyte is signicantly more
sensitive than the UV-vis absorption at low concentration levels,
resulting in a substantial improvement in detection sensi-
tivity.215 In this mechanism, the absorption spectrum of the
absorber may overlap with the excitation spectrum, emission
spectrum, or both the excitation and emission spectra of the
uorescer, as shown in Fig. 14.
Fig. 14 Schematic diagram of IFEs.

© 2025 The Author(s). Published by the Royal Society of Chemistry
6. Applications

Measuring various analytes in serum such as metal ions,216,217

biomolecules,218,219 vitamins,220,221 and hazardous
compounds,222–224 as well as in urine and other clinical samples,
is essential for disease detection, monitoring, and manage-
ment.225 Additionally, there is a signicant demand to under-
stand environmental conditions, particularly water quality, to
detect hazardous substances in water samples.226 Fluorescence
analysis using uorescent sensors is effective for both qualita-
tive and quantitative analysis of biological and chemical
substances.227

FL-based sensors offer advantages over other analytical
techniques such as electrochemical method,228 high-
performance liquid chromatography,229 and atomic absorption
spectroscopy,230 and mass spectroscopy,231,232 due to their cost-
effectiveness, ease of operation, and high sensitivity.233–237

These sensors oen utilize organic molecules,238 dyes,239 and
uorescent nanomaterials.240–242 Among the most commonly
used uorescent sensors are MOFs.243–245 Fluorescent MOFs, or
luminescent MOFs, have garnered signicant attention due to
their unique properties, including controllable surface and pore
sizes and excellent optical characteristics.246,247 As a result,
Nanoscale Adv., 2025, 7, 13–41 | 23
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a wide range of luminescent MOF-based sensors with diverse
detection capabilities can be readily designed and
implemented.136–141 Fluorescent DPA sensors based on lumi-
nescent MOFs have found widespread application in biomed-
ical analysis and environmental water samples, as described
below.

6.1 Ratiometric sensing

Over the past decade, uorescence-based sensors have gained
increasing attention for monitoring applications due to their
high sensitivity, ease of use, and quick response time.248–250

However, quantifying a target analyte with uorescent probes
that exhibit single emission features presents signicant chal-
lenges. Various analyte-independent factors such as instru-
mental parameters, the microenvironments around the probes,
local concentrations of probe molecules, and photobleaching
complicate precise analysis. The most effective way to address
these challenges and ensure reliability is through ratiometric
approaches.83 However, during FL intensity measurement,
factors like concentration, environmental conditions, and
excitation light intensity can reduce the accuracy of MOF-based
monochromatic FL sensors.251 To mitigate this issue, an addi-
tional FL signal is introduced to create a MOF-based ratiometric
FL sensor. The emission intensities at two wavelengths are
independent of these interfering factors, enabling RF sensors to
overcome the limitations of single FL sensing by self-calibrating
dual-emission, thereby achieving accurate detection.116 Devel-
oping a new ratiometric sensing method is highly promising
and critically important for the convenient detection of DPA in
serum and water samples.

In 2023, Yin et al. developed and synthesized two silver-
based MOFs for monitoring DPA. The ratiometric FL probe
Tb3+@Ag-tpt was created to detect DPA in aqueous solutions.
Under 315 nm excitation, the FL spectrum of Tb3+@Ag-tpt
revealed two L centers corresponding to the emissions of Tb3+

ions and Ag-tpt. Additionally, narrower, weaker peaks at 488,
544, 582, and 620 nmwere linked to the transitions of Tb3+ ions,
Fig. 15 Schematic representation of the preparation of Tb3+@Ag-tpt and
Elsevier.

24 | Nanoscale Adv., 2025, 7, 13–41
while an emission peak at 354 nm was associated with Ag-tpt.
This probe demonstrated a working range of 0–65 mM and
a low detection limit (LOD = 24.2 nM). Moreover, Tb3+@Ag-tpt
showed a low LOD for bacterial spores (1.9 × 10−4 spores per
mL). Consequently, these silver-based composite materials offer
promising potential for reducing bacterial contamination and
real-time detection of bacterial spores,252 as shown in Fig. 15.

Huo et al. created a ratiometric probe using UiO-66-
(COOH)2–NH2/Eu, which displays two emission peaks: one at
453 nm that gradually decreases and others at 598, 621, and
705 nm that increase with the addition of DPA. Consequently, it
functions as a ratiometric FL sensing platform for detecting
DPA concentration. This platform demonstrated a reliable
linear response (0.2–40 mM), with a detection limit of 25.0 nM,
and exhibited a signicant FL color change from blue to red,
showing great potential for practical applications in river water
and human serum analysis.125

In 2023, Wu et al.253 introduced a series of bimetallic Ln-
MOFs called Tb/Eu-BTC. These Tb/Eu-BTC frameworks
demonstrated adjustable dual emission for DPA ratiometric
sensing. The efficient energy transfer from Tb3+ to Eu3+

produced a strong red emission at 616 nm, even with a high
proportion of Tb3+ in the frameworks. When DPA was intro-
duced, it blocked the energy transfer between Tb3+ and Eu3+

nodes, resulting in an emission at 544 nm and generating
a ratiometric FL response. As a new ratiometric FL probe, Tb/
Eu-BTC showed an excellent working range with DPA concen-
trations ranging from 50 nM to 3 mM, along with a low LOD of
4.9 nM, as shown in Fig. 16.

In 2021, Bao et al. developed a ratiometric probe for DPA
based on Zn-MOF and CDs. The FL intensity at 659 nm
increased due to the release of the organic ligand TCPP, which
occurred because of the selective interaction between DPA and
Zn2+ in the MOFs. CDs served as a reference signal at 445 nm,
remaining largely unchanged and allowing for self-calibration
in DPA sensing. The ratio F659 to F445 as a function of DPA
concentration demonstrated strong linear relationships in the
its application. Adapted from ref. 252 with permission. Copyright 2023,

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 16 Schematic of the Tb/Eu-BTC sensor for DPA detection. Adapted from ref. 253 with permission. Copyright 2023, Elsevier.
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ranges of 0.01–0.2 mM and 0.2–10 mM, with a LOD of 7 nM. This
approach was applied to determine DPA in spiked human
serum samples, suggesting a novel, simple, and selective
strategy for DPA detection,254 as shown in Fig. 17.

In this section, we explore in greater detail the most
frequently used ratiometric sensing platforms based on lumi-
nescent MOFs, as summarized in Table 3.
6.2 Single probe sensing

The FL detection of LMOFs mainly depends on observing the
changes in FL intensity at a specic emission peak of an
Fig. 17 Schematic of the Zn-MOF/CD-based probe for ratiometric FL de
Springer.

© 2025 The Author(s). Published by the Royal Society of Chemistry
individual LMOF.85 This change happens when the luminescent
MOF is exposed to a single excitation wavelength, yielding
results for target detection.

In 2023, Yang et al. developed a probe utilizing a three-
dimensional Cd-based MOF for detecting DPA in bovine
serum samples. This probe demonstrates sensitivity with
a detection limit of 3.04 mM. Consequently, this study intro-
duces a novel approach for creating transition metal organic
framework uorescent sensors aimed at detecting DPA.262

In 2023, Guo et al.263 developed a novel lanthanide-doped
probe (His@ZIF-8/Tb3+) for monitoring DPA. This probe
tection of DPA. Adapted from ref. 254 with permission. Copyright 2021,

Nanoscale Adv., 2025, 7, 13–41 | 25
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Table 3 List of selected luminescent MOFs, real samples, dual probes, dynamic range, and LOD values

Sample

Dual probes

Dynamic range LOD Ref.Response Reference

Tap water, urine Blue and green Gd/Tb-MOF — 0–0.21 mM 1.03 mM 255
Tap and river water Green Tb3+@UIO-67 Blue UIO-67 0.3 to 6 mM 36 nM 256
Lake water Red and green Tb/Eu-MOF Blue 2-hydroxyterephthalic acid 0.05 to 20 mM 1.5 nM 257
Tap water and urine Red and green Tb/Eu-MOF — 0–800 nM. 20–100 mM 5.9 nM 0.17 mM 258
Spore and water sample Green Eu-MOF@Tb Red Eu-MOF@Tb 0.2–10 mM 60 nM 259
Bovine serum Green Tb-MOFs Blue Si NPs 0.025 to 3 mM 5.3 nM 122
Human serum Red and green Tb/Eu@bio-MOF — 100 to 500 nM 34 nM 260
Human serum Red and green Eu/Tb-Hddb — 0–100 mM 0.8494 mM 261
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demonstrated a satisfactory working range from 0.08 to 10 mM
and a LOD of 0.02 mM. It was successfully applied to human
urine and bovine serum samples, achieving an excellent
recovery range of 98% to 103.2%.

Another study in 2023 involved the preparation of three
novel MOFs used as probes for detecting DPA. The LOD for each
MOF was determined to be 1.01 × 10−6 M (MOF 1), 1.17 ×

10−6 M (MOF 2), and 2.07 × 10−6 M (MOF 3), with a dynamic
range for all of them spanning from 0 to 0.991 mM. The probe
was applied in fetal bovine serum. Finally, all three types of
MOFs can be used as sensors to detect DPA, characterized by
high selectivity and sensitivity, and rapid response.264

Zuo et al. prepared a new lanthanide-doped probe by coor-
dinating Tb3+ ions with tannic acid (TA)-coated ZIF-8 (ZIF-
Fig. 18 Schematic diagram of the preparation and application of the ZI
2023, Royal Society of Chemistry.

26 | Nanoscale Adv., 2025, 7, 13–41
8@Tb–TA). The probe exhibits a LOD of 12.3 nM, with a working
range of 0 mM to 12.0 mM, and was also applied in bovine
serum samples.265 The overall preparation and application are
shown in Fig. 18.

Finally, Deng et al.266 developed a dual-mode uorometric/
colorimetric sensor for detecting DPA. The FL of Fe-MIL-
88NH2 was quenched by Cu2+, but DPA could restore it due to its
strong chelation with Cu2+. The FL recovery of Fe-MIL-88NH2

and the absorbance change at 652 nm served as analytical
signals for dual-mode DPA detection. The uorometric mode
exhibited linear responses within 10–60 mM and 60–160 mM,
with a detection limit of 1.46 mM. The colorimetric mode
exhibited a linear range of 5–25 mM and a detection limit of 3.00
mM. Overall, this dual-mode approach effectively detected DPA
F-8@Tb–TA probe. Adapted from ref. 265 with permission. Copyright

© 2025 The Author(s). Published by the Royal Society of Chemistry
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in water samples, indicating its signicant potential for disease
prevention and environmental monitoring.
6.3 Visual detection method

Visual detection has consistently captivated the interest of
analytical chemists.267 It is typically linked with simple and low-
cost instruments, rapid detection, minimal consumption of
samples and reagents, and portability for on-site analysis.
Currently, high-throughput, rapid discrimination visual tests
are crucial in numerous elds.81,268–270 Therefore, developing
sensitive and selective methods for visually detecting DPA in
serum and water samples is extremely important.

Zhang et al.271 (2023) detected DPA visually using a Tb-MOF
probe. The probe shows high selectivity for sensing DPA down
to 1.7 mM and exhibits a noticeable luminescence color change
that is visible to the naked eye. The ratio of green to blue color
(G/B) is directly related to the concentration of DPA. Specically,
the G/B ratio correlates well with DPA concentration in the
working range of 0–300 mM, with a LOD of 7.8 mM for visual
detection, as shown in Fig. 19. The probe is also effective for
detecting DPA in tap water, rainwater, and human serum.

Another study presented a compact visual detection device
for DPA based on the Tb-MOF that includes a mini-UV lamp,
a smartphone, a paper microchip, and a dark box. This portable
visual assay method, utilizing a paper microchip and
smartphone-integrated mini-device, achieved a qualication
limit of 0.48 mM and was also applied to serum samples.272
Fig. 19 Visual sensing platform using Tb-MOF for DPA detection. Adapt

© 2025 The Author(s). Published by the Royal Society of Chemistry
In addition, Shen et al.273 prepared novel Eu3+/Tb3+-MOFs
with three ligands for DPA detection, achieving limits of
detection of 0.248 mM, 0.874 mM, and 2.277 mM, which were also
applied in human serum samples. This study uses a paper-
based assay, suggesting that paper-based sensors can be used
for rough eld detection of DPA, observable through the naked
eye. The paper-based MOF sensors can display emission color
changes depending on the concentration of DPA, offering an
on-site eld detection method for DPA.

Wang et al.274 developed a smartphone-integrated ratio-
metric uorescent sensing platform based on a bimetallic MOF
(Eu and Tb-MOF) for monitoring the concentration of DPA in
the range of 0.06–30 mg mL−1, as shown in Fig. 20. The probe
was successfully applied to real samples, including human
serum samples.

Dashtian et al.93 (2024) introduced an innovative method
where green and yellow emissive N-doped CDs are incorporated
into bio-MOFs that are enhanced with functional groups
derived from adenine and trimesic acid (BTC) linkers. This
results in an exceptional uorescent sensor capable of detecting
DPA within a working range of 0.5 to 75.0 mM. The sensor
demonstrates outstanding performance with an extraordinarily
low detection limit of 0.16 mM for DPA. Successful practical
applications of the sensor have enabled rapid and precise
analysis of DPA in spiked urine and water samples. Addition-
ally, this low-cost, quick and user-friendly visual uorescent
sensor facilitates preliminary qualitative analysis of DPA visible
to the naked eye.
ed from ref. 271 with permission. Copyright 2023, Elsevier.
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Fig. 20 Schematic diagram of the Eu-Tb-MOF for visual detection of DPA. Adapted from ref. 274 with permission. Copyright 2023, Springer.
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In 2023, Norouzi et al.275 developed a FL sensor probe based
on Er-BTC MOF for the visual detection of DPA. They created
a paper test strip that combines online UV excitation with
a smartphone, forming a DPA signal-off sensing platform. This
uorometric visual paper-based biosensor offers a wide linear
range for DPA detection (10–125 mM), with LOQ and LOD values
of 4.32 and 1.28 mM, respectively. As a proof of concept, the
sensor was effectively used to monitor DPA in real samples of
tap water and urine, as depicted in Fig. 21.

In 2024, Wang et al. developed a ratiometric FL sensor based
on LnMOFs for the sensitive and selective recognition of DPA.
Fig. 21 A schematic representation of the probe for DPA detection. Ad
Chemistry.

28 | Nanoscale Adv., 2025, 7, 13–41
The thoughtfully engineered Eu-MOF demonstrated exceptional
sensitivity, robust stability, and remarkable resistance to inter-
ference for detecting DPA. It also showed a clear color transition
from red to blue with increasing DPA levels under UV light.
Notably, the Eu-MOF probes also performed well in detecting
DPA in fetal calf serum and tap water.276

Gou et al.277 developed a multi-color uorescent probe using
halloysite nanotubes combined with uorescent dyes and
porous MOFs for highly sensitive DPA detection, with a limit of
detection of 11.27 nM. This probe allowed for rapid, accurate,
and selective DPA detection. They also created a portable, cost-
apted from ref. 275 with permission. Copyright 2023, Royal Society of

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 22 Visual assay of DPA. Adapted from ref. 277 with permission. Copyright 2024, Elsevier.
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effective visual sensor by immobilizing the probe on lter
paper, which, when paired with a smartphone, enabled real-
time, intuitive DPA detection with a minimum concentration
of about 0.70 mM, as shown in Fig. 22.

In 2024, Wang et al.278 introduced an innovative paper-based
ratiometric uorescence sensor platform utilizing Eu3+-doped
carbon quantum dots (CQDs) embedded within ZIF-8 (Eu3+-
Fig. 23 Schematic depiction of the preparation process for (A) Eu-CQDs
permission. Copyright 2024, American Chemical Society.

© 2025 The Author(s). Published by the Royal Society of Chemistry
CQDs@ZIF-8), which was applied in human serum samples.
This platform enables rapid detection of DPA. Upon exposure to
DPA, the sensor platform exhibited a noticeable color change
from green to red in the mPAD detection zones. This color
transition corresponds to increasing concentrations of DPA,
facilitating quantitative analysis by converting the color signals
into R/G ratios. The platform demonstrates a strong linear
@ZIF-8 and (B) mPAD used in DPA detection. Adapted from ref. 278 with

Nanoscale Adv., 2025, 7, 13–41 | 29
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response across varying DPA concentrations (1–60 mM),
achieving sensitivity levels comparable to those of established
uorescence spectroscopy techniques. This underscores the
platform's effectiveness in meeting practical sample detection
needs, as illustrated in Fig. 23.

7. Concluding remarks and future
direction

This review provides a comprehensive overview of the method-
ologies for developing MOF-based luminescent sensors, empha-
sizing the advantages of MOFs in sensor design. These
advantages include their diverse emissive properties, which may
arise frommetal ions, organic ligands, or guest species, as well as
their structural diversity, which can be nely tuned through
modications of ligands, metal ions, or reaction conditions.
Additionally, their morphology can be adapted through adjust-
ments to reaction parameters. Recently, there has been growing
interest in the application of luminescent MOF-based materials
as sensors, owing to their exceptional features, such as high
porosity, large surface area, and controlled structure, all of which
enhance their suitability for sensing applications.

Researchers are employing various synthetic approaches to
create luminescent MOFs, yet signicant challenges remain,
particularly concerning the practical use of these materials for
detecting DPA in complex matrices. Therefore, future research
should prioritize the development of robust, reusable, and
highly sensitive luminescent MOF probes specically designed
for DPA detection. This review aims to summarize the current
state of luminescent MOF-based sensors for DPA detection
while highlighting the need for advancements in material
synthesis techniques and modication strategies to overcome
existing challenges. Furthermore, understanding the inuence
of these materials on experimental outcomes and their appli-
cability to real-world samples is crucial.

In conclusion, luminescent MOF-based sensors have shown
signicant potential for DPA detection, but ongoing research is
necessary to develop more innovative and reliable sensors to
enhance detection efficiency. It is hoped that this review will
inspire further interest in the development and renement of
luminescent MOF-based sensors, leading to their broader
application in DPA detection in the near future.
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