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Per-and polyfluoroalkyl substances (PFAS), known as “forever chemicals”, are posing a considerable threat
to human health and the environment, that conventional treatment methods are unable to treat. In recent
years, electrochemical advanced oxidation emerged as a promising technology for the degradation of
recalcitrant pollutants such as PFAS. This work reports the degradation of perfluorooctanoic acid (PFOA)
and perfluorooctanesulfonic acid (PFOS), using a Magnéli phase-based anode type Ti;O; by electro-
oxidation and electro-oxidation combined with electro-Fenton. First the Ti4O; anode was prepared from
Rutile TiO, powder and characterized, the results showed that the Ti,,O,,_; phase is the dominant phase.
Afterward, the degradation of PFOA and PFOS was evaluated on the developed anode. After 5 hours of
treatment, 52% and 82% of PFOA and PFOS were removed respectively. To improve this results electro-
oxidation was combined with electro-Fenton, the degradation of both pollutants increased, 92% of
PFOA was degraded and PFOS was totally removed after 5 hours of treatment. The energy consumption
was also evaluated at t;,, which is defined as the time when half of the initial concentration of PFOA and
PFOS was degraded. Combining the two degradation approaches showed promising results that need to

rsc.li/nanoscale-advances

1. Introduction

Per- and poly-fluoroalkyl substances (PFAS) are a family of over
than 4700 human-made compounds, with unique structures
and properties, which favored their use in wide range of prod-
ucts such as photographic materials, cosmetics, firefighting
foams, medical devices, etc. The extensive use of PFAS induces
widespread environmental contamination, increasing of the
scientific community's concern regarding their toxicity and
persistence in the environment." PFAS can be fully or partially
fluorinated, which gives them good thermal stability and
chemical resistance. Furthermore carbon—-fluorine bond has the
highest bond dissociation energy,” which makes their treatment
more challenging compared to other types of pollutants.>*
Perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic
acid (PFOS) are two compounds of the PFAS family that are
commonly found in the environment.*® These two compounds
have the same tail structure where each hydrogen atom has
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be further optimized for potential application at large volumes.

been replaced by fluorine one, but different head groups. PFOA
have a carboxylic head group and PFOS have a sulfonic one.*”

Given their complexes structure, PFAS are difficult to be
completely treated with only conventional methods such as
adsorption or filtration. Advanced technologies are being
explored to ensure the efficient removal and degradation of
contaminants. Techniques such as photocatalysis, plasma treat-
ment, and electro-oxidation have been evaluated for their effec-
tiveness in treating pollutants. Photocatalysis offers a sustainable
approach that could result in lower costs; however, it operates at
slower degradation rates and poses challenges for scaling up.® In
contrast, plasma treatments provide rapid and comprehensive
solutions but incur higher energy and capital expenses.” Mean-
while, electro-oxidation is emerging as a crucial option due to its
cost-efficiency. It is an ideal solution since it does not rely on
adding any oxidizing agent.'® It involves the oxidation of organic
pollutants at the anode of an electrochemical cell, where an
electric current is applied to the cell to drive the oxidation reac-
tion.™ One main factor that defines the efficiency of this treat-
ment technique is the anode material. There are two types of
anodes, “active” and ‘non-active”. Anodes with low oxygen
evolution over potential are defined as “active.” Examples are
platinum, IrO,, RuO,, and carbon anodes.'> While “non-active”
anodes such as boron-doped diamond (BDD) and Magnéli
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phases of titanium oxide electrode, do not favor the oxygen
evolution reaction. Instead, they favor a complete degradation of
the pollutants until total mineralization, making them great
candidate for water treatment.*®

Magnéli phases of titanium oxide-based anode has gained a lot
of interest due to their low production cost, good chemical
stability, high conductivity, and efficiency.* They are a group of
compounds composed of a mixture of stoichiometry with the
general formula of Ti,0,, 1, where n can be between 3 and 10.
The value of n defines the intensity of the electrical conductivity.
When n = 3-5, the electrical conductivity is the highest, while for
values higher than 5, the electrical conductivity decreases.* Ti O,
is the Magnéli phase material with the highest electrical
conductivity at room temperature.'® It has been widely used in
electrochemical anodic oxidation to treat a large range of pollut-
ants, like antibiotics,"” dyes," and phenolic compounds," always
exhibiting outstanding results.” Recently there have been reports
on efficient degradation of PFAS (up to 90%) using the Magnéli
phase based anodes. As it has been reported by Liang et al., PFOA
and PFOS degradation can be achieved within 3 hours of elec-
trolysis, which is a relatively short timeframe. Moreover the energy
consumption was estimated to be 0.45 kW h per liter which is
lower compared to other electrochemical methods, making the
process a cost-effective approach for PFAS remediation.”

However, this results can still be optimized by combining
electro-oxidation to a synergic approach. For instance, Luo et al.
combined ultrasound irradiation with electro-oxidation to
enhance defluorination during degradation through improving
the mass transfer and production of radicals.”® In another
example, Shi et al. proved that coupling electrocoagulation to
electro-oxidation is useful to overcome the limitation of electro-
oxidation to break down PFAS at low concentrations.> One of
the most efficient methods used for water remediation is the
electro-Fenton process.” The combination of electro-Fenton
with other advanced oxidation methods has proven to be
highly effective, since the mineralization efficiency is enhanced
and the operational costs are reduced.* However, combination
of electro-Fenton with electro-oxidation has never been reported
for the treatment of PFAS.

This work looks into the degradation of PFOA and PFOS
using the combination of electro-oxidation and electro-Fenton
to demonstrate the synergic effect of coupling these two tech-
nologies. The Ti,O, anode was first prepared by plasma depo-
sition. The morphology, composition and the presence of the
Magnéli phases of the electrode was confirmed using scanning
electron microscopy (SEM), X-ray diffraction (XRD), X-ray
photoelectron (XPS) and RAMAN spectroscopies. The degrada-
tion of PFOA and PFOS was then evaluated. Factors such as the
nature of the PFAS head-group and concentration along with
the effect of coupled technology and energy consumption were
assessed.

Material and methods

Material

Ti,O; anode was provided by Saint-Gobain C.R.E.E. Carbon felt

was purchased from Alfa Aesar. All chemicals
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(perfluorooctanoic acid (95%), perfluorooctanesulfonic acid
(~40%), ferrous sulfate (heptahydrate) (FeSO,-7H,0), anhy-
drous sodium sulfate (Na,SO,4, 95%) and sulfuric acid) were
purchased from Sigma Aldrich. Solutions were prepared using
Milli-Q water.

Anode synthesis

Rutile TiO, powder (from ALTICHEM) was blended with pet
coke (from CABOT CORPORATION) and fed into an electrical
arcs furnace. The blended powders were melted due to the
energy from the electric arcs, and the pet-coke was partially
reduced to TiO,. The melted composition was poured into
a graphite mold. After cooling down, the obtained lingot was
jaw-crushed, milled, and sieved to get a powder with particles
from 20 to 45 pm. The average sub-stoichiometry of this powder
was estimated to be TiO; 56, which corresponds to the domain
of both Ti,O; and TizO,.

The obtained powder was then fed into a plasma torch in
which a mixture of Ar and H, was ionized by an electric arc
when passing between a tungsten cathode and a copper anode.
Due to the extreme temperatures reached in the plasma plume
(>10 000 K), the powder was melted. The droplets were accel-
erated and deposited onto a titanium plate placed in front of the
plasma torch. The plasma torch procedure had to be repeated
several times to build a coating of about 300 pm thick.

Physico-chemical characterization of the anode

Surface roughness were obtained using both Bruker's NT1100
and NPFLEX 3D optical profilometers in vertical scanning
interferometry. The surface morphology was examined using
a Hitachi S4800 scanning electron microscope (SEM) and
a three-dimensional (3D) optical microscope (VHX-7000, KEY-
ENCE, Osaka, Japan). Raman spectra were collected using
dispersive Raman spectroscopy (HORIBA LABRAM, A = 659 nm)
with a fixed laser power of 20 W. The acquisition conditions
were, continuous mode of 10 s, a snapshot time of 7 s, and 2.5
accumulations set up to 30 times. To determine the elemental
composition of the anode surface, X-ray photoelectron spec-
troscopy (XPS) was performed using a monochromatic X-ray
source (Al-Ke, 1486.6 eV - Resolution FWHM 0.45 eV). X-ray
diffraction (XRD) analysis was conducted using a PANAlytical
Xpert-PRO diffractometer with an Xcelerator detector, employ-
ing Ni-filtered Cu-radiation with a wavelength of 1.54 A. The
scan step size was set to 0.0020889° per step, with a time of
200.660 seconds per step, and the scanning range covered 26 =
20°-80°.

Electrochemical degradation experiments

Anodic electro-oxidation. Electro-oxidation experiments
were performed in a cell containing the developed Magnéli
phase anode and carbon felt as the cathode. The developed
anode had rectangular shape with a total frontal surface of 60
cm?® (10 cm x 3 em x 2) and a thickness of 0.2 cm. Only 30 cm?
of this was immersed in the solution. The anode was placed in
the middle of the cell. The surface of the Carbon felt was 176
em” (22 em x 8 ecm), and it was placed all over the cell wall,

© 2025 The Author(s). Published by the Royal Society of Chemistry
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keeping a distance of 2.5 cm from the anode. The working
volume was 200 mL. To ensure ionic transport, Na,SO, (50 mM)
was added to the solutions of PFOA and PFOS (0.2 ppm and 2
ppm). A current intensity of 0.4 A was supplied by a DC power
generator (ELC DC Power supply AL78NX). The experiments
were ran for 5 h.

1.4.2. Anodic electro-oxidation combined with electro-
Fenton. To combine electro-oxidation with electro-Fenton,
FeSO,-7H,0 (0.2 mM) was added, with a drop of sulfuric acid
to reach pH = 3. O, (from air liquid) was bubbled during all the
experiments to ensure a permanent production of H,O,.

1.5. PFOA and PFOS analysis

In each experiment, samples were taken every 15 minutes for 1
hour and then every hour until the end of the experiment.
Concentrations of PFOA and PFOS were evaluated by high-
performance liquid chromatography coupled with mass spec-
troscopy (HPLC-MS). The setup was equipped with Waters-
Xselect HSST3 100 mm X 2.1 mm column with 2.5 um
particle size. The mobile phase was composed of Buffer A (water
+ 0.1% formic acid) and Buffer B (acetonitrile + 0.05% formic

acid). The flow rate was 0.25 mL min ™"

Energy consumption

The energy consumed in each treatment method after the
degradation of 50% of PFOA and PFOS was calculated using eqn
(1):

I x VXt

EC,), = .

1)
where ECy, (kW h m?) is the energy consumed to degrade half
of the pollutant, I (A) is the courant intensity applied, ¢/, (h) is
the time needed to degrade half of the initial concentration of
the pollutants, » (L) is the volume treated and V (V) is the
voltage.

2. Results and discussion

2.1. Physico-chemical characterization of the anode

Fig. 1 is the SEM image of the anode surface, showing TiO,
particles of around 2-10 microns in size, randomly distributed.
This distribution contributes to an increased roughness of the
membrane. The roughness of the membrane was approximately
10 673 + 1230 nm, calculated using profilometer.

The TiO, coating was also analyzed by XRD. The XRD dif-
fractogram showed relatively wide peeks suggesting very small
crystallites, most probably due to the extreme quench induced
by the contact of the molten particles with the cold metallic
substrate. The identified phases were Ti,O, (JCPDS card no. 50-
0787), TisOy (JCPDS card no. 51-0641), and TizO5 (JCPDS card
no. 1-82-1137), but also TiO, rutile (JCPDS card no. 21-1276)
(Fig. 2). The presence of this latter phase can be explained by the
turbulences of the plasma plume, leading to introduction of air
into the plume and partial re-oxidation of the ceramic material.
The fraction of the phase was determined through Gaussian
deconvolution. The results confirmed that the Ti,0,,_; phase

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig.1 SEM image of the surface of the plasma coated TiO,.

became the dominant phase. The sample primarily consisted of
Ti 05 (53.12 £ 1.06 wt%) and TisOs (29.02 + 2.36 Wt%), with
minor impurity phases, including TiO, (16.22 + 2.61 wt%) and
Tiz05 (2.902 + 2.36 Wt%).

Raman spectroscopy of the ceramic material (Fig. 3a)
revealed four distinct bands at 140, 255, 425, and 605 cm ™ *. The
broad band at 140 is attributed to the metallic high-temperature
phase of Ti,O,, as previously reported.”® Additionally, three
specific bands at 255, 425, and 605 cm ™" were identified as the
By, Eg, and Ay, TiO, rutile modes, respectively.”” These results
are coherent with the obtained XRD pattern, confirming the
presence of the Magnéli as the main phase and the partial re-
oxidation of the ceramic material. To confirm the chemical
composition and state of the elements, XPS analysis was per-
formed. The results revealed the presence of Ti, and O in
different chemical states. Fig. 3b presents the high-resolution Ti
2p spectrum, with the Ti 2p;/, peak at 458.3 eV and the Ti 2p;,
peak at 464.1 eV. Deconvolution revealed six distinct peaks: four
at 458.2 eV, 459.3 €V, 464.2 eV, and 465.5 eV, which are attrib-
uted to Ti**. This suggests that Ti*" in TiO, exhibits slightly
different binding energies compared to Ti** in TizO5 or TisOy,
likely due to defects or neighboring oxidation states. Addition-
ally, two peaks at 456.5 eV and 461.9 eV are indicative of Ti*".
These results confirm the presence of different phases charac-
teristic of the Magnéli structure. The dominance of Ti in the 4+
oxidation state over the 3+ state is likely due to the presence of
TiO, and the re-oxidation of the Magnéli phase on the surface.

2.2. Evaluation of the PFOA and PFOS degradation via
anodic electro-oxidation

Degradation of PFOA and PFOS by electro-oxidation was carried
out separately, using a solution with initial concentration of
2 ppm for both pollutants. The supporting electrolyte used was
Na,S0, (50 mM). The experiments were conducted for 5 hours
using a current density of 13 mA cm™>. This value of current
density was selected based on findings from a previous study,*®
where optimization of the electro-oxidation conditions was
carried out to enhance the effective degradation of tetracycline,
an antibiotic commonly found as a contaminant in water. The
obtained results are presented in Fig. 4 and Table 1. At the end
of the experiment, 52% of PFOA was degraded, while in the case

Nanoscale Adv., 2025, 7, 261-268 | 263
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Fig. 4 Degradation of PFOA and PFOS (2 ppm) by electro-oxidation
using Ti,O, as anode with a current density of 13 mA cm~2 with
NaySO,4 electrolyte (50 mM).

of PFOS, the degradation was 82%. The total degradation could
have been reached via extending the experiment time. PFOS
degraded faster than PFOA (kppos = 0.0064 min' vs. kpron =
0.0023 min "), despite both being made of 8 carbons. In anodic
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Table 1 Comparison of the first-order rate constants of the degra-
dation of PFOA and PFOS (0.2 ppm and 2 ppm) using electro-oxidation
for a 5 hour treatment period using a current density of 13 mA cm—2

PFAS type PFOA PFOS
Concentration 0.2 ppm 2 ppm 0.2 ppm 2 ppm
(ppm)

k (min™") 0.0045 0.0023 0.0094 0.0064

electro-oxidation, degradation mainly happen at the surface of
the anode where hydroxyl radicals are generated according to
equation (eqn (2)).

Ti407 + Hzo - T1407(OH.) + H+ +e (2)

Therefore, the efficiency of the degradation depends on the
mobility of each compound and its interaction with the anode
(Ti O5). The degradation pathway using a Ti,O, anode involves

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig.5 Concentration effect on the degradation efficiency of (a) PFOA, (b) PFOS using Na,SO4 (50 mM) as electrolyte in a 5 hour treatment period

using a current density of 13 mA cm™2.

several steps, as outlined in previous work.” This process
entails the gradual cleavage of CF,, leading to the breakdown of
long-chain PFAS into shorter-chain intermediates that are
considerate as less toxic compared to long chain PFAS since
they accumulate less in the fatty issues. Initially, perfluorinated
radicals are generated through direct electron transfer, which
initiates a degradation cycle that continues until complete
mineralization is achieved or until short-chain PFAS are
produced.? According to Liang et al. PFOS gets adsorbed on the
surface of the Ti,O, much better than PFOA,*® since it is
a stronger acid (pKapros = —3.27, pKaproa = 0.74-2.58). This
strong attachment helps maintaining the negative charge
leading to the electro-sorption.*!

Fig. 5 presents the effect of concentration on the efficiency of
the degradation of PFOA and PFOS. Two concentrations were
evaluated, 0.2 ppm and 2 ppm. At 0.2 ppm, 60% of the PFOA was
degraded (kppoa.02 = 0.0045 min~'), which is approximatively
10% higher compared to the degradation at 2 ppm (kppoar =
0.0023 min~'). While for PFOS, the difference for the two
concentrations is barely distinguishable after 5 hours. Barisci
et al. suggested that at high initial concentrations, short chain
sub-products are produced that would compete with PFOA to
interact with hydroxyl radicals, which explain the decrease of
PFOA removal.*?

2.3. Evaluation of the degradation of PFOA and PFOS by
anodic electro-oxidation coupled to electro-Fenton

To ensure electro-Fenton conditions, FeSO,-7H,0 was added to
PFOA and PFOS solutions, pH was adjusted to 3 by adding

Table 2 First-order rate constants of the degradation of PFOA and
PFOS (2 ppm) using electro-oxidation and electro-oxidation
combined with electro-Fenton for a 5 hour treatment period using
a current density of 13 mA cm™2

PFAS type PFOA PFOS
2 ppm EO EO-EF EO EO-EF
k (min™) 0.0023 0.0084 0.0064 0.0194

a drop of sulfuric acid and O, was bubbled during the experi-
ment. Fig. 6 and Table 2 summarize the obtained results for
PFOA (a) and PFOS (b). When coupling electro-oxidation with
electro-Fenton, 92% of PFOA (kppoa/so-gr = 0.0084 min~ ') and
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Fig. 7 Energy consumed at t;,,, after the degradation of 50% of the
initial concentration (2 ppm) using a current density of 13 mA cm™2.
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Fig. 6 Degradation of (a) PFOA and (b) PFOS (2 ppm) by electro-oxidation and electro-oxidation coupled with electro-Fenton for a 5 hour

treatment period using a current density of 13 mA cm™2.
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Table 3 Comparison of the energy consumption for PFOA and PFOS degradation using different types of anodes

Pollutant Concentration Removal rate (%) Energy consumption Anode Current density Ref.

PFOA 0.5 mM 99.9 14.2-76.2 Wh L™ Ti, 05 5 mA cm ™2 33

PFOS 0.1 mM 93.1 36.9-820 Wh L™

PFOA 1350 ng L™ 80 88-114 kW h m BDD 75 mA cm > 34

PFOS 3280 ng L ! 78 123-108 kW h m*

PFOA 1pug L™t 72 164.9 kW h m™® Ag/Au-PAA/PAH 10 mA cm > 35

PFOS 1pgL™! 91 90kWw hm™

PFOA 2 ppm 50 14.91-3.95 kW h m 3 TisO5 13 mA cm 2 This study
PFOS 2 ppm 50 5.14-0.89 kW h m?

100% PFOS (kprosso-er = 0.0194 min™ ') was removed. By
coupling the two processes, the degradation of PFOA was
enhanced by 40% while PFOS was completely degraded. The
combination of electro-oxidation and electro-Fenton favored
the generation of hydroxyl radicals on the anode surface as well
as on the bulk which is responsible of an efficient degradation.
The hydroxyl radicals were generated in the bulk according to
eqn (3)-(5). The continuous bubbling of O,, generates H,0, via
the reduction of O, (eqn (3)). Then, the produced H,O, reacts
with iron(u) to generate hydroxyl radicals (eqn (4)). Iron(u) will
be constantly generated due to the reduction of iron(m)
produced (eqn (5)). By synergistically combining electro-
oxidation and electro-Fenton techniques, the risk of mass-
transfer limitations in mitigated. This combined approach not
only promotes the efficient generation of hydroxyl radicals but
optimizes their availability in both the bulk solution and at the
anode surface, leading to improved degradation rates.

02 + 2H+ +2e — HzO (3)
Fe’* + H,0, + H" —» Fe** + HO" + H,0 (4)
Fe’* + ¢ — Fe** (5)

2.4. Energy consumption at 50% degradation of the initial
concentration

Energy consumption is a crucial parameter to evaluate the
feasibility of the process in terms of environmental impact and
the operational costs. In this context, the energy consumed to
degrade PFOA and PFOS at t,,,, corresponding to the degrada-
tion of half of the initial concentration was evaluated (Fig. 7). By
comparing the energy consumed to degrade PFOA and PFOS, it
can be stated that PFOS requires less energy for degradation.
Also, PFOS tends to degrade faster than PFOA. For an initial
concentration of 2 ppm using only electro-oxidation, PFOA
consumes 14.91 kW h m™3. While when combining electro-
oxidation with electro-Fenton, the energy consumption was
3.7 times lower (3.95 kW h m ). In the case of PFOS, the energy
consumed by electro-oxidation was 5.14 kW h m* (3-times less
as compared to the energy needed to degrade PFOA).
Combining electro-oxidation with electro-Fenton enhances the
degradation efficiency of PFAS and reduces the energy
consumption which is an important parameter to consider for

266 | Nanoscale Adv, 2025, 7, 261-268

large scale water treatment. Coupling the two approaches also
reduced the time needed for the degradation. A factor with
direct impact on the energy consumption. It is difficult to
compare the obtained results with reports in the literature,
given the number of different parameters influencing the
energy consumption. Table 3 displays the energy consumed to
degrade PFOA and PFOS by electro-oxidation using different
anodes, providing an approximate reference point in compar-
ison to other studies.

3. Conclusion

This work reports the preparation of Magnéli phase based
anode and its application in electro-oxidation to degrade PFOA
and PFOS. The anode was prepared by oxidation of rutile using
plasma torch, the XRD analysis showed the presence of
different Magnéli phase with Ti,O, being dominant. Then, the
performance of the anode has been evaluated by electro-
oxidation, the anode demonstrated great stability, performing
consistently over several electro-oxidation cycles, which indi-
cates that its structural integrity, electrochemical behavior, and
chemical properties were preserved. The anode can continu-
ously operate without the need for frequent replacements or
repairs. Moreover, no fouling has been observed, implying that
the active sites were not blocked. This highlights the cost-
effectiveness of using a Magnéli phase-based anode. The
degradation rate of PFOA at an initial concentration of 2 ppm
was 60% using electro-oxidation. However, when electro-
oxidation was combined to electro-Fenton, the degradation
rate increased 92%. A similar effect was observed for PFOS,
where the combination of these two approaches led to complete
degradation of PFOS. Although, PFOS was degraded more
readily than PFOA; this difference in degradation kinetic was
reported to be due to the interaction of each compound with the
anode. In fact, PFOS is more acidic, so it easily gets adsorbed on
the anode. The concentration of the compounds, impact the
degradation efficiency. At higher concentrations, and for anodic
oxidation the degradation was less efficient than at lower
concentrations because of the competition effect of the gener-
ated by-products. In summary, the degradation of PFOA and
PFOS was more efficient when electro-oxidation was coupled
with electro-Fenton. This synergic approach led to enhanced
removal of these recalcitrant pollutant. Hydroxyl radicals were
generated not only on the surface of the anode but also in the

© 2025 The Author(s). Published by the Royal Society of Chemistry
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bulk, which reduces the mass-transfer limitation and change
the dependence with the concentration of the pollutant.
Furthermore, coupling the two techniques increases the cost-
efficiency because of higher degradation kinetic, so energy
consumption was up to 3 times lower than electro-oxidation
approach. Additional research is needed to improve electrode
design and explore alternative strategies, such as the usage of
tubular anode or incorporating multiple anodes, to create more
sustainable electrochemical process. Adjusting operating
parameters such as pH, current density and temperature of
electro-oxidation can enhance reaction kinetics by providing
additional energy to overcome activation barriers.
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