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mission performance of gold
nanoparticle decorated Bi2S3 nanoflowers†

Gorkshnath H. Gote, a Madhura P. Deshpande,b Somnath R. Bhopale,e

Mahendra A. More, *c Raphael Longuinhos Monteiro Lobato, d Jenaina Ribeiro-
Soares d and Dattatray J. Late *d

Au nanoparticles (NPs) are decorated on hydrothermally synthesized Bi2S3 nanorods (NRs) to enhance the

field electron emission (FEE) performance as compared to bare Bi2S3 nanorods, resulting in reduction in

turn-on field from 3.7 to 2.7 V mm−1 (at the current density of 1.0 mA cm−2) with significant increment in

maximum emission current density from 138 to 604.8 mA cm−2 (at a field of 7.8 V mm−1) respectively.

FESEM/TEM reveals that Bi2S3 nanoflowers are assembled from Bi2S3 NRs of a typical diameter of 120 ±

10 nm, and Au NPs of diameter about 5–10 nm are uniformly decorated onto the surface of NRs to form

an Au/Bi2S3 composite. XRD analysis suggests that the as-synthesized product consists of orthorhombic

Bi2S3 NRs decorated with face-centered cubic Au NPs. The XPS spectrum shows the elemental mapping

of the as-synthesized Au/Bi2S3. Improvement in field emission properties is mainly attributed to

a reduction in work function and increasing emitting sites due to Au NP decoration.
1 Introduction

Field emission is a quantum mechanical tunneling effect in
which electrons are emitted from a metal/semiconductor
surface into a vacuum under a sufficiently intense electric
eld. FEE cathodes possess diverse advantages over thermionic
emitters with respect to durability, current density, and low
energy consumption, which place FEE devices in the competi-
tion for next-generation electronics. FEE cathodes are widely
used in certain electron-beam devices, such as at panel
displays,1 scanning electron microscopes,2 and X-ray sources.3

The FEE properties of emitters are related to their composition,
tip sharpness, conductivity, eld enhancement factor, and work
function. To increase the eld enhancement factor b it is
required to reduce tip sizes and modify the work function, by
doping, decorating or preparing composites of nanostructured
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materials. In this sense, much effort has been made to study
nanostructure cathodes for FEE applications such as LaB6

nanowires,4 carbon nanotubes (CNTs),1,5 ZnO,6 TiS nanosheets,7

as well as composites such as CNTs-LaB6,8 rGO-ZnS,9 rGO-
ZnO,10 Au-ZnO,11 etc. have been reported as possible eld
emitter materials.

Since the last few years, metal suldes have been extensively
studied due to their tunable optical and electronic properties,
so they are extensively used in energy conversion and storage
device applications such as solar cells,12 supercapacitors,13 Na-
ion batteries,14 etc. Among various metal suldes, Bi2S3 is the
most extensively researched direct bandgap semiconductor. As
shown in Fig. 1b, the Bi2S3 crystal structure is formed by the
polymerization of the tightly bonded [Bi4S6] unit, where each
unit is connected by weak Bi–S and S–S interaction.15 The
benets of low cost, abundance, non-toxicity, and excellent
optoelectronic and electrical properties make Bi2S3 an excellent
material for practical applications, such as in photodetectors,16

solar cells,17 photocatalysis,18,19 supercapacitors,20 etc. Improve-
ment in FEE performance was mainly attempted by increasing
the eld enhancement factor (depending on the shape/
morphology of the emitters) and reducing the work function
of nanostructured emitters. In order to improve FEE perfor-
mance, it is preferred to study composite/heterostructure
properties of nanostructured metal suldes. Recently, number
of investigations were made to improve the FEE performance by
blending rGO,21,22 metal oxides,23,24 suldes,25,26 and materials
with various metal suldes of 1D/2D nanostructures. In addi-
tion, many efforts have been made to study the morphology-
dependent FEE performance of Bi2S3 nanostructures.27–30
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 Schematic depiction of the mechanism of (a) the hydrothermal synthesis of Bi2S3 microflowers, (b) Au decoration process on as-
synthesized Bi2S3 NRs and schematic structure of Bi2S3.
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However, FEE improvement by work function modulation is
less explored for the Bi2S3 nanostructure. Our group has
investigated the FEE performance of CdS-Bi2S3 (ref. 25) and
rGO-Bi2S3 (ref. 31) composites.

Noble metal NPs (Au, Ag, and Pt) on semiconductors have
been extensively studied and exploited in several applications,
such as photocatalysis,32,33 solar cells,34,35 light-emitting
diodes,36 photodetectors,37,38 FETs,39 etc. These reports suggest
that the decoration of noble metals on nanomaterials enhances
the performance of bare nanomaterials due to the Surface
Plasmon Resonance (SPR) phenomenon. In the literature
survey, it was found that the properties of FEE emitters were
greatly inuenced by the surface decoration of various
morphology nanostructures (ZnO-nanopillars,11 CdO nano-
sheets,40 Si nanowires,41 SiC nanowires,42 and graphene
sheets43) with Au NPs, owing to increase in emitting sites and
decrease of the work function. Aumetal is well known for its low
resistivity, high oxidation resistance, and high structural, elec-
trical and chemical stability. The inuence of the decoration of
Au NPs on the properties of nanostructures of Bi2S3 FEE emit-
ters has not been reported to date.

It has been observed from a literature survey that most
nanostructured FEE emitters are decorated with Au NPs by
a sputtering process.11,40–42,44 In this report, we follow a cost-
effective and simple chemical method to decorate Au NPs on
hydrothermally synthesized Bi2S3 NRs to explore the FEE
© 2025 The Author(s). Published by the Royal Society of Chemistry
performance. It is observed that the turn-on eld of Au/Bi2S3
NRs drastically decreased from 3.7 to 2.7 V mm−1 at the current
density of 1 mA cm−2 and the maximum current density
increased from 138 to 604.8 mA cm−2 at an applied eld of 7.8 V
mm−1 as compared to that of pristine Bi2S3 NRs. Enhancement
in FEE characteristics indicates that metal NP decoration could
be an effective route to signicantly enhance the FEE perfor-
mances of the Bi2S3 cathodes.
2 Experimental
2.1 Synthesis of Bi2S3 nanoowers

Bismuth sulde (Bi2S3) micro-owers were synthesised as per
the literature report with slight modications.45 In a typical
synthesis, 2.4 g of bismuth nitrate [Bi(NO3)3$5H2O] (bismuth
precursor) and 0.38 g of thiourea [CS(NH2)2] (sulfur precursor)
were dissolved well into a mixture of 45 ml distilled water and
20 ml ethylene glycol (EG). The resultant solution was subjected
to 30 minutes of stirring and 10 minutes of ultra-sonication at
room temperature. This yellow homogeneous mixture was then
transferred into a Teon-lined stainless steel autoclave of 80 ml
capacity and a few drops of concentrated HNO3 were added to it.
The sealed autoclave was then kept at 180 °C for 36 hours in
a muffle furnace. Aer the reaction, the resulting black
precipitate was thoroughly washed (three times) with distilled
water and absolute ethanol and collected by centrifugation
Nanoscale Adv., 2025, 7, 310–319 | 311
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Fig. 2 XRD of the (a) Au/Bi2S3 sample and (b) Bi2S3; (c) and (d) are
JCPDS cards of Au and Bi2S3 crystals, respectively.
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(4000 rpm for 10 min). The nal product was dried at 60 °C for
24 h in a vacuum. The schematic representation of the Bi2S3
microower synthesis process is shown in Fig. 1a. The resultant
black powder was used for further characterization and Au
decoration.

2.2 Synthesis of Au/Bi2S3 nanostructures

Bi2S3 NRs were decorated with Au NPs by following a modied
literature report.46 Briey, 82 mg of as-synthesized Bi2S3
microowers was dispersed in a 30 ml solvent mixture of 24 ml
ethanol, 1.4 ml oleic acid (OA) and 4 ml octylamine. At the same
time, 34 mg tetrachloroauric(III) acid (HAuCl4$3H2O) was
dispersed into 10 ml of ethanol. Then, the gold precursor
solution was added dropwise to the above mixture and stirred
for 4 hours at about 50 °C. The grey precipitation was washed
several times with ethanol, separated by centrifugation, and
then dried overnight in a vacuum. The schematic representa-
tion of Au decoration of Bi2S3 NRs is shown in Fig. 1b. The
collected sample (Au/Bi2S3) was used for further characteriza-
tion and FEE comparison studies with pristine Bi2S3.

2.3 Field electron emission measurements

The FEE characteristics of pristine and Au/Bi2S3 samples were
investigated at room temperature using an in-house developed
setup. The distance between emitter sites (cathode) and phos-
phor screen (anode) is kept at 2 mm, with base pressure being
maintained at ∼10−8 mbar during measurements. A high voltage
power source (Spellman, U.S.) was used to supply the voltage
between two electrodes. The voltage was increased by a step of
20 V and the corresponding increasing current was measured
using an electrometer (Keithley 6514) with picoampere sensitivity.

3 Characterization of materials

To examine the crystalline phases of both structures, the X-ray
diffraction pattern was obtained by using a Rigaku MicroMax-
007 HF with a rotating anode copper X-ray source of wave-
length l Cu Ka= 1.54 Å which was operated at 40 kV and 30 mA.
The morphological and structural characterizations were done
using a eld emission scanning electron microscope (FESEM,
FEI Nova Nano SEM450) and transmission electron microscope.
Further structural details and lattice fringe width calculations
of both samples were accomplished by high-resolution trans-
mission electron microscopy (HRTEM TEM, JEOL JEM-F200
operated at 200 kV accelerating voltage). X-ray photoelectron
spectroscopy was achieved with the use of a near-ambient-
pressure X-ray photoelectron spectrometer (XPS, Thermo K-
Alpha+ Spectrometer using Al-Ka X-rays, 1486.6 eV) under ultra-
high vacuum conditions to study elemental compositions of as-
synthesized structures.

4 Results and discussion
4.1 XRD analysis

The phase and crystallinity of samples were studied by the X-ray
diffraction technique. Fig. 2a and b show the typical XRD
312 | Nanoscale Adv., 2025, 7, 310–319
pattern of the as-prepared Au NP decorated Bi2S3 and pristine
Bi2S3 sample respectively. The XRD pattern illustrates that the
synthesized sample has an orthorhombic crystal structure with
lattice parameters a = 3.981 Å, b = 11.14 Å, c = 11.30 Å (Fig. 2d,
JCPDS # 17-0320) which also existed in the Au/Bi2S3 sample. The
average crystallite size of Bi2S3 NRs was found to be ∼110 ±

10 nm, as calculated using the Debye–Scherer equation. Fig. 2a
displays a peak at about 2q = 38.10°, corresponding to the (111)
plane of face-centered cubic (fcc) gold, (JCPDS # 04-0784), which
gives the evidence for uniform gold decoration. The peak at
about 2q = 30.50° can be attributed to the characteristic peak of
BiS2 (JCPDS #17-0267) indicating the negligible amount of BiS2
in the as-synthesized samples.
4.2 FESEM and TEM analysis

FESEM and TEM were used to examine surface morphology,
size, and Au particle distribution on the as-prepared sample.
Fig. 3a depicts an overview of the sample, where the Bi2S3 micro-
owers are observed with approximately ∼4 to 5 mm diameter.
Fig. 3b shows typical images assembled from the number of
NRs. The inset in Fig. 3b is the high -magnication FESEM
image of Bi2S3 micro-owers. It is seen from the TEM image
(Fig. 3c) that bare Bi2S3 NRs have a smooth surface with length
in few microns and about ∼120 nm in diameter, which is also
endorsed by the average crystallite size calculated from the XRD
pattern using the Debye–Scherer equation. The typical enlarged
TEM image (Fig. 3d) of the Au decorated Bi2S3 nanorods reveals
that the Au NPs were uniformly decorated over the entire
surface of the Bi2S3 NRs without extended agglomerations. The
high-resolution TEM (HRTEM) images displayed in Fig. 4a
illustrate that the decorated Au NPs have an average diameter of
4–10 nm. The ne HRTEM fringes (Fig. 4b) reveal that the
distance between two consecutive planes is 0.239 nm which is
identical to the interplanar spacing of face-centered cubic (fcc)
Au(111) planes.47 Fig. 4c and d display the Selected Area
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 FESEM images: (a) low magnification Bi2S3 microflowers, (b) high magnification Bi2S3 with the inset displaying nanorods; TEM images (c
and d) of bare Bi2S3 and Au decorated Bi2S3 NRs, respectively.
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Electron Diffraction (SAED) pattern of pristine Bi2S3 and Au/
Bi2S3 NRs.

4.3 XPS analysis

Surface chemical compositions and oxidation states of the as-
synthesized product were investigated by XPS analysis. Fig. 5a
shows the survey spectra of the sample with and without Au
decoration, and gives strong evidence for the existence of Bi and
S elements along with the successful decoration of Au on Bi2S3.
The O and C peaks also arise due to the adsorbed oxygen species
on the sample surface, which is commonly observed for
samples exposed to the atmosphere and adsorbed carbon
species during XPS measurement respectively. Adventitious C1s
(284.6 eV) spectra were taken as the reference for calibration. Au
4f7/2 and 4f5/2 doublets with binding energies of 83.69 and
87.39 eV are observed in Fig. 5b, which asserts that decorated Au
(Au0 state) is in the metallic form (ref. 48 and 49). As shown in
Fig. 5c, the high-resolution spectrum of Bi4f (Bi

3+ state) shows
a doublet at 159.14 (4f7/2) and 164.39 eV (4f5/2) attributed to
spin–orbital coupling separated by 5.31 eV.49 The binding
energy for S2s (S2− state) (Fig. 5d) in the Au/Bi2S3 sample is at
224.1 eV which is lower than the binding energy of S2s (S2−

state) (225.7 eV) in pristine Bi2S3 as per the literature.49 The Bi
© 2025 The Author(s). Published by the Royal Society of Chemistry
and S binding energies are in good agreement with reported
values. It is observed that the Au decoration does not severely
change the crystallinity of Bi2S3 NRs. All XPS plots validate the
successful formation of Au/Bi2S3.

4.4 Reaction mechanism

In our earlier report, we discussed the synthesis mechanism of
Bi2S3 microowers prepared by a simple one-pot hydrothermal
method for FEE studies.31 For the decoration of Au NPs on Bi2S3
NRs, HAuCl4$3H2O was decomposed at 50 °C in an octylamine–
oleic acid mixture under ambient conditions. In this reaction,
the octylamine–oleic acid mixture acts as both a capping and
a reducing agent, which prevents gold NP aggregation and
oxidation, as well as makes the particle surface hydrophobic.50

The polar ethanol solvent was primarily used to dissolve
HAuCl4$3H2O. The presence of the hydrocarbon surfactant
between gold particles possibly prevents the growth of particles
beyond 5–7 nm.51 To ensure the even mixing of the reactants,
the solution was continuously stirred beyond the decoration
time and also this ensured the uniform deposition of Au NPs
onto the Bi2S3 surface as seen in TEM images (Fig. 3d). The
pristine Bi2S3 and Au/Bi2S3 nanocomposites have been fully
characterized and their FEE properties studied.
Nanoscale Adv., 2025, 7, 310–319 | 313
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Fig. 4 TEM image of (a) Au/Bi2S3 NRs with the inset displaying the NPs; (b) HRTEM image of Au/Bi2S3; (c and d) SAED pattern of bare Bi2S3 NRs
and Au/Bi2S3 NRs, respectively.
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4.5 Field electron emission (FEE) performance

The dependence of FEE current density over an applied eld (J–
E) is described by the modied Fowler–Nordheim (F–N)
equation:52

J ¼ lmE
2b2

f
exp

�� b f3=2nF

bE

�
(1)

where J is the emission current density, E is the applied average
electric eld, lm is the macroscopic pre-exponential factor
(=1.54× 10−6 A eV V−2), b is a constant (=6.83 eV−3/2 V nm−1), f
is the work function of the emitter, b is the eld enhancement
factor, and nF (correction factor) is a particular value of the
principal Schottky–Nordheim barrier function n.

Eqn (1) asserts that FEE property enhancement can be ach-
ieved by either/both tuning the morphology or/and lowering the
work function of the emitter. We have tried to improve the FEE
performance of Bi2S3 NRs by Au decoration, resulting in
reduced work function of Bi2S3.

The turn-on and threshold elds, measured from the J–E plot
(Fig. 6a), are arbitrarily dened at emission current densities of
1 and 100 mA cm−2 respectively. The Au/Bi2S3 emitters show the
turn-on and threshold elds of 2.7 and 5.2 V mm−1 respectively,
whereas pristine Bi2S3 emitters show the turn-on and threshold
314 | Nanoscale Adv., 2025, 7, 310–319
elds of 3.7 and 6.8 V mm−1 respectively. It is obvious from the
results that the FEE properties of pure Bi2S3 can be dramatically
improved by Au decoration.

A wide range of research groups have reported a signicant
enhancement in FEE performance due to Au decoration on
semiconductor materials.11,41–44 Zang et al.53 reported that the
reduction of Au NP size below 10 nm decreases the work func-
tion up to 3.6 eV. In this work, decorated Au NPs have an
average size of 4–10 nm, indicating that the work function of Au
NPs would be around 3.6 eV, which is less than the work
function of Bi2S3 NRs (4.93 eV).25 When Au (metal) and Bi2S3
(semiconductor) come into contact, they form a metal–semi-
conductor junction (Schottky barrier junction). The thermal
equilibrium has been achieved through the transfer of electrons
from Au (higher) to Bi2S3 (lower). The bending of the conduc-
tion band (CB) and valence band (VB) in Bi2S3 takes place due to
the alignment of work functions. This energy band bending
reduces the work function of the Bi2S3 emitter. Such work
function reduction, due to NP decoration of the nanomaterial,
shows an improvement of the FEE properties.54

The F–N plots (Fig. 6b) derived from the observed (J–E)
curves show deviation from the linear nature, in contrast to the
expectation of the F–N model. Such discrepancy has been
observed in a diverse range of metal–semiconductor
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 5 XPS images of (a) Bi2S3 and Au/Bi2S3 survey spectra; high resolution spectra of (b) Au0 state, (c) Bi3+ state, (d) S2− state of the Au/Bi2S3
sample.

Fig. 6 Plot of field emission current density versus applied electric field (J–E) (a), Fowler–Northeim (F–N) plot (b) of Bi2S3 and Au/Bi2S3,
respectively. (c) Field emission current stability plots at 10 mA.

© 2025 The Author(s). Published by the Royal Society of Chemistry Nanoscale Adv., 2025, 7, 310–319 | 315
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Table 1 FEE characteristic parameters of various semiconducting planar emitters

Sr. no. Emitter details Morphology Turn-on eld or voltage Reference

1 MoS2 Nanoowers 12 V mm−1 55
2 CNTs Nanotubes 50 to 100 V 56 and 57
3 Au/ZnO Nanowires 6.2 V mm−1 58
4 AuBN Nanocomposites 3.9 V mm−1 at 10 nA cm−2 59
5 Au/graphene Nanosheets 3.84 V mm−1 60
6 Au/TiO2 Nanotubes 2.8 V mm−1 at 10 mA cm−2 61
7 Au/Bi2S3 Micro-owers 2.7 V mm−1 at 1 mA cm−2 Present work
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composites. This discrepancy can be supported by emission
from the lower edge of the CB being dominant at a low eld. On
the other hand, at a high eld, the emission current also
contributes to the electrons in the upper edge of the CB.62 It is
observed that the nonlinearity of the F–N plot diminishes in the
Au/Bi2S3 emitter, indicating a more metallic behavior of the
emitter. Furthermore, a careful observation reveals ‘attening’
of the F–N plots in the high eld region. For planar emitters,
most of the researchers have noticed a ‘non-linear’ nature of the
F–N plots, along with the tendency to show ‘attening’ in the
high eld region, which had been attributed to various effects
like the eld screening effect, eld penetration and band
bending (for semiconducting emitters), etc.However, one of the
root causes of such discrepancy is failure of the fundamental
F–N model. It has been realized that the effect and/or contri-
bution due to space charge limited currents has been ignored.
Various researchers have focused their studies towards
amending the fundamental F–N equation so as to justify the
FEE behaviour of planar emitters. Herein, a planar emitter is
referred to as an assembly of nanostructures deposited in a thin
lm form on suitable substrates. In tune with the advancement
in planar emitter based electron sources and new devices, these
alterations are important in providing better formulations for
simulations.

In this context, Richard Forbes has put in signicant and
consistent efforts towards modication of the fundamental F–N
model.52,63,64 In tune with these efforts, Zhang et al. have pre-
sented an overview of the fundamental physics of space–charge
interactions in various media addressing the critical develop-
ments on various theoretical aspects of the space–charge
limited current (SCLC) model, its physics at the nanoscale, and
transitions between electron emission mechanisms and mate-
rial properties.65 Very recently, in order to corroborate the
advancements in utilization of electron sources, particularly
simulations of the devices, Kevin Jensen has provided useful
formulations considering the effect of “space–charge”
(commonly described by the Child–Langmuir law) so as to
guarantee correct numerical evaluation of the fundamental
equations describing the various electron emission models.66

Furthermore, to showcase the technological importance of
the observed FEE parameters, an attempt is made to compare
the values of turn-on and threshold elds along with maximum
emission current density extracted from similar emitters,
Table1.
316 | Nanoscale Adv., 2025, 7, 310–319
Finally, to test the quality of the as-synthesized Au/Bi2S3
emitters in comparison with pristine Bi2S3, we have investigated
the long-term current stability (I–t) plot. The stability of the
emitters has been observed for more than 3 h corresponding to
a current density of 10 mA cm−2. It is observed that uctuations
in current density for the Au/Bi2S3 emitter (the standard devi-
ation of ∼3.86%) are somewhat more than for the bare Bi2S3
(the standard deviation of about ∼2.07%), possibly due to
increase in emitting sites for the Au/Bi2S3 emitter. The uctu-
ation in electron emission current can be attributed to the
adsorption/desorption and bombardments of ions/atoms on
the emitter surface.67,68 The smoothness in the current stability
(I–t) plot of the Au/Bi2S3 sample is also attributed to the
protection of Bi2S3 NR emitters from ion/atom bombardments
during the FEEmechanism due to the good chemical stability of
Au NPs. The emitter also reveals good repeatability of results by
testing the same samples several times.

5 Conclusions

In summary, we have reported the synthesis of Bi2S3 emitters
with 120 ± 10 nm diameter, via a simple hydrothermal route
followed by the uniform decoration of Au NPs with size ∼4–
10 nm. FEE results show that the turn-on eld of the Au/Bi2S3
emitter reduced from 3.7 to 2.7 V mm−1 at 1.0 mA cm−2 and the
maximum current density increased from 138 to 604 mA cm−2 at
eld 7.8 V mm−1 as compared to that of pristine Bi2S3. The
improved FEE performance of Au/Bi2S3 is attributed to the
lowering of the work function of pristine Bi2S3 and increasing
emission sites due to Au NP decoration. Therefore, Au decora-
tion on Bi2S3 was achieved by a simple and cost-effective
chemical method compared to the sputtering process. The Au
decorated FEE emitters can be used as a potential candidate for
exible at panel displays, efficient electron guns, and e-paper
applications.
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