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cs and chemistry: machine
learning for yield prediction in NaBH4

mechanochemical regeneration

Santiago Garrido Nuñez, *a Dingena L. Schott b and Johan T. Padding a

Mechanochemical synthesis faces reproducibility and scale-up challenges due to complex parameter

interactions. This study employs machine learning (ML) to predict NaBH4 regeneration yield, integrating

chemical experimental data and DEM (Discrete Element Method) derived invariant mechanical

descriptors (�En, �Et, fcol/nball). Various algorithms were evaluated, including a two-step modeling strategy

to isolate the dominant effect of milling time in our process. Results demonstrate that a two-step

Gaussian Process Regression (GPR) model achieves good predictive performance (R2 = 0.83),

significantly outperforming single-stage models and providing valuable uncertainty estimates. Tree-

based ensembles (XGBoost, RF) also benefit from the two-step approach and can enhance

interpretability. This work establishes a framework for using ML to optimize mechanochemical

processes, reducing experimental cost and offering a method to link mechanical milling conditions to

chemical outcomes, thereby enabling predictive mechanochemistry.
1 Introduction
1.1 Mechanochemical reactions via high-energy ball milling

The advancement of mechanochemistry in the last two decades
has seen the application and innovation of multiple tools and
processes to achieve chemical and material synthesis that align
with the principles of green chemistry.1 Typically, mechano-
chemical processes at the lab scale rely on ball mills to supply
the (mechanical) energy required to achieve a desired chemical
reaction, although different methods have been explored to
combine this with additional sources of energy, such as thermal
energy, acoustic energy or electrical energy.2 Pure mechano-
chemical ball milling is oen characterized by intuitive process
parameters that any ball mill can readily account for, namely
rotational speed, lling ratio, ball-to-powder ratio (BPR),
milling time, and additional physical material properties such
as density of the milling balls.3–7 Although these parameters
certainly steer the overall behavior of the process, it has been
observed that they are not sufficient to accurately characterize
mechanochemical processes, leading to signicant challenges
in reproducibility and scaling up given the intrinsic differences
in working principle that different machines have.8,9

It becomes clear that mechanochemistry involves a series of
complex interactions that must be investigated systematically
before layering on additional, non-intuitively tunable energy
niversity of Technology, Leeghwaterstraat
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the Royal Society of Chemistry
inputs, especially because both mechanical and chemical vari-
ables fundamentally dictate high yields. However, due to the
relative novelty of the eld, research has remained largely
exploratory, employing one-variable-at-a-time (OVAT) studies
that prove inadequate once scale-up or efficiency optimization
becomes the goal.10–12

To tackle this challenge, the Discrete ElementMethod (DEM)
has been employed to accurately characterize a high-energy ball
mill's internal dynamics, effectively bypassing the dependency
of the utilized mill or the aforementioned process variables.
This is done by dening three key mechanical characterization
properties: themean normal energy dissipation per collision �En,
the mean tangential energy dissipation per collision �Et, and the

specic collision frequency per ball
fcol
nball

.8 This methodology can

be applied to any milling machine of any scale, reducing the
challenges in reproducibility and providing guidelines for the
specications needed in larger-scale equipment. Regardless,
this numerical characterization remains mechanical and thus,
cannot include the inuence of the chemical variables of the
system, such as the molar ratio, BPR, milling time, and their
confounded inuence with the rest of the mechanical variables.

The chemical characterization of the system can only be
accomplished experimentally. In our target reaction, the
mechanochemical regeneration of NaBH4 from NaBO2$4H2O
(see eqn (1)), the dependence on molar ratio is non-linear, while
the inuence of milling time is effectively linear within the
investigated range.3 Furthermore, the interaction between the
BPR and molar ratio is statistically signicant, indicating
a complex interaction among operating parameters. These
RSC Mechanochem., 2025, 2, 889–900 | 889
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experiments were carried out under constant, albeit optimized
mechanical conditions from the pure perspective of energy
dissipation, ignoring the effect that changing the distribution of
shear and normal stress can have on the system.8 Thus, while
DEM simulations can facilitate a mechanical characterization,
its effectiveness can only be tested experimentally. To overcome
this limitation, we investigate the use of different machine
learning (ML) algorithms to predict the conversion yield,
reducing the need for trial-and-error experiments.

NaBO2$4H2O + 6MgH2 / NaBH4 + 6MgO + 8H2 (1)

In other applications, Anglou et al.13 employed linear
regression to link DEM outputs (collision frequency and average
kinetic energy of a milling ball) to the depolymerization of PET,
obtaining a good t (R2 = 0.966). This result, however, holds
only within a range of total energy given to the system before the
linear condition is lost. The authors accurately point out that
a non-linear model could be trained but the lack of data
prohibits this. Furthermore, this study made use of a single
milling ball in a 25 mL jar where only the milling frequency was
varied. This conguration effectively simplies many other
operational parameters that lab-scale and industrial-scale ball
milling processes can have.

Similarly, Yu et al.14 utilized polynomial regression to analyze
different milling parameters and predict target particle sizes
while ball milling alumina ceramics. Although no chemical
processes were involved in this study, the authors point out the
same challenge mentioned before: most studies focus on opti-
mizing milling parameters, varying only one process variable
and keeping the rest constant, which severely limits the appli-
cability of data-based methods to gain a more profound
understanding of their impact on the process. In the same
context of pure milling, Li et al.15 trained a convolutional neural
network (CNN) to predict the grinding rate and size distribution
of a rotating drum mill, achieving high accuracy (R2 > 0.95) and
good transfer learning results. This indicates that deep neural
networks can capture the complex physics of milling when
sufficient training data exists.

However, deep models such as these remain unviable when
applied directly to experimental mechanochemical data, simply
because such large, labeled datasets do not exist. Furthermore,
the creation of these datasets requires extensive experimental
work that necessitates a signicant amount of time. For
instance, a typical experiment involving the regeneration of
NaBH4 takes at least 72 hours from sample preparation to yield
quantication.

To address these issues, a shared mechanochemical reaction
database has been created,16 allowing researchers to pool
results and push machine learning approaches that connect
milling conditions with chemical outcomes, something experts
believe could revolutionize the eld.17 However, because
different groups study different reactions in different mills,
detailed data for any one process remain scarce, and most
characterization methods only work on the specic equipment
for which they were developed as stated before. Moreover, the
“black-box” nature of ML models adds another limitation.
890 | RSC Mechanochem., 2025, 2, 889–900
While some methods like random forests offer feature-
importance insights, other methods like deep neural networks
and support–vector machines hardly explain why a given
parameter set succeeds or fails. This makes it hard to build
a mechanistic understanding or plan experiments beyond the
model's training scope. Furthermore, while previous applica-
tions of machine learning in milling have oen focused on
either purely physical outcomes (e.g., particle size prediction) or
utilized limited operational parameters for chemical yield,
a comprehensive approach integrating detailed, DEM-derived
mechanical descriptors with a broader set of chemical process
variables to predict yield for complex reactions remains unex-
plored. Finally, practical challenges persist: producing large,
high-quality datasets demands extensive experimentation, run-
to-run variability can introduce noise, and tting sensors inside
a sealed milling jar to gather real-time data is technically
difficult.18–20 Altogether, these ve factors keep ML-driven ball
milling mechanochemistry at a very early stage.

Within the broader landscape of data-driven reaction
discovery and optimization, machine learning has not only
accelerated condition search but also changed how chemists
learn from experiments. In solution-phase synthesis, high-
throughput experimentation (HTE) and automation provide
the dense, standardized datasets that enable multivariate
modeling and closed-loop optimization.21,22 Multivariate linear
models extract quantitative structure–reactivity/selectivity rela-
tionships that rank which variables matter and why, enabling
prospective design.23 Orchestration and active-learning plat-
forms (e.g., ChemOS; LabMate.ML) close the loop between
Bayesian decision-making and automated execution, reaching
high-yielding conditions in tens of experiments while handling
mixed categorical/continuous spaces.24,25 Beyond single
substrates, closed-loop protocols now optimize for generality
across substrate matrices, identifying condition sets that
transfer across chemotypes.26 Recent systems show that opti-
mization can produce knowledge on-the-y, integrating
interpretable/physics-informed models with automation to
uncover mechanistic factors during optimization.27,28 These
developments motivate our study, but also highlight two
distinctions specic to mechanochemistry: data throughput is
typically much lower than in plate- or ow-based solution
platforms,21 and controllable variables necessarily include
mechanical/process descriptors of mechanical stressing and
energy transfer, which are absent from most solution phase
models.8,29

Motivated by recent ML-driven progress in solution-phase
optimization, we lay the groundwork for a mechanochemistry-
specic framework. We take advantage of a DEM-based
mechanical characterization that establishes a commonality
between mills, enabling unied datasets. We compare
modeling families and map their strengths and limitations to
use cases in small-data, high-cost regimes. Ultimately, we show
that combining mechanical and chemical operating variables
can accurately predict the mechanochemical yield. The dataset
spans 27 experiments with wide ranges in both chemical and
mechanical factors and, although compact, constitutes the
most extensive open-access operating space for NaBH4
© 2025 The Author(s). Published by the Royal Society of Chemistry
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regeneration to date, positioning this study as a practical
starting point for predictive mechanochemistry.

2 Methodology

This section details the methodology employed to predict the
experimental yield using machine learning techniques. The
workow encompasses data acquisition, feature engineering,
model training, hyperparameter optimization, and evaluation.
All analyses were performed using Python 3.9.

2.1 Data acquisition

The dataset (Table 1) utilized in this work combines two
previously published components: experimental yields for
regeneration of NaBH4 using the Emax high-energy ball mill,3

and a DEM-based methodology to mechanically characterize
ball milling conditions.8 In the present study, we derive device-
independent descriptors for all experimental cases and
assemble an ML-ready dataset that supports comparison and
transfer across ball-milling devices. This is achieved by dening
three key parameters: the mean normal energy dissipation per
collision �En, the mean tangential energy dissipation per colli-

sion �Et, and the specic collision frequency per ball
fcol
nball

. We
Table 1 NaBH4 regeneration dataset. BPR is the ball-to-powder ratio
(mass basis), “Mol ratio” is the molar ratio MgH2 : NaBO2$4H2O, and
“Time” is themilling time. �En and �Et are themean normal and tangential
energy dissipated per collision obtained from DEM simulations;
fcol/nball is the specific collision frequency per ball. Yields are onversion
percentages through reaction (1). Experimental details;3 DEM details8

Case BPR
Mol
ratio

Time
[h]

�En
[mJ]

�Et
[mJ]

fcol/nball
[s−1]

Yield
[%]

0 10 8 5.0 221 500 400 12
1 10 8 12.5 382 888 533 22
2 10 8 20.0 613 1391 667 30
3 10 10 5.0 221 500 400 28
4 10 10 12.5 613 1391 667 39
5 10 10 20.0 221 500 400 45
6 10 12 5.0 613 1391 667 40
7 10 12 12.5 221 500 400 61
8 10 12 20.0 382 888 533 73
9 30 8 5.0 382 888 533 26
10 30 8 12.5 613 1391 667 37
11 30 8 20.0 221 500 400 42
12 30 10 5.0 613 1391 667 50
13 30 10 12.5 221 500 400 71
14 30 10 20.0 382 888 533 88
15 30 12 5.0 221 500 400 21
16 30 12 12.5 382 888 533 32
17 30 12 20.0 613 1391 667 49
18 50 8 5.0 613 1391 667 25
19 50 8 12.5 221 500 400 62
20 50 8 20.0 382 888 533 74
21 50 10 5.0 221 500 400 31
22 50 10 12.5 382 888 533 73
23 50 10 20.0 613 1391 667 90
24 50 12 5.0 382 888 533 41
25 50 12 12.5 613 1391 667 62
26 50 12 20.0 221 500 400 57

© 2025 The Author(s). Published by the Royal Society of Chemistry
note that the variables modeled in solution phase yield
prediction studies typically comprise solvent, base, ligand/
catalyst, temperature, concentrations, and time, oen
explored at scale via HTE or ow with inline analytics. In
mechanochemistry, outcome-relevant variables also include
mill type, jar/ball materials and sizes, ball-to-powder ratio, ll
ratio, and milling frequency, and thus require abstraction via
the aforementioned mechanical descriptors of energy transfer
to compare between devices. The results presented in our
previous work can be readily used to arrive to these key
parameters in the Emax, but the methodology can be applied to
any ball mill.8

Experimentally, hydrated sodiummetaborate (NaBO2$4H2O)
($99%) was purchased from Sigma-Aldrich, while magnesium
hydride (MgH2) ($99.9%,#50 mm) was sourced from Nanoshel.
All reactants were used without further purication. The sample
preparation for all ball milling experiments was carried out in
a glove box under an argon atmosphere, with oxygen and water
concentrations maintained below 0.1 ppm. For a detailed
description of the quantication of the chemical yield and
equipment cleaning to preserve similar conditions for all
experimental cases, we refer to our previous work.3
2.2 Feature engineering

To facilitate the capture of non-linear relationships and inter-
actions, several feature engineering steps were applied to the
initial feature set:

(1) Quadratic term: our previous results indicate that the
molar ratio has a signicant quadratic relationship with the
chemical yield.3 Thus, a new feature containing this quadratic
term was added.

(2). Interaction term: we have found a strong interaction
between the BPR and the molar ratio.3 Therefore, we also
include an additional feature composed of the product of these
2 variables.

(3) Sigmoid transformation: to account for potential satura-
tion effects, sigmoid transformations (1/(1 + exp(−x))) were
applied to the ‘Time’, and ‘BPR’ features, creating new features
while retaining the original features. This allows the model to
plateau rather than grow indenitely (or turn negative) as these
variables change.

The resulting set of features constituted the nal engineered
feature matrix used for model training.
2.3 Train-test split and feature scaling

The dataset, comprising the engineered features and the target
yield, was divided into training (80%) and testing (20%) sets. A
xed random state was used to ensure reproducibility of the
split. With 27 experimental cases, this corresponds to 21
training and 6 test samples. To ensure every algorithm is eval-
uated on the same examples, we used a single, predetermined
21/6 partition created by shuffling once and then locking that
partition for all analyses. All model tting and hyperparameter
selection used only the training data; the test set was held back
until the nal evaluation.
RSC Mechanochem., 2025, 2, 889–900 | 891

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5mr00076a


RSC Mechanochemistry Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

1 
Se

pt
em

be
r 

20
25

. D
ow

nl
oa

de
d 

on
 1

/1
8/

20
26

 4
:4

1:
14

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
Feature scaling was applied to ensure that features with
larger ranges did not disproportionately inuence the model's
sensitivity to feature magnitude, such as distance-based algo-
rithms (Support Vector Regression (SVR), Gaussian Process
Regression (GPR)) and linear models. Specically, standardi-
zation was employed, where each feature was transformed to
have zero mean and unit variance according to eqn (2):

xscaled ¼ x� mtrain

strain

(2)

where x is the original feature value and mtrain and strain are the
mean and standard deviation of that feature calculated exclu-
sively from the training data partition.

The train-test split ensures that no information from the test
set inuences the transformation applied during the training
phase (preventing data leakage) and preserves the integrity of
the test set for unbiased model evaluation. The same training
set parameters (mtrain, strain) were then used to standardize the
corresponding features of the training set and the test set.
Models requiring scaled data (Linear Regression, GPR, SVR)
utilized these standardized features for both training and
prediction. In contrast, tree-based models (Random Forest,
XGBoost), which are less sensitive to feature scaling, were
trained and evaluated using the original, unscaled engineered
features.
Fig. 1 Methodology workflow overview.
2.4 Weighted loss function

To prioritize accurate prediction of higher yields, which are
oen of greater experimental interest, a custom weighted mean
squared error (MSE) loss function was dened:

Weighted MSE ¼ 1

N

XN
i¼1

wi

�
ytrue;i � ypred;i

�2
(3)

where N is the number of samples, ytrue,i and ypred,i are the true
and predicted yields for sample i, respectively. The weight wi

was set to 2.0 if ytrue,i > 70%, and 1.0 otherwise. This weighted
MSE was used as the primary scoring metric during hyper-
parameter optimization and for comparingmodel performance.
2.5 Modeling approach motivation

Informed by previous research,3 the milling time feature alone
was found to account for approximately 50% of the observed
variance in yield. A primary concern was that this dominant
predictor could mask the inuence of the remaining process
parameters. To address this potential overshadowing effect and
better capture the contributions of the remaining features, we
implemented a specialized two-step modeling strategy. The
approach involves:

(1) Training a rst model using only the ‘time’ feature to
predict the yield.

(2) Calculating the residuals (actual yield minus the rst
model's prediction) on the training data.

(3) Training a second model using all other engineered
features (excluding ‘time’) to predict these residuals.

(4) The nal prediction is the sum of the predictions from
the time model and the residual model.
892 | RSC Mechanochem., 2025, 2, 889–900
This allows the residual model to focus on explaining the
yield variation not captured by the primary time trend. To
rigorously assess the benet of this specialized strategy, we also
trained corresponding models directly on the full set of engi-
neered features for direct performance comparison against
their two-step counterparts. The general methodology is visu-
alized in Fig. 1.
2.6 Machine learning algorithms and hyperparameter
optimization

The machine learning algorithms described below were
selected on the basis of their suitability and applicability to the
current state of available experimental mechanochemistry data.
It is worth highlighting that the feature engineering and two-
step approach described in previous sections are omitted for
the linear regression model, which is included solely as a base-
line for comparison. For the GPR (Gaussian Process Regres-
sion), RF (Random Forest), SVR (Support Vector Regression),
and XGBoost models, hyperparameter optimization was per-
formed using the Tree-structured Parzen Estimator (TPE) algo-
rithm implemented in the Hyperopt library. The objective was
to minimize the weighted MSE, evaluated using repeated k-fold
cross-validation of the training data with k = 5 splits and n = 3
repeats. We chose k = 5 as a pragmatic bias–variance compro-
mise.30 Given 21 samples, 5-fold yields validation folds of 4–5
samples (training folds of 16–17), whereas 10-fold would leave
2–3 per validation and leave-one-out CV only 1, both of which
increase variance in hyperparameter comparisons.
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Table 2 Hyperparameter search space for Gaussian-process regres-
sion (GPR)

Hyperparameter Search space/value

Constant scaling (C) U ð0:1; 1000Þ
Base length-scale (l) U ð0:05; 10Þ
Noise variance (sn2) U ð10�5; 1:5Þ
Matérn smoothness (n) Fixed at 1.5
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A total of 100 function evaluations were assigned for most
models, while SVR, known to be potentially slower to tune, was
assigned 500 evaluations to ensure a thorough search.31 The
best hyperparameters found during this process were used to
train the nal model on the entire training set.

2.6.1 Linear regression. Linear regression is included,
given its simplicity and the ability to assess how well the rela-
tionship between input and output variables can be captured
with a linear relationship. Linear models have been widely used
to relate physical–organic descriptors to outcomes and selec-
tivity in reaction development.23,32 The relationship between
target Y and input variables Xi can be described as:33

Y ¼ b0 þ
Xp
i¼1

Xibi (4)

2.6.2 Gaussian Process Regression (GPR). Gaussian
Process Regression (GPR) is a supervised learning method that
models a distribution over possible functions rather than
tting a single function directly.34 At its core, GPR assumes
that any set of observed points is drawn from a joint Gaussian
distribution characterized by a mean function and a covari-
ance (kernel) function. The kernel function denes how closely
related any two points are, which in turn governs the
smoothness and shape of the functions in the model. Thus,
GPR is an attractive alternative, as it produces not only
a prediction value but also a distribution, effectively giving
condence intervals for the outcome. Moreover, these func-
tions can adapt as more data is collected for training, making it
particularly applicable for small data sets. Given the scarce
data available currently in mechanochemistry, it is a clear
candidate until more data can be collected for deep models.
For background on GPR in chemistry, including kernel design
and uncertainty quantication in small-data settings, see the
general overview in Chem. Rev.35 and recent catalysis-focused
reviews.36

In our formulation, we assume a zero mean function. This
common choice is made when no strong prior knowledge about
the mean exists; any systematic trends are then captured by the
covariance (kernel) function, allowing the model to focus on the
underlying correlation structure. Additionally, we use
a composite kernel (eqn (5)) consisting of a constant scaling
factor (C), a Matérn kernel (with smoothness parameter n xed
at 1.5) since it is effective in modeling physical processes,37 and
a white noise kernel (sn

2) to account for observation noise.

k = CkMatern(n = 1.5) + kWhiteKernel(sn
2), (5)

kMaternðrÞ ¼ s2 2
1�n

GðnÞ

 ffiffiffiffiffi
2n

p
r

l

!n

Kn

 ffiffiffiffiffi
2n

p
r

l

!
; (6)

where r = jx − x0j is the distance between two inputs, l is the
length scale, s2 is the signal variance, n controls the smooth-
ness, G($) is the Gamma function, and Kn($) is the modied
Bessel function of the second kind.

Given a training set X = {x1, ., xN} with outputs y = {y1, .,
yN} and a test set X* ¼ fx*1; .; x*mg, the joint distribution of
© 2025 The Author(s). Published by the Royal Society of Chemistry
the training outputs and the latent function values f* at the test
points is modeled as: 

y

f*

!
� N

 
0;

 
KðX; XÞ þ sn

2I K
�
X; X*

�
K
�
X*; X

�
K
�
X*; X*

�
!!

; (7)

where sn2 denotes the noise variance. K denotes the covariance
function computed from the composite kernel and is used to
construct the covariance matrices for both the training data and
the test data.

Conditioning on the training data, the predictive distribu-
tion for the latent function values at the test points is Gaussian
with mean and covariance given by

�f* = K(X*, X)[K(X, X) + sn
2I]−1y, (8)

cov(f*) = K(X*, X*) − K(X*, X)[K(X, X) + sn
2I]−1K(X, X*). (9)

The kernel hyperparameters (l, sn
2, n) and the noise variance

sn
2 are estimated by maximizing the log marginal likelihood:

Log pðyjXÞ ¼ �1

2
yu
�
KðX; XÞ þ sn

2I
��1

y

�1

2
log
��KðX; XÞ þ sn

2I
��� N

2
logð2pÞ:

(10)

This structure allows exibility in modeling the signal vari-
ance, smoothness, feature relevance, and noise level. The key
hyperparameters optimized via Hyperopt are detailed in
Table 2.

2.6.3 Random forest. A random forest (RF) is an ensemble
algorithm that makes use of multiple decision trees to enhance
performance and reduce over-tting. Each tree is fed with
different samples of the training data (i.e. a bootstrap) and at
each node a random subset of features are used for decision
making.38 This introduces variability across trees and thus,
errors made across different trees are averaged out in the nal
prediction. Given the confounded nature of variables in mech-
anochemical processes, tree-based algorithms are appealing
due to the ‘if-then’ working principle, which can capture non-
linear relationships. For instance, tree-based ensembles such
as random forest are standard in chemoinformatics39 and
QSAR.40 The overall prediction is given by eqn (11).41

f̂ ðxÞ ¼ 1

M

XM
m¼1

hðx; QmÞ; (11)

where f̂ (x) is the ensemble prediction for x, M is the number of
trees in the forest, and h(x; Qm) denotes the prediction of them-
RSC Mechanochem., 2025, 2, 889–900 | 893
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Table 3 Hyperparameter search space for random-forest (RF)
regression

Hyperparameter Search space/value

Number of trees (nestimators) U ð50; 300Þ
Maximum depth U ð5; 30Þ
Minimum samples split U ð2; 20Þ
Minimum samples leaf U ð1; 10Þ

Table 4 Hyperparameter search space for support–vector regression
(SVR)

Hyperparameter Search space/value

Regularization (C) Log U ð0:1; 100Þ
Epsilon (3) U ð0:001; 1Þ
Gamma (g) Log U ð0:001; 1Þ
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th tree. Here, Qm represents the random factors, such as the
bootstrap sample and random feature selection, used in con-
structing the m-th tree.

Key hyperparameters were tuned to optimize performance as
detailed in Table 3.

2.6.4 Support vector regression. A support Vector Regres-
sion (SVR) aims to nd a function f(x) that deviates from the
target values yi by a value no greater than 3 for all training
points, while remaining as at as possible.42 The resulting
regression function takes the form:

f̂ ðxÞ ¼
XN
i¼1

�
ai � a*

i

�
Kðxi; xÞ þ b; (12)

where xi are the training points (support vectors), ai, a*
i are non-

negative Lagrange multipliers determined during optimization,
and b is a bias term. The choice of the kernel function K(xi, x)
allows capturing non-linear relationships. The optimization
process nds these multipliers subject to constraints, including
the crucial box constraint 0 # ai, a*

i # C, where C is the regu-
larization hyperparameter. This parameter C > 0 controls the
trade-off between the atness of f(x) and the tolerance for errors
larger than 3; a larger C allows less error but potentially a more
complex function.

In SVR, the support vectors are dened by training data
points that lie on or outside the boundary of the 3-insensitive
tube. This characteristic of SVR is particularly advantageous in
the current state of mechanochemical processes, where exper-
imental data is scarce and studies typically explore the effect of
only one or two parameters on yield. By concentrating on the
most informative data points, it can uncover subtle nonlinear
dependencies among multiple process parameters. SVR has
long been part of the chemometrics toolkit for nonlinear cali-
bration and classication.43,44 The Radial Basis Function (RBF)
kernel was employed:

Kðxi; xÞ ¼ exp
�
�gkxi � xk2

	
(13)

where the kernel parameter g controls the inuence of a single
training example. The key hyperparameters C, 3, and g, which
inuence the model's complexity, error tolerance, and kernel
shape, respectively, were optimized using Hyperopt as detailed
in Table 4.

2.6.5 XGBoost. XGBoost is another tree-based algorithm
that, in contrast to RF which constructs independent trees and
averages them, builds an ensemble of regression trees in
a sequential form.45 Its efficiency, ability to capture complex
non-linear relationships and feature interactions, and
894 | RSC Mechanochem., 2025, 2, 889–900
sophisticated regularization techniques make it a powerful
choice for predictive modeling tasks, particularly with struc-
tured or tabular data oen encountered in chemical process
optimization. The nal prediction f̂ (x) is the sum of the
predictions from all M trees:

f̂ ðxÞ ¼
XM
m¼1

fmðxÞ; (14)

where fm(x) represents the prediction of the m-th tree, and M
corresponds to the number of estimators.

The training process iteratively adds trees by minimizing an
objective function L ðfÞ that combines a loss term (measuring
the difference between predictions and actual values) and
a regularization term U (penalizing model complexity), sum-
med over all trees:

L ðfÞ ¼
XN
i¼1

l
�
yi; ŷ

ðMÞ
i

	
þ
XM
m¼1

UðfmÞ; (15)

where l(yi, ŷ
(M)
i ) is the loss for sample i aerM trees (e.g., squared

error for regression), and ŷ(M)
i is the cumulative prediction. The

regularization term for a single tree f is dened as:

Uðf Þ ¼ gT þ 1

2
lkwk2: (16)

here, T is the number of leaves in the tree, and w is the vector of
scores (weights) at the leaves. The hyperparameter g represents
the minimum loss reduction required to make a further parti-
tion on a leaf node, acting as a tree pruning mechanism. The

term
1
2
lkwk2 is an L2 regularization on the leaf weights, where l

(typically xed, e.g., l = 1 by default in XGBoost, and not tuned
in this study) helps to prevent overtting by shrinking the leaf
scores.

The structural complexity of each individual tree fm is
primarily controlled by its maximum depth. The boosting
process, which dictates how the ensemble is built, is further
rened by several key hyperparameters: the learning rate (oen
denoted as h) scales the contribution of each new tree, reducing
the impact of individual trees and preventing overtting. The
subsample species the fraction of training instances randomly
sampled to grow each tree, introducing stochasticity and
improving generalization. Sample-by-tree denes the fraction of
features randomly sampled when constructing each tree (or
each split), which further diversies the trees and helps manage
feature collinearity. These parameters, along with the number
of estimators and g, were optimized via Hyperopt. This careful
tuning of the gradient boosting process, combined with its
inherent regularization strategies, allows XGBoost to achieve
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Table 5 Hyperparameter search space for extreme-gradient boosting
(XGBoost)

Hyperparameter Search space/value

Maximum depth (dmax) U intð3; 10Þ
Learning rate (h) Log U ð0:01; 0:3Þ
Number of estimators (M) U intð100; 500Þ
Row subsample (subsample) U ð0:5; 1Þ
Column subsample
(colsample_bytree)

U ð0:5; 1Þ

Gamma (g) U ð0; 5Þ
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high accuracy while effectively mitigating overtting.46 For
chemical best practices with XGBoost on tabular reaction/
molecular data, we refer to the J. Cheminf. guidelines47 and
recent domain reviews in catalysis science.36

The main hyperparameters tuned are listed in Table 5.

3 Results and discussion

The primary objective of this study is to develop accurate
predictive models that can link mechanical and chemical
operational parameters to experimental mechanochemical
yield. To assess this, we evaluate several machine learning
algorithms using two distinct modeling strategies:

(1) A primary modeling approach, where each algorithm was
trained directly on the full set of engineered features (either
scaled or unscaled, as appropriate for the specic model).

(2) A two-step modeling approach, designed to address the
potentially dominant inuence of the ‘time’ feature. This
involved rst modeling the yield based on ‘time’ alone, and then
modeling the residuals (the difference between actual yield and
the time-model's prediction) using the remaining engineered
features. The nal prediction was the sum of the outputs from
these two component models.

This dual approach allows for a comprehensive assessment
of how well different algorithms capture the underlying rela-
tionships in the data, particularly concerning the prominent
role of reaction time. It should be reiterated that the weighted
MSE calculations discussed here reect a conguration in
which the yields above 70% were given a weight of 2.0, and all
other yields a weight of 1.0.

3.1 Model performance evaluation

The performance of all trained models was evaluated on a held-
out test set. To provide a multifaceted view of predictive accu-
racy, several standard regression metrics were employed, in
addition to the weighted MSE already dened in eqn (3). These
metrics are:

� Root Mean Squared Error (RMSE): this metric calculates
the square root of the average of the squared differences
between predicted and actual values. It is sensitive to large
errors due to the squaring term. The RMSE is given by:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
i¼1

�
ytrue;i � ypred;i

�2vuut (17)
© 2025 The Author(s). Published by the Royal Society of Chemistry
where N is the total number of samples in the test set, ytrue,i is
the actual yield for sample i, and ypred,i is the predicted yield for
sample i. Lower RMSE values indicate better t, and the metric
shares the same units as the target variable (yield).

� Mean Absolute Error (MAE): MAE measures the average
magnitude of errors in a set of predictions. It is the average over
the test sample of the absolute differences between prediction
and actual observation.

MAE ¼ 1

N

XN
i¼1

��ytrue;i � ypred;i
�� (18)

MAE is less sensitive to outliers compared to RMSE and
provides a straightforward interpretation of the average error
magnitude, also in the units of the target variable.

� Mean Absolute Percentage Error (MAPE): MAPE expresses
the average absolute difference between predicted and actual
values as a percentage of actual values. This makes it a scale-
independent metric, useful for comparing performance across
datasets or models with different output scales.

MAPE ¼ 100%

N

XN
i¼1

����ytrue;i � ypred;i

ytrue;i

���� (19)

where ytrue,i s 0. Lower MAPE values are desirable.
� Coefficient of determination (R2): the R2 score indicates the

proportion of the variance in the dependent variable (yield) that
is predictable from the independent variables (features).

R2 ¼ 1�
PN
i¼1

�
ytrue;i � ypred;i

�2
PN
i¼1

�
ytrue;i � ytrue

�2 (20)

where �ytrue is the mean of the true yield values in the test set. R2

values range from −N to 1, where 1 indicates a perfect t,
0 indicates the model performs no better than predicting the
mean of the target, and negative values indicate poorer perfor-
mance than predicting the mean.

3.2 Comparison of modeling strategies and algorithm
performance

The performancemetrics for all evaluatedmodels on the test set
are summarized in Table 6, and the predictions can be visual-
ized in Fig. 2.

The Linear Regression model, utilizing a selected subset of
scaled features, registered a weighted MSE of 395.29 and an R2

of 0.53. While simple and interpretable, its linear nature
inherently limits its ability to capture the complex, non-linear
dynamics typical of chemical reactions, including those in
mechanochemistry. Nonetheless, it should be noted that when
examining the primary (single-stage) versions of the more
complex algorithms, most struggled to signicantly outperform
this baseline. For instance, the GPR (primary) model achieved
a weighted MSE of 260.82 and an R2 of 0.51, while RF (primary)
yielded a weighted MSE of 354.31 and R2 of 0.52, and SVR
(primary) resulted in a weighted MSE of 346.48 and R2 of 0.52.
On average, these primary models offered only a modest
RSC Mechanochem., 2025, 2, 889–900 | 895
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Table 6 Comparison of regression models on several performance
metrics

Model RMSE MAE MAPE [%] R2 Weighted MSE

Linear regression 15.50 14.11 37.49 0.53 395.29
GPR (primary) 15.88 11.09 31.39 0.51 260.82
GPR (two-step) 9.43 7.48 26.59 0.83 93.37
RF (primary) 15.65 15.01 49.86 0.52 354.31
RF (two-step) 12.52 10.29 27.42 0.69 177.17
SVR (primary) 15.66 14.66 48.57 0.52 346.48
SVR (two-step) 15.36 14.73 50.20 0.54 320.32
XGBoost (primary) 12.65 11.20 32.68 0.69 194.37
XGBoost (two-step) 11.06 8.79 24.79 0.76 139.56
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reduction in weighted MSE (approximately 20–35% improve-
ment over baseline) and showed R2 values very close to, or even
slightly below, that of the simpler linear model. The XGBoost
Fig. 2 Predictions on the test set from primary and two-step variants o

896 | RSC Mechanochem., 2025, 2, 889–900
(primary) model was an exception, showing a marked
improvement with a weighted MSE of 194.37 and an R2 of 0.69;
thus, when no prior domain knowledge is available, it should be
the rst-line choice, providing both competitive accuracy and
an initial, data-driven ranking of inuential variables. This
general difficulty of the primary models to substantially
advance beyond the linear regression baseline underscores the
dominant inuence of the ‘time’ variable, which, when not
explicitly addressed, appears to overshadow the contributions
of other features in these conventional modeling approaches.

Thus, a clear and consistent nding from these results is
a signicant benet of the two-step modeling approach for
several algorithms. The GPR two-step model stands out,
achieving the lowest weighted MSE (93.37), MAE (7.48), and
RMSE (9.43), alongside the highest R2 value (0.83) among all
models tested. Beyond its strong predictive accuracy, GPR can
provide uncertainty estimates (condence intervals) for its
f each regressor: (a) GPR, (b) RF, (c) SVR and (d) XGBoost.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 Actual yields and predictions from the two-step GPR model. Points show the actual yield and error bars show 90% predictive intervals.
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predictions (see Fig. 3). Here, the effect of the weighted objec-
tive is evident; cases above 70% yield exhibit closer agreement
with the model, indicating that errors at high yield were effec-
tively down-weighted during training. This error scale is valu-
able for guiding future experiments and assessing prediction
reliability, especially when dealing with limited or costly
experimental data, a common scenario in developing elds like
mechanochemistry. The adaptability of its kernel functions also
allows for encoding prior knowledge about the process, if
available. The superior performance of the two-step GPR
suggests that by rst isolating the primary time trend, the GPR
framework could more effectively model the subtle, potentially
non-linear interactions among the remaining process parame-
ters through its covariance structure.

To further delve into the interpretability of the more complex
non-linear models, particularly the tree-based ensembles, SHAP
(SHapley Additive exPlanations) analysis was employed for the
two-step variants of RF and XGBoost. SHAP values provide
Fig. 4 SHAP summary plots for (a) the two-step XGBoost model and (b

© 2025 The Author(s). Published by the Royal Society of Chemistry
a unied measure of feature importance by attributing to each
feature the change in the expected model prediction when
conditioning on that feature. A SHAP summary plot visualizes
these attributions: each point represents a SHAP value for
a feature and an instance, where the position on the x-axis
indicates the impact on the model output (positive or negative),
and the color represents the feature's value (high or low).
Features are ranked by the sum of absolute SHAP values across
all samples.

The XGBoost two-step model also demonstrated consider-
able improvements with the second strategy, emerging as the
second-best performing model with a weighted MSE of 139.56
and an R2 of 0.76. Tree-based ensemble methods like XGBoost
are inherently capable of capturing complex non-linear rela-
tionships and variable interactions. The SHAP summary plot for
this model (Fig. 4(a)) reveals that ‘time’ remains, as expected,
the most inuential feature for the overall two-step prediction,
with higher time values generally pushing the prediction higher
) the two-step random-forest model. See main text for interpretation.

RSC Mechanochem., 2025, 2, 889–900 | 897
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Table 7 Out-of-sample milling conditions used for the generalization
check. �En and �Et are the mean normal and tangential energy dissipated
per collision from DEM; fcol/nball is the specific collision frequency per
ball. For these two cases the fill ratio was 6%, and the dissipation ratio
increased from �Et/�En = 2.27 in Table 1 to 3.26 here, i.e., a more
tangential-dominated stressing regime. Rotational speeds were
600 rpm (case 27) and 788 rpm (case 28)

Case BPR
Mol
ratio

Time
[h]

�En
[mJ]

�Et
[mJ]

fcol/nball
[s−1]

Yield
[%]

27 30 10 12.5 73 238 700 84
28 30 10 12.5 126 411 920 94
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(positive SHAP values). Following ‘time’, features such as ‘molar
ratio’ and the interaction ‘BPR-molar ratio’ exhibit signicant
importance, where higher values of these ratios tend to posi-
tively inuence the predicted yield. These results align with our
previous ndings.3 ‘BPR’ and ‘time (sigmoid)’ also show
discernible impacts. It should be highlighted that, while the use
of engineered features can be benecial for capturing complex
relationships and potentially improving model accuracy, it
underscores a common trade-off in machine learning: a balance
must oen be struck between the enhanced predictive power
gained from feature engineering and the goal of maintaining
straightforward interpretability in terms of original process
parameters. Despite this consideration, the two-step approach
has effectively enabled the two-step XGBoost model to focus its
learning capabilities on variance not explained by time, leading
to more accurate predictions.

The Random Forest (RF) two-step model also beneted from
the residual strategy, with a weighted MSE of 177.17 and an R2 of
0.69. Similar to XGBoost, RF models can effectively map non-
linearities and interactions. The SHAP summary plot for the RF
two-step model (Fig. 4(b)) shows a similar pattern of feature
importance. ‘Time’ is again paramount, with a wide spread of
SHAP values. ‘BPR-molar ratio’ and ‘molar ratio’ are the nextmost
impactful features, with higher values generally increasing the
predicted yield. Other engineered features like ‘molar ratio
(squared)’ and ‘time (sigmoid)’ also contribute, though to a lesser
extent than the top three. For both tree-based models, the
features related to energy input (‘�En’, ‘�Et’) and collision frequency

fcol
nball

�
show relatively lower overall SHAP values, suggesting

a smaller impact on the output of these two-step models
compared to the primary chemical and time-related parameters.
However, it is crucial to reiterate that these mechanical milling
properties were obtained under a constant ll ratio, and their
inuence is subject to change as this parameter is varied.
Furthermore, this aligns with our previous nding that rotational
speed, which has been abstracted into these variables, has
a relatively lower relevance compared to the rest of the opera-
tional variables when maintaining a constant ll ratio.3

For Support Vector Regression (SVR), the two-step approach
provided a minimal improvement in weighted MSE (320.32 for
two-step vs. 346.48 for primary) and R2 (0.540 vs. 0.522 for
primary). SVR models, particularly with non-linear kernels like
RBF, can be effective in high-dimensional spaces and are less
sensitive to the dimensionality of the feature space. Their reli-
ance on support vectors (a subset of training data) can make
them memory efficient. However, in this case, the gains from
the two-step strategy were less pronounced compared to GPR
and the tree-based ensembles, suggesting that the primary SVR
model might have already captured much of the structure the
two-step approach aimed to resolve, or that its specic way of
dening the decision boundary was less amenable to this
sequential decomposition. As such, the SVR should not be
investigated further until more data can be collected.

In summary, the GPR two-step model is the top-performing
model across most key metrics based on the current dataset
898 | RSC Mechanochem., 2025, 2, 889–900
and evaluation criteria. The two-stepmodeling approach proved
to be highly advantageous, particularly for GPR, XGBoost, and
RF, signicantly enhancing their predictive accuracy, especially
when considering the weighted error. These results emphasize
the importance of considering tailored modeling strategies. The
distinct characteristics of each algorithm (i.e., GPR's probabi-
listic outputs, the non-linear mapping capabilities and inter-
pretability via SHAP of tree-based ensembles, and SVR's margin-
based optimization) offer different strengths beyond raw
predictive power. Therefore, the ultimate choice of predictive
model in mechanochemical studies, or indeed any application,
should not be solely dictated by a narrow focus on performance
metrics. For instance, a model that performs slightly worse on
a specic metric might be preferred if its intrinsic properties,
such as superior interpretability, the ability to quantify uncer-
tainty (as with GPR), or robustness to certain data characteris-
tics, align more closely with the specic goals of the
investigation or the practical constraints of its application.
Factors such as data availability, the cost of acquiring more
data, the need for uncertainty quantication for decision-
making, and the desired level of insight into the underlying
process mechanisms must be weighed alongside predictive
accuracy.
3.3 Model generalization under mechanical regime change

To probe prospective generalization beyond the training
distribution, we evaluated the two best-performing models on
two new milling conditions (Table 7). In the original dataset
(Table 1), the distribution of mechanical stressing conditions
was effectively held constant, with a dissipation ratio of .
Therefore, we expose the model to an unseen mechanical
regime where the dissipation ratio is tuned to increase the
dominance of tangential dissipation �Et/�En = 3.26. This is
practically achieved by reducing the ll ratio in the Emax ball
mill.

We scaled the features with the training scaler and obtained
predictions from the two-step GPR and XGBoost without ret-
ting. Table 8 reports point predictions and absolute errors
relative to the measured yields.

In case 27, the ll ratio (6%) departs from the training
domain. The two-step models under-predict byz11 percentage
points, which is broadly consistent with their held-out RMSE
(z9.43) and indicates that a modest shi toward a more
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Table 8 Predictions on the two out-of-sample cases. Absolute errors are in percentage points of yield

Case Yieldtrue [%] GPRtwo-step [%] XGBtwo-step [%] jGPRtwo-step – truej jXGBtwo-step – truej

27 84.0 73.14 72.42 10.86 11.58
28 94.0 74.09 72.42 19.91 21.58
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tangentially dominated stressing state can be tolerated when
other operating factors remain consistent. However, in case 28,
the ll ratio and rotational speed are shied simultaneously,
which further increases tangential stressing and the specic
collision frequency. Errors rise to 20–22 percentage points,
showing that the tangential mechanical regime alters the
inuence of the rotational speed on yield in a way that the
models have not yet learned, leading to systematic under-
prediction. As more variables move outside the training distri-
bution, errors compound because of unseen nonlinear inter-
actions between operational variables. This underscores the
value of an expandable dataset design: targeted additions will
expose these interactions and enable retting for reliable use
under regime changes. Because the DEM descriptors are mill-
agnostic, different groups can explore the variables and
ranges most relevant to them, and the pooled data will steadily
improve accuracy and generalization.

4 Conclusions

In this study, we have demonstrated the effectiveness and
applicability of various machine learning algorithms to link
mechanical and chemical parameters of mechanochemistry to
predict conversion yield in the regeneration of NaBH4 from
a system of NaBO2$4H2O and MgH2. We have evaluated two
distinct modeling strategies designed to account for the scarcity
of data and the dominant inuence of milling time in the
process. Our ndings indicate that carefully selected and
congured ML models can provide valuable predictive capa-
bilities, offering a pathway to optimize experimental efforts at
a fraction of the time compared to the classic ‘trial and error’
approach, and gain deeper insights into the complex interplay
of parameters in mechanochemistry.

The most compelling predictive performance was achieved
by the Gaussian Process Regression (GPR) two-step model,
which consistently outperformed all other evaluated algorithms
across key metrics, including the lowest weighted MSE (93.37)
and the highest R2 (0.83). Following GPR, the two-step XGBoost
and Random Forest models also delivered strong results.
Beyond mere predictive accuracy, the choice of an appropriate
MLmodel should also be guided by the specic objectives of the
research and the intrinsic characteristics of the algorithms.

The practical implications of this work are signicant. By
developing reliable predictive models, researchers can
substantially reduce the number of exploratory experiments,
leading to considerable savings in time, materials, and energy.
This is particularly pertinent given the current state of mecha-
nochemistry, where experiments can be resource-intensive and
exploratory. More fundamentally, this study aimed to showcase
© 2025 The Author(s). Published by the Royal Society of Chemistry
a methodology for employing machine learning to bridge the
elusive gap between the mechanical and chemical parameters
of a mechanochemical process and the resulting yield
outcomes. While the current data set provided a strong starting
point, further exploration with more variability in mechanical
conditions will enhance this linkage. Currently, performance
degrades when multiple variables move outside the training
domain, showcasing regime-dependent, nonlinear interactions.
To facilitate this, the invariant mechanical characterization
used in the dataset makes it readily expandable by independent
experiments. Future work should focus on incorporating such
expanded datasets, potentially exploring additional feature
engineering techniques and advanced deep learning architec-
tures once data volume permits.
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J. Janey, D. C. Leitch, L. Li, F. Liu, P. C. Lobben,
D. W. C. MacMillan, J. Magano, E. McInturff, S. Monfette,
R. J. Post, D. Schultz, B. J. Sitter, J. M. Stevens,
I. I. Strambeanu, J. Twilton, K. Wang and M. A. Zajac, Org.
Process Res. Dev., 2019, 23, 1213–1242.

22 X. Caldentey and E. Romero, Chem.: Methods, 2023, 3,
e202200059.

23 C. B. Santiago, J.-Y. Guo and M. S. Sigman, Chem. Sci., 2018,
9, 2398–2412.
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