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In this study, we disclosed that calcium-based heavy Grignard reagents, prepared in situ through
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catalysts to afford thermodynamically less favorable (E)-monofluorostiloenes with good to high
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Organocalcium compounds have gained significant attention
owing to their unique structures and reactivities."> However,
there has been limited exploration of synthetic applications
involving calcium-based carbon nucleophiles.® This is largely
due to the absence of straightforward and convenient methods
for generating these highly reactive nucleophiles from
commercially available starting materials, which may hinder
a comprehensive investigation of their reactivity profiles."”> As
a result, basic reactions involving organocalcium nucleophiles
are currently underdeveloped.

Building on this background, we recently developed
a straightforward mechanochemical protocol that employs ball
milling to generate calcium-based heavy Grignard reagents (R-
CaX)*** from unactivated calcium metal.***® Conventionally,
such direct synthesis requires the preparation of activated
calcium metal, such as Rieke calcium.’®*? In contrast, our
mechanochemical approach employs commercial calcium
metal and does not require inert gas protection, simplifying the
operating process for the generation of organocalcium nucleo-
philes.*** This simple protocol is expected to enable synthetic
chemists to more easily explore novel reactivities of organo-
calcium nucleophiles. Indeed, we found that mechanochemi-
cally generated aryl calcium species react smoothly with
unactivated alkyl halides,"*** including alkyl fluorides, in the
absence of transition metal catalysts (Scheme 1A).*%*”
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stereoselectivity. To the best of our knowledge, this is the first example of nucleophilic substitution of
a C(sp?)—F bond by an arylcalcium compound.

Based on these achievements, particularly the C(sp*)-F bond
arylation by organocalcium compounds,* we investigated the
feasibility of a direct organocalcium-mediated C(sp®)-F bond
arylation reaction.'® Herein, we report that calcium-based heavy
Grignard reagents, which were mechanochemically generated
in situ, reacted with gem-difluorostyrenes in the absence of
transition-metal catalysts to afford thermodynamically less
favorable (E)-monofluorostilbenes with good to high stereo-
selectivity (Scheme 1B).**2® To the best of our knowledge, this is
the first example of nucleophilic substitution of a C(sp”)-F bond
by an arylcalcium compound.®*® Furthermore, this represents
a rare instance where thermodynamically less favorable
stereoisomers are formed from the defluorofunctionalization of

A. Previous work: direct arylation of alkyl halides (ref. 14,15)

via in-situ mechanochemically generated
calcium-based aryl nucleophile

Akyl—X_ + ' ICa N Alkyl

B. This work: direct arylation of gem-difluorostyrenes

Ca metal
ether additive

ball milling

major E isomer minor Z isomer

X F Ca metal
£ ether additive ~F @
—_— +
+ ball milling @ @ @ X
F

| no metal catalyst

® First nucleophilic substitution of C(sp?)-F bond by arylcalcium species

thermodynamically
less favorable

thermodynamically
more favorable

® Simple mechanochemical protocol facilitates reaction discovery

Scheme 1 Discovery of new reactions involving organocalcium
compounds by a mechanochemical method.
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gem-difluoroalkenes.”?® The utility of this protocol was
demonstrated by the stereoselective synthesis of a mono-
fluorinated combretastatin A-4 analog.** This study illustrates
the effectiveness of a straightforward mechanochemical
method for exploring a previously overlooked reactivity of
calcium-based heavy Grignard reagents.

Initially, we optimized the conditions of the defluoroar-
ylation of gem-difluorostyrene (1a) using an in situ mecha-
nochemically generated aryl calcium nucleophile (Table 1). All
reactions were conducted in a Retsch MM400 mixer mill
(stainless-steel milling jar; 30 Hz; stainless-steel balls).
Commercially available gem-difluorostyrene (1a), unactivated
calcium metal (1.0 equiv.), and iodobenzene (2a, 3.0 eq.) were
sequentially weighed in air and added to a 1.5 mL stainless-steel
jar along with two 7 mm stainless-steel balls. Upon the addition
of tetrahydropyran (THP, 4.0 equiv.), which is an essential
additive for the generation of calcium-based aryl nucleo-
philes,"** the jar was sealed and then placed in a Retsch
MM400 mixer mill. After ball milling at 30 Hz for 1 h, (E)-
monofluorostilbene [(E)-3aa] was obtained in 60% yield with
high stereoselectivity towards the thermodynamically less
favorable E isomer (E: Z = 81:19) (entry 1)." It was found that
the use of tetrahydrofuran (THF) instead of THP afforded (E)-
3aa in 68% yield with a slightly higher E selectivity (E: Z = 83 :
17). Notably, the pure E isomer of 3aa (E: Z = >99: 1) was iso-
lated by silica gel column chromatography (entry 2). When the
milling frequency was reduced to 20 Hz, the yield of 3aa
decreased (entry 3, 58%; E: Z = 85:15). The use of 1.0 equiva-
lent of calcium metal afforded a lower yield (54%) with a slightly

Table 1 Optimization of the reaction conditions®

1a
0.5 mmol »
Ca metal, additive
+
| 1.5 mL jar, 7 mm ball x 2
(stainless steel)
ball milling (Hz), 60 min
2a
3.0 equiv

Entry Equiv. Of Ca Hz Additive Yield” of 3aa (%) E:Z”
1 1.5 30 THP (4.0 equiv.) 60 81:19
2 1.5 30 THF (4.0 equiv.) 68 (45°9) 83:17
3 1.5 20 THF (4.0 equiv.) 58 85:15
4 1.0 30 THF (4.0 equiv.) 54 86:14
5 2.0 30 THF (4.0 equiv.) 42 74:26
6 1.5 30 THF (8.0 equiv.) 54 85:15
7 1.5 30 THF (2.0 equiv.) 56 77:23

“ Conditions: 1a (0.5 mmol), 2a (1.5 mmol), Ca, and additive in
a stainless-steel ball-milling jar (1.5 mL) with two stainless-steel balls
(diameter: 7 mm). ? Yields were determined by "H NMR spectroscopy
using dibromomethane as an internal standard. ¢ Isolated yield.
4 After repeated column chromatographic separations, the E: Z ratio
was >99:1.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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increased E : Z selectivity (entry 4, E: Z = 86 : 14). The use of 2.0
equivalents of calcium metal significantly decreased both the
yield and E: Z ratio (entry 5, 42% yield, E: Z = 74 : 26). We also
examined the effect of the amount of THF additive (entries 6
and 7). When using 8.0 equivalents of THF, the E: Z ratio was
similar to that of the reaction using 4.0 equivalents (entry 6, E: Z
= 85:15), whereas 2.0 equivalents of THF resulted in a poor E :
Z ratio (entry 7, E: Z ratio = 77 :23).

With the optimized conditions in hand, we explored the
substrate scope for the defluoroarylation of various gem-
difluorostyrenes (Table 2). gem-Difluorostyrenes containing
a methyl group in the para, meta, and ortho positions on the
phenyl ring (1b-1d) reacted smoothly to afford the corre-
sponding products (3ba-3da) in moderate to good yields (60-
64%) with high E selectivity. Almost pure E isomers were ob-
tained via purification by either silica gel column chromatog-
raphy or gel-permeation column chromatography (for details,
see ESIf). Substrates bearing ortho-substituents such as tert-
butyl- (1e), methoxy- (1f), benzyloxy- (1g), phenyl- (1h), bromo-
(1i), trifluoromethyl- (1j), trifluoromethoxy- (1k), or trime-
thylsilyl- (11) were fully tolerated under defluoroarylation reac-
tion conditions, resulting in the corresponding
monofluorostilbene derivatives in moderate to good yields (43-
84%) with high E selectivity (3ea-3la). Naphthalene-containing
substrates (1Im and 1n) underwent defluoroarylation to form
the desired products (3ma and 3na) in good yields (65 and 58%,
respectively) with high E selectivity. The reactions of substrates
bearing tert-butyl (10) or diphenylamino (1p) groups at the para
position afforded the desired products (30a and 3pa) in good
yields (68 and 78%, respectively) with high E selectivity. A benzo
[b]thiophene-containing substrate (1q) was also converted to
the desired product 3qa with good E selectivity (E: Z = 73 : 27).
Interestingly, the reaction of 1-bromo-4-(1,1-difluoroprop-1-en-
2-yl)benzene (1r) afforded (Z)-3ra as the major isomer (E:Z =
33:67) in high yield (76%). Unfortunately, 2-(2,2-difluorovinyl)-
1,3,5-trimethylbenzene (1s), which contains two methyl groups
at ortho position of the phenyl ring, afforded only an 11% yield
of 3sa with good Z selectivity (E: Z = 26 : 74). It should be noted
that the relatively low isolated yields compared to their NMR
yields were primarily due to the difficulty of separating the E
and Z arylated products. To isolate stereochemically pure E
products, we performed multiple rounds of purification using
silica gel column chromatography and gel-permeation chro-
matography. However, this process led to relatively low isolated
yields of the desired E products.

Subsequently, the reactions were investigated using various
aryl iodides (Table 3). We found that 1-iodonaphthalene (2b), o-
isopropyl- (2¢)-, and o-methyl- (2d)-substituted iodobenzene
derivatives furnished the desired products (3ab-3ad) in high
yields (69-76%) with high E stereoselectivity. However, separa-
tion of the E/Z isomers by silica gel chromatography proved
challenging in these cases. Methyl groups at different positions
did not significantly affect the reactivity and selectivity (3ae:
60%, E:Z = 84:16, 3af: 71%, E:Z = 87:13). Aryl iodides
bearing either electron-withdrawing or electron-donating
substituents at the para position and two methyl groups at
the meta position were also suitable for this reaction (3ag-3am).

RSC Mechanochem., 2025, 2, 256-262 | 257
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Table 2 Substrate scope of gem-difluorostyrenes®
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1 2a
0.5 mmol 1.5 mmol
1.0 equiv 3.0 equiv

Ca (1.5 equiv)
THF (4.0 equiv)

1.5 mL jar, 7 mm ball x 2
(stainless steel)
ball milling, 30 Hz
60 min (E)-3
NMR yied
(isolated yield)

(E)-3ba
64%, E:Z 87:13
(36%, E:Z 98:2)

OBn

(E)-3ga
71%, E:Z 84:16
(59%, E:Z 83:17)

TMS

(E)-3la
84%, £:Z90:10
(80%, E:Z 90:10)

(E)-3ca
60%, E:Z 82:18
(35%, E:Z >99:1)

(E)-3ha
80%, £:Z 78:22
(47%, E:Z 79:21)

(E)-3ma
65%, E:Z 84:16
(47%, E:Z >99:1)

(E)-3da
64%, E:Z: 87:13
(40%, E:Z: >99:1)

(E)-3ia
43%, E:Z91:9
(31%, E:Z 89:11)

o

(E)-3na
58%, E:Z 86:14
(26%, E:Z >99:1)

(E)-3ea
64%, E:Z 87:13

(38%, E:Z >99:1)

(E)-3fa
62%, E:Z 85:15
(48%, E:Z 84:16)

(E)-3ja
48%, E:Z 89:11
(24%, E:Z 97:3)

(E)-30a
68%, E:Z81:19
(40%, E:Z 93:7)

(E)-3ka
58%, £:Z 84:16
(41%, E:Z >99:1)

(E)-3pa
78%, E:Z 86:14
(74%, E:Z 87:13)

(E)-3qa
48%, E:Z 73:27
(24%, E:Z>99:1)

(2)-3ra
76%, E:Z 33:67
(34%, Z:E >99:1)

e

(2)-3sa
11%, E:Z 26:74
coversion of 1s : 44%

¢ Reaction conditions: gem-difluoroalkene 1 (0.5 mmol, 1.0 equiv.), iodobenzene 2a (1.5 mmol, 3.0 equiv.), Ca (0.75 mmol, 1.5 equiv.), THF (4.0
mmol) in a stainless-steel ball-milling jar (1.5 mL) with two stainless-steel balls (diameter: 7 mm), ball milling (30 Hz) for 1 h. "H NMR yields
are shown. Isolated yields are shown in parentheses. The E/Z ratio was determined by '°F NMR analysis.

Unfortunately, ester and nitro groups were incompatible under
these conditions.

To demonstrate the potential applicability of this method to
the synthesis of bioactive compounds, we synthesized a mono-
fluorinated combretastatin A-4 analogue [(E)-3tp] with anti-
cancer activity (Scheme 2).*' The reaction between 5-(2,2-
difluorovinyl)-1,2,3-trimethoxybenzene (1t) and 2-fluoro-4-iodo-
1-methoxybenzene (2p) in the presence of calcium metal fur-
nished the desired product 3tq with excellent E selectivity. Pure
(E)-3tq was obtained by flash silica gel chromatography.

Next, the reaction using Rieke calcium under solution-based
conditions was investigated to obtain a mechanistic insight
(Scheme 3). The Rieke method using lithium biphenylide was
employed to generate the corresponding aryl calcium species
from 2a, and the desired product (E)-3aa was obtained with high

258 | RSC Mechanochem., 2025, 2, 256-262

stereoselectivity (21%, E: Z = 89:11). This result suggests that
the C(sp®)-F bond arylation under mechanochemical condi-
tions most likely occurs through the selective formation of aryl
calcium nucleophiles via direct insertion of calcium metal into
a C(sp)-1 bond, followed by defluoroarylation of a gem-
difluorostyrene. At this stage, the detailed mechanism of the
nucleophilic substitution of the C(sp?)-F bond remains unclear.

Next, we tested the defluoroarylation reaction using
conventional Grignard reagents (Scheme 4). Cao et al. previ-
ously reported the defluoroalkylation of gem-difluorostyrenes
using bulky alkyl Grignard reagents in the absence of transition-
metal catalysts to form thermodynamically more stable Z
stereoisomers. In contrast, the use of sterically less hindered
primary alkyl Grignard reagents afforded E/Z mixtures (Scheme
4A).%° Interestingly, it was found that the use of a THF solution

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Table 3 Substrate scope of aryl iodides”

Ca (1.5 equiv)
/@/\r': ' THF (4.0 equiv)
+
Ph F 1.5 mL jar, 5 mm ball x 2

(stainless steel)

1a 2 ball milling, 30 Hz (E)-3
0.5 mmol 1.5 mmol 60 min NMR yied
1.0 equiv 3.0 equiv (isolated yield)

opt
" A0

Me

(E)-3ab (E)-3ac (E)-3ad (E)-3ae (E)-3af
76%, E:Z 83:17 72%, E:Z 82:18 69%, E:Z81:19 60%, E:Z 84:16 71%, E:Z 87:13
(50%, E:Z 89:11) (50%, E:Z 81:19) (52%, E:Z 81:19) (35%, E:Z>99:1) (40%, E:Z 98:2)

CFs OMe OTIPS
(E)-3ag (E)-3ah (E)-3ai (E)-3aj (E)-3ak

50%, E:Z 87:13 56%, E:Z 85:15 47%, E:Z 90:10 61%, E:Z 86:14 45%, E:Z: 93:7

(37%, E:Z >99:1) (38%, E:Z>99:1) (31%, E:Z >99:1) (37%, E:Z >99:1) (25%, E:Z >99:1)

™S CO,Me NO,
(E)-3al (E)-3am ! _
48%, E:Z 85:15 62%, E:Z 87:13 (E)-3an (E)-3a0
(25%, E:Z >99:1) (28%, E:Z 92:8) not detected not detected

“ Reaction conditions: gem-difluoroalkene 1 (0.5 mmol, 1.0 equiv.), iodobenzene 2a (1.5 mmol, 3.0 equiv.), Ca (0.75 mmol, 1.5 equiv.), THF (4.0
mmol) in a stainless-steel ball-milling jar (1.5 mL) with two stainless-steel balls (diameter: 7 mm), ball milling (30 Hz) for 1 h. "H NMR yields
are shown. Isolated yields are shown in parentheses. The E/Z ratio was determined by °F NMR analysis.

MeO - fluorinated Combretastatin A-4 | Ca” (Rieke) 2a
E analogue \© (1.5 equiv) ICa (1 equiv)
— > — >
MeO'
Ca (1.5 equiv) THF (0.2 M) \© i, 1h

OMe THF (4.0 equiv) 2a 78 °Cto 10 °C
1t —_— 30equiv 1h
0.5 mmol 1.5 mL jar 21%, E:Z 89:11
+ 5 mm ball x 2 . . . . . . .
I F (stainless steel) Scheme 3 Reaction using Rieke calcium in solution. The details of the
ball milling (30 Hz) conditions are shown in the ESI}
60 min (E)-3tp
OMe 41% (NMR), E:Z 91:9
2p 31% (isolated), E:Z >99:1

3.0 equiv
selectivity was slightly decreased (Cl: E: Z=79:21, 79%, Br: E :

Z = 79:21, 70%). Interestingly, excellent Z selectivity was ob-
tained when Ph-MgI was used at 80 °C (E:Z = 1:>99, 21%).
Overall, these results show that the E stereoselectivity is not
unique to calcium-based heavy Grignard reagents. In the case of
traditional Grignard reagents, the stereoselectivity of this
transformation is highly sensitive to the choice of organic
groups (alkyl or aryl) and halides on magnesium.

In conclusion, we found a new reaction between calcium-
based heavy Grignard reagents, which were generated in situ
via a simple mechanochemical method, and gem-difluorostyr-
enes in the absence of transition-metal catalysts, resulting in

Scheme 2 Synthesis of fluorinated Combretastatin A-4 analog (E)-3tp
via E-selective defluoroarylation using a calcium-based heavy
Grignard reagent. The details of the conditions are shown in the ESI.{

of Ph-MgCl in the defluoarylation of 1a at room temperature led
to thermodynamically less stable (E)-3aa in 73% yield with high
stereoselectivity (E: Z = 84 :16) (Scheme 4B). The reaction with
Ph-MgBr also exhibited the E selectivity, however, the product
yield was low (E: Z = 81:19, 18%). When these reactions were
carried out at 80 °C, the yields were improved while the E

© 2025 The Author(s). Published by the Royal Society of Chemistry RSC Mechanochem., 2025, 2, 256-262 | 259
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A. Cao's report on reactions using alkyl Grignard reagents (ref. 26)

ClMg—Alkyl ml
mF (1 8 equiv) Y
MeO F toluene, reflux /@/\(Alkyl

Alkyl = tBu: 90%, E:Z <1:99
nBu: 89%, E:Z ca. 50:50

B. Reactions using aryl Grignard reagents

mF (3.0 equiv)

—_—
F
Ph THF, rt, 24 h

1a

0.5 mmol

X=Cl X =Br X=1
t, 73%, E:Z 84:16 i, 18%, £:Z 83:17 t, trace

80 °C, 79%, E:Z79:21 80 °C, 70%, E:Z79:21 80 °C, 21%, E:Z 1:>99

Scheme 4 Reactions using Grignard reagents in solution. The details
of the conditions are shown in the ESIL.}

moderate to high yields of the corresponding C(sp®)-F bond
arylation products with good to high stereoselectivity. Notably,
this is the first reported instance of an arylcalcium species
engaging in nucleophilic substitution of a C(sp®)-F bond. These
findings confirm that our operationally simple mechanochem-
ical protocol using commercial calcium metal provides a valu-
able platform for discovering new reactions involving calcium-
based carbon nucleophiles. Further studies to elucidate the
mechanism of the C(sp®)-F bond substitution reaction as well
as the observed stereoselectivity are ongoing in our laboratory.
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