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Multi-omics data integration for topology-based
pathway activation assessment and personalized
drug ranking

Nicolas Borisov,ab Yaroslav Ilnytsky,cd Boseon Byeon,e Olga Kovalchuk*cd and
Igor Kovalchuk *cd

Although multi-omics analysis is popular for revealing diverse physiological effects and biomarkers in

many branches of state-of-the-art molecular and cell biology and bioinformatics, there is still no

consensus on a gold standard protocol for the integration of various multi-omics profiles into a

uniformly shaped system bioinformatics platform. In the current study, we performed the integration of

data on DNA methylation, and the expression of coding RNA (mRNA), micro-RNA (miRNA), and long

non-coding RNA into a joint platform for calculation of signaling pathway impact analysis (SPIA) and

drug efficiency index (DEI). We found that the mirrored and balanced DEI values fitted the DNA

methylome data better than the original DEI. Additionally, the protein-coding mRNA-based values

correlated more strongly with antisense lncRNA-based values than with miRNA-based values. The whole

correlation between the mRNA-based and antisense lncRNA-based values was generally positive. This

platform allowed integrative analysis of several levels of gene expression regulation of protein-coding

genes and their regulators, including methylation and noncoding RNAs.

Introduction
Diversity of multi-omics data

Multi-omics data integration has been extensively used to study
normal and pathological conditions by assessing molecular
pathway activation. A PubMed query with the keywords
‘‘multi-omics’’ and ‘‘pathway’’ retrieves 7449 items as of end
of June 2025. Each type of omics data—genomics, transcrip-
tomics, epigenomics, proteomics, metabolomics, lipidomics,
glycomics, and microbiomics—provides unique insights into
different aspects of biological systems.

Consideration of multi-omics events at the integrated level is
important because it provides a comprehensive understanding
of biological systems by combining data from various omics
layers used.1,2 Its advantages include examining multiple

molecular levels simultaneously, offering a more complete
picture than single-omics approaches.3–5 The multi-omics
approach also helps cross-validate the findings from different
omics layers, increases the reliability and accuracy of the results,
and, second, improves the identification of robust biomarkers
for disease diagnosis, prognosis, and treatment monitoring by
considering multiple types of molecular data.6,7

Multi-omics data aggregation for pathway activation
assessment

Several approaches have been developed to integrate diverse
multi-omics data into molecular pathway analysis, each with
its advantages and challenges. These algorithms may utilize
different approaches for data processing and produce output
data in different formats. Considering the mathematical
approach to data processing, we propose the following
approaches: statistical and enrichment approaches, machine
learning approaches, and network-based approaches.

Statistical and enrichment approaches include simple
enrichment analysis and quantitative statistical analysis. At the
current moment, the mostly qualitative approach based on Gene
Ontology classification has largely gone out of favor.8,9 In con-
trast, quantitative statistical analysis using tools such as Inte-
grated Molecular Pathway-Level Analysis (IMPaLA),10 Pathway
Multiomics,11 MultiGSEA,12 PaintOmics13 and ActivePathways14

allows for integration of multiple omics layers to compute
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pathway enrichment scores, which provide statistical signifi-
cance and visual representations of pathway activities.

Machine learning approaches involve supervised and unsuper-
vised learning. Supervised learning techniques, such as DIABLO,15

or OmicsAnalyst,16 which apply the LASSO regression,17 use
annotated (phenotype groups are used as class labels) datasets
to predict pathway activities based on integrated multi-omics data,
enhancing predictive performance and accuracy. Unsupervised
learning methods, like clustering,16,18 principal component analy-
sis (PCA),18 and tensor decomposition,18 discover latent features
and patterns in multi-omics data without predefined labels.

Network-based approaches construct interaction networks
from multi-omics data, identifying key regulatory nodes and
pathways. A realistic picture of pathway activation can only be
revealed by topological network-based methods that consider
the biological reality of pathways by incorporating data on the
type and direction of protein interactions.19 Not surprisingly,
topology-based methods have outperformed their counterparts in
benchmarking tests.19 Different researchers suggested a wide
repertoire of algorithms and toolkits for quantitative pathway
topology-based assessment of pathway activation levels (PALs), like
Oncobox,20 topology analysis of pathway phenotype association
(TAPPA),21 topology-based score (TBScore),22 pathway-express
(PE),23 signaling pathway impact analysis (SPIA),24 in silico pathway
activation network decomposition analysis (iPANDA),25 Drug Effi-
ciency Index (DEI),26,27 etc. Such pathway activation level calcula-
tions utilize high-throughput gene expression or mutation profiles.
Diverse methods, algorithms, and software for automated curation
of pathway topology databases and uniformly shaped annotations
of their content have also been developed.28,29

It may seem like it is sufficient to obtain the data from whole
transcriptome sequencing (WTS, RNA-seq), as it allows evaluat-
ing the level of activation/inactivation of various pathways.
However, it is known that ncRNAs, especially miRNAs, are able
to regulate mRNA expression negatively through translational
inhibition, and thus mRNA sequencing does not fully represent
changes in the pathways. Different ncRNAs interfere with the
gene expression process at different stages and with different
affinities for distinct mRNAs. For example, small interfering
RNAs (siRNAs) are RNA duplexes with typically 21–23 nucleo-
tides that bind to a strictly specific mRNA molecule and prevent
their movement from the nucleus to the cytoplasm; thus,
mRNA is quickly cleaved in the nucleus as well as the
cytoplasm.30,31 Although micro-RNAs (miRNAs) have almost
the same length (19–25 nucleotides), they are not so gene-
specific32 and bind to the target mRNA molecules in the
cytoplasm, preventing translation and accelerating mRNA
degradation by RNAases.30

In contrast to miRNAs, most antisense RNAs (asRNAs) are
longer than 200 nucleotides, although shorter asRNAs also
exist.33 Like siRNAs, asRNAs are gene-specific; like miRNAs,
they bind to mRNA molecules in the cytoplasm and prevent
translation. The influence of asRNAs on the abundance of
mRNAs is controversial: although asRNA may stimulate mRNA
cleavage, the complexing of asRNA with mRNA can protect
mRNA from RNAase and inhibit its degradation.34–36

Also, asRNAs can bind to the DNA template strand, preventing
the transcription machinery from producing mRNA. Therefore,
asRNAs can affect the splicing of pre-mRNA, leading to different
mRNA isoforms.

There are no examples for the incorporation of the results of
DNA methylome, siRNAs, dsRNAs, asRNAs or miRNAs profiling
into the analysis of dysregulated pathways. Integration of
mRNA-seq data with siRNA-seq data may help better under-
stand the transcription and translation events. In the current
study (see Fig. 1), we report on the systemic multi-omics
integration of protein-coding mRNA expression profiles, and
non-coding RNA expression profiles, including micro-RNA and
long non-coding RNA/anti-sense RNA (antisense lncRNA/
asRNA) profiles, into the SPIA/DEI-based computational
platform26,27 for pathway activation assessment and drug effi-
ciency scoring.

Materials and methods
Topological pathway activation assessment according to SPIA
(signal pathway impact analysis)

The pathway-Express (PE)-score for a pathway K can be calcu-
lated as follows:23

PEK ¼ logð1=pÞ þ

P
g2K

PFðgÞj j

DEj jNdðPÞ

The first term here is the p-value for the probability to obtain
the observed or a greater number Nd of differentially expressed
genes (between the pools of case and normal samples) ran-
domly, assuming a hypergeometrical distribution of Nd. The
second term is a summation over the perturbation factors (PF)
for all genes g of the pathway K,

PFðgÞ ¼ DEðgÞ þ
X
g2Ug

bgg
PFðgÞ
ndownðgÞ

Here DE(g) is the signed log-fold-change (LFC) of gene g
expression in a given sample compared with the expected value
for the pool of control samples. The latter term expresses the
summation over all the genes g that belong to the set Ug of the
upstream genes for the gene g. The value of ndown(g) denotes the
number of downstream genes for gene g. The weight factor bgg

indicates the interaction type between g and g: bgg = 1 if g

Fig. 1 Research pipeline of the current study.
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activates g, and bgg =�1 when g inhibits g. Although the value of
PF may be positive or negative, the overall score of PE is
obligatory positive. The search for upstream/downstream genes
is performed according to the depth-first search method.

To obtain an estimator for pathway perturbation that is
positive for an up-regulated pathway and negative for a down-
regulated pathway, use the second term in the formula for the
perturbation factor (PF) from the precious paragraph, resulting
in the accuracy value,

Acc(g) = PF(g) � DE(g).

It can be shown that this accuracy vector may be expressed
as follows:24

Acc = B�(I � B)�1�DE,

where

B ¼

b11
ndown g1ð Þ

b12
ndown g2ð Þ

. . .
b1n

ndown gnð Þ

b21
ndown g1ð Þ

b22
ndown g2ð Þ

. . .
b2n

ndown gnð Þ

bn1
ndown g1ð Þ

bn2
ndown g2ð Þ

. . .
bnm

ndown gnð Þ

0
BBBBBBBBB@

1
CCCCCCCCCA
;

I is the identity matrix, and

DE ¼

DE g1ð Þ

DE g2ð Þ

. . .

DE gnð Þ

0
BBBBBB@

1
CCCCCCA
:

The resulting score for pathway perturbation is calculated as
follows: SPIA ¼

P
g

AccðgÞ.

Curation of pathway databases

We used the Oncobox pathway databank, OncoboxPD29 that
accumulates 51 672 uniformly processed human molecular
pathways extracted from different source databases. It is the
largest knowledge base of human pathways with annotated
gene functions, i.e. ready for the pathway activation calcula-
tions. Superposition of the enclosed pathways formed an
interactome graph of protein–protein interactions and meta-
bolic reactions totaling 361 654 interactions and 64 095 mole-
cular participants. All pathways were functionally classified
according to their main underlying biological processes using
the Gene Ontology (GO) tree. Each pathway node was algor-
ithmically functionally annotated by a specific activation/
repressor role index. This enables direct calculation of pathway
activation levels (PALs, i.e. using the SPIA method) using
human RNA/protein expression profiles.

Using the Drug Efficiency Index, DEI, software,26,27 the user
can analyze custom expression data to evaluate SPIA scores in

samples of interest against a built-in or custom set of controls
and statistically evaluate differentially regulated pathways.

Integration of non-coding RNA profiles into SPIA calculations

For calculations of pathway-based values, such as signaling
pathway impact analysis, SPIA24,26,27 using the long noncoding/
antisense RNA (lncRNA/asRNA) expression profiles, we consid-
ered the influence of long noncoding/antisense RNA in a
manner similar to what has been done for microRNA.37 Fig. 2
shows the effect of various pre-translation events that regulate
gene expression and, subsequently, the pathway activation
process.

Considering the fact that small RNAs typically direct the
methylation of specific loci, and that both non-coding RNA
(ncRNA) and DNA methylation downregulate gene expression
(Fig. 2), we suggested calculating the methylation-based and
ncRNA-based SPIA values with the negative sign compared to
standard, transcriptome/mRNA-based values, using the same
pathway topology graphs: SPIAmethyl,ncRNA = �SPIAmRNA.

Drug efficiency index (DEI)

The method for assessment of personalized drug efficiency
index (DEI)26,27 consists of the following steps:

1. Calculate the pathway activation level (PAL) values for all
molecular pathways (e.g. SPIA24).

2. Calculate the values of the pathway weight (wp) factor as
follows. For pathways with a positive mean PAL score of the
case samples, wp = ((number of case samples with a positive
PAL score)/(total number of case samples)). For pathways with a
negative mean PAL score of the case samples, wp = ((number of
case samples with a negative PAL score)/(total number of case
samples)).

3. Adjust the mean PAL score of each pathway by the weight
factor,

PALm = mean(PAL)�wp.

4. Perform the Student’s t-test if the values of PALm for the
pool of case samples are different from 0 (for the pool of control
samples, the values of PALm are clearly equal to 0). During the
Student’s t-test, the following case classes are considered: (a)
untreated case (U), e.g. the pathological state before drug
application, should be far from the control (C); (b) treated case
(T), e.g. the pathological state after drug application, should be
close to the control.

The following output values result from such calculations:

Fig. 2 Multi-omics chain of events that interfere with the gene expression
process.
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(a) |tU| = absolute t-value for the Student’s t-test for U-vs.-C
profiles; (b) |tT| = absolute t-value for the Student’s test for T-vs.-
C profiles.

5. In addition to the first-generation DEI metric26 for individual

drug activities, DEI ¼ 2 � tUj j
tUj j þ tTj j

� 1

2

� �
¼ tUj j � tTj j

tUj j þ tTj j
, which is

equal to 1 when tT = 0.
An alternative metric is called the mirrored DEI:27

DEIM ¼ 2 � 2 � tUj j
2 � tUj j þ tT þ tUj j �

1

2

� �
¼ 2 � tUj j � tT þ tUj j

2 � tUj j þ tT þ tUj j:

The DEIM metric is equal to 1 when tT = �tU; this is the
maximum possible value of this metric.

Similar to the previous DEI metric, DEIM = 0 when tT = tU,
and DEIM = �1 when |tT| c |tU|.

The third metric,27 balanced DEI, DEIB ¼
DEIþDEIM

2
is

the mean value of the DEI and mirrored DEI. In our previous
work,27 we validated the DEI, DEIM, and DEBB, methods,
including their ability to distinguish clinically effective and
ineffective treatments, the pathological and healthy samples,
and treated and untreated patients.

Datasets for DNA methylome integration into SPIA/DEI analysis

As the database of miRNA targets, we used the current version
of MiRTarBase.39 MiRTarBase provides information on 15 641
distinct genes affected by the miRNAs.

The use of external normal references, or even synthetic
controls, may require special cross-platform normalization
methods, like those in our work,38 for a direct comparison.
Although we made a lot of efforts in developing these normal-
ization methods, they may, however, significantly impact
the case-to normal log-fold-changes (LFC).38 This may intro-
duce some unforeseen artifacts; therefore, we decided to utilize
samples from the same cohort as a reference in the
current study.

To make the first test for the methylation module, we used
the data on the antiproliferative activity of the DNA hypomethy-
lating agent 5-aza-20-deoxycytidine (DAC)40 (see GEO dataset
GSE198673). Li et al. (2023) tested whether DAC can inhibit the
growth of clear cell renal cell carcinoma (ccRCC), both for the
wild-type (WT) and knock-out (KO, SETD2�/�) variants, since
the SETD2 (Su(var)3-9, Enhancer of Zeste, and Trithorax
Domain Containing 2) gene is one of the major histone
methyltransferases.40 Both WT and KO ccRCC cells were treated
with 300 nM of DAC. Then the cell growth rate and DNA
methylation profile were monitored for 40 days; DNA methyla-
tion and the expression of protein-coding mRNA were profiled
on days 0, 5, 15, and 40 after the DAC treatment.

Additionally, we curated four other recently published
cohorts of DNA methylation profiles, collected for myelodys-
plastic syndrome (MDS) (GSE119617), type 2 diabetes
(GSE145746),41 multiple sclerosis (MS) (GSE151017),42 and
chronic myelomonocytic leukemia (CMML) (GSE221269) – see
Table 1. T
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Datasets for non-coding RNA integration into SPIA analysis

We compared the protein-coding-based SPIAs vs. non-coding-
based ones for the following six multi-omics datasets obtained
from the Gene Expression Omnibus (GEO) portal (Table 2). We
included in our analysis only those multi-omics profiles that
contain at least 1000 distinct genes and their targets.

We then performed Gene Ontology (GO) enrichment analy-
sis of antisense lncRNA molecular targets from these cohorts
using the enrichGO software tool50 and Metascape online
service.51

Results
Integration of methylome profiles into SPIA/DEI pathway
activation and drug efficiency assessment

We confirmed that DAC decreased the overall methylation rate
compared with DAC-untreated (T = 0 days) samples for clear
human renal cell carcinoma (ccRCC)40 (GEO reference
GSE198673). DNA methylation was inhibited in both WT and
SETD2�/� KO samples (Fig. 3). To calculate the case-to-control
LFC, we used methylated cite/gene reads as cases and corres-
ponding unmethylated sites/gene reads as controls (Fig. 3).

The DEI calculations require three types of profiles:
(a) Control samples (C), used as a reference for LFC compu-

tations for every gene expression.
(b) Untreated case samples (U) for the U-vs.-C comparison.
(c) Treated case samples (T) for the T-vs.-C comparison.
The study by Li et al. (2023) did not include any normal or

healthy samples as a control.40 That is why we used the sample,
which showed the slowest proliferation rate (SETD2�/�,
exposed with 300 nM of DAC, five days after treatment), as a
quasi-normal control reference (Table 3).

We calculated the DEI values for the following combinations
of untreated (U) and treated (T) case samples (Table 3). For the
(A) experiment, the treatment procedure was DAC addition, and
the T-vs.-U comparison implied juxtaposition of samples which
had received DAC, and those which had not. For the (B)
experiment, the treatment procedure was the knockout (KO)
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Fig. 3 Methylated-vs.-unmethylated log 2-fold change (LFC) in DNA
reads for WT and SETD2�/� KO ccRCC samples40 (GEO reference
GSE198673).
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of SETD2, and the T-vs.-U comparison used juxtaposition of
SETD2�/� (KO) and WT samples.

Based on our group comparisons, we demonstrated the
beneficial role of both DAC (Fig. 4) and SETD2 knockout
(Fig. 4(B)) for inhibition of cell proliferation. We observed this
effect in terms of the drug efficiency index (DEI), as well as of the
mirrored (DEIm) and balanced (DEIb) modifications of DEI.26

Other four DNA methylation case-vs.-control cohorts (Tables
4 and 5, totaling 82 case samples and 76 control samples)
confirm the more adequate role of DEIm and DEIb values
(compared to the old DEI metric) for the assessment of drug
activity in such different diseases as MDS, type 2 diabetes, MS,
and CMML. In particular, the DEIm and DEIb metrics were
always positive for all these cohorts except in two cases: (1)

relapsed MS and (2) type 2 diabetes at the longest time after
drug administration (Table 5).

Comparison of miRNA and antisense lncRNA as regulatory
molecules for protein-coding mRNA pathway activation

Although the overall role of miRNA in gene expression is
inhibitory, it is not easy to obtain a stable and robust negative
correlation between the mRNA and miRNA values, both at the
level of distinct genes and at the pathway activation levels.52

We analyzed the correlation between mRNA-based vs.
miRNA-based, as well as between mRNA-based and antisense
lncRNA-based values, at different levels of data aggregation
(case-to-control LFC for each gene, and SPIA for pathways) in
the six multi-omics cohorts listed in Table 2. For these cohorts,
the correlation between the antisense lncRNA s-based and
protein-coding mRNA-based values was generally higher than
between the miRNA-based and protein-coding mRNA-based
values (Fig. 4). Note that no false discovery rate (FDR) correc-
tion is required for p-values shown in Fig. 5. These correction
methods, like the Benjamini–Hochberg one, provide more
reliable marker sets for high-throughput profiles when multiple
features, like distinct genes, are tested. However, in Fig. 5, we
compare correlation coefficients between gene expression/path-
way activation profiles, rather than the expression/pathway
activation levels distinctly. Consequently, for single-value sta-
tistical tests, the BH correction is trivial: p_adj = p_raw, and no
adjustment is needed. We added the corresponding explana-
tion to the paper text, preventing the question about the BH
adjustment from the readers.

Although it may seem counter-intuitive, the overall correla-
tion between antisense lncRNA- and mRNA-based case-to-
control LFCs was positive (Fig. 5(A)). Indeed, many authors
found that antisense lncRNAs may increase the abundance of
sequestered (and, therefore, inactivated) mRNA in the cyto-
plasm, not only in bacteria but also in mammals.34–36

Hence, we found that antisense lncRNA values correlated
better with mRNA values than miRNA values correlated with
mRNA values. Therefore, antisense lncRNAs may be more
informative than miRNAs in the analysis of interference in
signaling pathway activation caused by the non-coding
transcriptome.

To reveal the gene expression modulating effect of antisense
lncRNAs and miRNAs involved in the current study, we applied
gene ontology enrichment analysis according to the enrichGO
method to the targets of antisense lncRNAs and miRNAs in six

Table 3 Control (C), untreated (U), and treated (T) samples for DEI calculations for the GSE198673 ccRCC dataset

Panel
of
Fig. 3 Control samples (C) Untreated case samples (U) Treated case samples (T)

(A) KO (SETD2�/�), treated with 300 nM of DAC, five days after
treatment (the sample, which showed the slowest proliferation
rate)

WT and KO, with no DAC 5, 15, and 40
days after DAC treatment of DAC-
treated samples

WT and KO, with 300 nM of
DAC 5, 15, and 40 days after
DAC treatment

(B) WT, with 300 nM of DAC 0, 5, 15, and
40 days after DAC addition

KO, with 300 nM of DAC 0, 5,
15, and 40 days after DAC
addition

Fig. 4 Drug efficiency index (DEI), mirrored DEI (DEIm), and balanced DEI
(DEIb) for two comparisons of ccRCC methylome profiles (Table 3,
GSE198673). Panel (A): DAC-treated vs. untreated samples. Panel (B):
SETD2�/� KO vs. WT samples.

Table 4 Disease vs. control cohorts curated in the current work

Paper
reference —

(Bansal et al.,
2020)41

(Ringh et al.,
2021)42 —

GSE ID GSE119617 GSE145745 GSE151017 GSE221269
Disease MDS Type 2 diabetes MS CMML
Cases 16 12 34 20
Controls 10 12 44 10
Methylation
sites

34 669 825 425 734 078 719 859

Affected genes 1488 23 039 23 314 22 390
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multi-omics cohorts listed in Table 2. For the GO analysis, we
embraced different sets of genes: (A) all antisense lncRNA; (B)
those genes, which have high correlation (the top 25% quantile)
in the expression level between the corresponding protein-
coding mRNA and miRNA values; and (C) those genes, which
have high correlation (the top 25% quantile) in the expression
level between the corresponding protein-coding mRNA and
antisense lncRNA values (Fig. 6). We showed that the overall
GO terms for the options A, B, and C overlap significantly
(Fig. 6(D)). Note also that the most explicitly manifested GO
terms for all these options are related to the developmental
processes.

Table S1 contains results for GO annotation of target genes
for antisense lncRNA from these six multi-omics cohorts

(Table 2), which we obtained using the Metascape online
service for GO analysis.51 We provided (see Table S2, Fig. 7)
the target gene statistics for antisense lncRNA and KEGG
pathways that we curated in our pathway database. This ana-
lysis reveals the high enrichment levels for cancer-related path-
ways, which comprise 11 out of 20 top enriched signalling
cascades (Fig. 7).

Discussion

Multi-omics data integration is a rapidly evolving field that
seeks to combine different types of omics data to provide a
comprehensive view of biological systems. The sequence of
events that foreruns translational processes and governs gene
expression has been extensively studied,3 and attention has
been sometimes shifted from miRNA to long non-coding RNAs,
which some researchers consider more relevant for controlling
the abundance of protein-coding mRNA.53,54

The integration of these diverse data types is crucial for
understanding complex biological processes and identifying
the molecular pathways involved in various diseases. By com-
bining omics profiles, researchers can gain a comprehensive
understanding of pathway activations and the complex mole-
cular mechanisms underlying various diseases.7 This holistic
approach enhances the accuracy and robustness of pathway
activation assessments, providing critical insights for persona-
lized medicine and therapeutic development.55,56

In the current work, we investigated the integration of multi-
omics profiles into the calculation of pathway activation levels
according to the SPIA method.24 Specifically, we used our multi-
omics SPIA platform26,27 to integrate mRNA, ncRNA and anti-
sense lncRNA data. All these additional (beyond the standard
protein-coding mRNA) regulatory processes i.e., DNA methy-
lome, miRNAs, and antisense lncRNAs, theoretically inhibit
gene expression, that is why we calculated the SPIA values for
these additional profiles with the sign opposite to SPIA values
based on protein-coding mRNA data.

For the multi-omics-based SPIA assessments, we obtained
the following results. First, similar to the post-traumatic stress
disorder (PTSD) protein-coding mRNA-based data,26 the mir-
rored and balanced DEI values proved more adequate than the

Table 5 DEI values for case-vs.-control methylome profiling cohorts

Reference —

(Bansal
et al.,
2020)41

(Bansal
et al.,
2020)41

(Bansal
et al.,
2020)41

(Ringh
et al.,
2021)42

(Ringh
et al.,
2021)42

(Ringh
et al.,
2021)42

(Ringh et al.,
2021)42 —

GSE ID GSE119617 GSE145745 GSE145745 GSE145745 GSE151017 GSE151017 GSE151017 GSE151017 GSE221269
Disease Myelo-

dysplastic
syndrome

Type 2
diabetes

Type 2
diabetes

Type 2
diabetes

Multiple
sclerosis

Multiple
sclerosis

Multiple
sclerosis

Multiple
sclerosis

Chronic myelo-
monocytic leukemia

Drug 5-Azaci-tidine TGFB1 24 h TGFB1 72 h TGFB1 96 h IFNb;
relapse

IFNb;
remission

Tysabr;
remission

Other drugs;
remission

Azathio-prine (AZA)

tU 2.35 3.05 3.05 3.05 �0.57 �2.19 �2.85 �2.85 2.91
tT �3.80 2.74 �5.22 5.59 �1.63 2.93 �0.62 3.66 �5.52
DEI �0.24 0.05 �0.26 �0.29 �0.48 �0.15 0.64 �0.13 �0.31
DEIm 0.53 0.03 0.48 �0.17 �0.32 0.71 0.24 0.75 0.38
DEIb 0.14 0.04 0.11 �0.23 �0.40 0.28 0.44 0.31 0.04

Fig. 5 Spearman correlation between protein-coding mRNA values and
ncRNA values (red – antisense lncRNA, blue – miRNA) for six GEO cohorts
(see Table 2). (A) Gene expression levels; (B) case-to-control log-FC (LFC);
(C) SPIA. The p-value is shown for two-sided Student’s test between red
and blue groups of correlation coefficients.
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original DEI values.27 Second, the protein-coding mRNA-based
values had better correlation with antisense lncRNA -based
values than with miRNA-based values. Also, the correlation
between the mRNA-based and antisense lncRNA -based values
was mostly positive. This surprising effect may be caused by the
antisense lncRNA-dependent sequestration of inactivated
mRNA in the cytoplasm, which may artifactually inflate mRNA
abundance estimates.34–36

Integration of DNA methylation and mRNA expression levels

Data on direct correlation between methylation and gene
expression in the set of biological samples in mammals are
abundant. In most cases, methylation at the promoter
negatively correlates with gene expression. However, this is
typically demonstrated for a subset of the genes, while

correlation at the whole genome level, that is, correlation
between all DNA methylation changes and the expression of
all genes is not that commonly established. For example,
negative correlation between DNA methylation at the promoter
region and expression of the subset of genes in the samples
with acute myocardial infarction in mice heart was only estab-
lished for 4183 genes (depending on the time point).57 Also, in
the ovarian cancer samples, negative correlation between DNA
methylation and gene expression was established for a subset
of 1118 genes.58 Analysis of blood samples in people with
coronary artery disease revealed correlation in 669 genes.59

Analysis of DNA methylation and gene expression in the devel-
oping porcine placenta showed a total of 4774 genes whose
DNA methylation levels on the promoter were negatively corre-
lated with their expression levels (R o �0.475).60

Fig. 6 GO enrichment analysis of antisense lncRNA molecular targets combined from six multi-omics cohorts (Table 2). (A) All antisense lncRNA targets;
(B) top quartile of positively correlated genes between protein-coding mRNA and miRNA; (C) top quartile of positively correlated genes between protein-
coding mRNA and antisense lncRNA; (D) intersection of GO terms shown in panels A–C.
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In contrast, when correlation is attempted at the level of the
whole genome, it is more difficult to demonstrate. Analysis of
gene expressions and methylation pattern in horse sarcoids
showed significant negative correlations between DNA methy-
lation at the promoter regions and mRNA levels, with the R of
B�0.23.61 Similar correlation in DNA methylation in the
introns showed a much weaker negative correlation with gene
expression (B�0.1), while no significant correlation was found
between DNA methylation in exons and gene expression. The
authors used MethGET (Methylation and Gene Expression
Teller) software.62 This software appeared to be superior to
several other previously published tools for DNA methylation
analysis such as COHCAP,63 PiiL,64 and ViewBS.65

Integration of DNA methylation and gene expression data is
not a simple task and to date has been attempted with various
degrees of success. Sajedi et al. (2023) developed the iNETgrate
package that allows to integrate data from all genes, simulta-
neously building a comprehensive gene-level network. How-
ever, they do not rely on complex pathway topology graphs,
preferring mostly statistical analysis such as correlations and
principal components.66 They utilized data from five indepen-
dent human cohorts (cancer- and Alzheimer-related datasets) to
understand the contribution of epigenome to the survival out-
comes. When they analyzed the modalities individually based
either on gene expression or DNA methylation, they achieved
the p-value of 10�4, while when they utilized both modalities
(DNA methylation and gene expression), they were able to
increase the significance to the p-value of 10�7. This work
demonstrated the power multi-omics data integration for the
prognostic prediction capabilities of the survival model.

Several other multi-omics data integrations were proposed.
Zachariou et al. (2018) developed a ‘‘super network’’, attempt-
ing integration of six different types of interactions to identify
significant pathways related to a disease.67 Their method allows

pathway analysis on top genes based on the quantity of shared
information between gene pairs utilizing gene expression
analysis. It was not demonstrated, however, whether this super
network can integrate methylation data.

Ma et al. (2017) developed Edge-Based Module Detection
Network (EMDN) for the analysis of differentially co-methylated
and co-expressed networks.68 After constructing multiple net-
works, the standard modules within these networks are defined
as epigenetic modules. The authors compared the EMDN
performance with Consensus clustering (CSC),69 the multiple-
modularity method (MolTi)70 and spectral clustering (SPEC)71

modules. EMDN outperformed other artificial networks,
demonstrating higher accuracy.68 EMDN, as many other similar
algorithms, relies on the establishment of differentially methy-
lated or expressed genes, and thus requires paired comparison,
such as normal versus disease samples or case versus control, or
untreated versus treated. Our approach, unless we need to
calculate the DEI values, as well as iNETgrate approach does
not have this limitation.

Another fairly advanced model, INTEND (Integration of
Transcriptomic and Epigenomic Data), which addresses the
integration of disjointed methylation and gene expression data,
was recently published.72 While INTEND integrates data from
the same individual for multiple data sets, it does not use any
information matching methylation and gene expression data to
the same individual. Instead, INTEND learns a predictive
model between the two by training on data sets having a large
number of gene expression and methylome data sets from the
same analyzed cohorts. At the first step, INTEND is trained to
predict gene expression data based on methylation data located
close to genes. Then, it compares predicted expression to the
expression of the same set of genes stemming from transcrip-
tome analysis. The authors evaluated INTEND performance on
cancer datasets spanning 4329 patients by comparing it with
four other integration methods: LIGER, Seurat v3, JLMA and
MMD-MA, and demonstrated INTEND to be superior to all
four.72 However, the INTEND utility relies on ML procedures,
such as LASSO regression rather than following the signal
propagation along multiple highly branched pathways and
networks.

Integration of protein-coding gene expression data and
non-coding RNA expression data

Several software tools were developed to analyze inverse corre-
lation between mRNA and miRNA expressions, including
CORNA,73 MMIA,74 MAGIA75 and miARma-Seq.76

miARma-Seq integrates the results of interaction between
mRNA and miRNA based on the information stored in miRGate
database;77 it relies on established negative correlation. miR-
Gate includes information on miRNA sequences from mRBase78

and 3-UTR sequences from EnsEMBL,79 as well as the information
about experimentally validated targets stored in miRTarbase,80

Tarbase81 and OncomiDB.82

The authors profiled samples of colorectal cancer and
identified 29 differently expressed miRNAs and 368 mRNA-
encoding genes; they found that out of total possible 10 672

Fig. 7 Top 20 KEGG pathways enriched with the antisense lncRNA
targets.
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correlations, B60% were statistically significant, with many of
them having a positive correlation, rather than the expected
negative correlation.76

More direct integration of mRNA and miRNA data could be
possible if all associations between miRNA and mRNA are
known. Since miRNA can target hundreds of mRNAs, and many
different miRNAs can target the same mRNA, and also, since
many miRNAs positively correlate with the expression of some
genes (perhaps by targeting the miRNAs that inhibit those
miRNAs), direct estimates of the effects of miRNAs on mRNA
expression are hard to calculate.

While substantial effort was made to integrate data from
miRNA and mRNA sequencing, almost no effort was made to do
the same for lncRNAs and mRNA sequencing. This could be
due to the fact that there is no clear relationship between
lncRNAs and mRNA expression similar to miRNA/mRNA pairs.
However, we found that protein-coding mRNA-based values are
better correlated with the long antisense non-coding RNA-
based ones rather than with micro-RNA-based. This effect was
revealed because of the use of our bioinformatics integrated
platform, which allows multi-omics analysis in terms of DEI
and SPIA values.

Conclusion

In this work, we attempted to correlate several omics data sets
with the disease or/and treatment outcomes using the PAL/SPIA
method. We demonstrated positive moderate correlation
between antisense lncRNA expression and mRNA expression
as well as negative correlation between DNA methylation and
mRNA expression. In the future, it would be important to
integrate several omics data sets (methylomics, transcriptomics
and ncRNAomics, if such data are available from the sample)
into the pathway analysis, assigning regulatory (modulatory)
coefficients to each ncRNA.
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