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A data-driven approach to interfacial
polymerization exploiting machine learning
for predicting thin-film composite membrane
formation

Gergo Ignacz, a Muhammad Irshad Baig,a Karuppasamy Gopalsamy,a

Andres Villa,b Suzana Nunes, a Bernard Ghanem,b Tejus Shastry,c

Sanat K. Kumar c and Gyorgy Szekely *a

Polymeric thin-film membranes prepared by interfacial polymeriza-

tion are the cornerstone of liquid separation, with the potential to

reduce industrial waste and energy consumption. However, the

limited diversity of monomers may hinder further development by

restricting the accessible chemical space. To address this, we

propose a divide & conquer approach for the interfacial polymer-

ization membrane development pipeline. We constructed a dataset

using 18 organic- and 73 water-phase monomers, conducting 1246

interfacial reactions and analyzing membranes via AFM and optical

microscopy. This unprecedentedly large and open access dataset

marks a considerable step toward data-driven thin-film membrane

development. We trained five machine learning models on mole-

cular structures and density functional theory calculations to study

film formation parameters and their binary outcomes. The results

indicate that film formation can be predicted directly from mono-

mers, facilitating the potential of data-driven membrane develop-

ment. Our work shifts the focus from performance prediction to the

fundamental step of thin-film formation, offering a new perspective

in data-driven membrane research.

1 Introduction

Polymer thin-films are at the forefront of separation techno-
logies, sensor applications, supercapacitors, batteries, and
polymer-capsule delivery.1,2 Common techniques for the fabri-
cation of thin-films encompass a variety of physical, chemical,
and hybrid methods such as interfacial,3 vapor and electro-
chemical depositions,4 dip and spray coatings, or printing

techniques.5 These techniques allow for precise control over
film thickness, composition, and microstructure. Interfacial
polymerization is the state-of-the-art fabrication technique for
the preparation of thin-film composite (TFC) membranes.
During interfacial polymerization, the thin-film forms at the
interface of two immiscible phases containing the reactive
monomers. The properties of the resulting thin-films vary over
a wide range of topological and chemical properties such as
anisotropic shapes or hollow cores.1,6 Through careful selection
and design of the monomer chemical structure, interfacial
polymerization prepared membranes and thin-films can have
a commensurately wide range of applications, from separating
small molecules and ions to playing a pivotal role in redox flow
batteries,7 hydrogen purification,8 impurity removal,9 catalyst
recovery,10 solute concentration, and solvent recycling.11

TFC membrane materials research and development ranges
from an early idea for the materials to an application concept
(Fig. 1A). This pipeline includes several fabrication and analysis
steps, resulting in a generally slow and labor intensive research
and development process.12 We hypothesize an alterna-
tive methodology for polymer thin-film fabrication. Instead of
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New concepts
We demonstrate a paradigm-shifting divide & conquer concept for thin-
film composite membrane fabrication. This approach focuses on the
early phase of material development. We synthesized more free-standing
thin-films than all previously reported in the literature combined, meti-
culously analyzed the formed membranes, and also report negative
results, which were previously absent from the literature, hindering the
implementation of machine learning in the field. The release of an open-
access dataset enables us to build the first structure–activity relationship
machine learning models to predict free-standing thin-film formation.
We demonstrate remarkable leave-one-out performance, allowing the
models to be used in high-throughput virtual screening in the future,
an unprecedented advancement in the field. Furthermore, we report the
first image classification models trained on optical images. These models
can be further employed in high-throughput material fabrication.
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considering the whole idea-to-application pipeline, we direct
our attention to the early exploration phase of the workflow
(Fig. 1A). Narrowing this design space would allow us to take
advantage of previously unexplored approaches, such as building
a structure–activity relationship between the chemistry of the
monomers and thin-film polymerization. The outcome of the
interfacial polymerization depends on several input parameters
such as monomer type, concentration, diffusion rate, solubility,
and properties of the interface between the two phases.
For example, a common scenario occurs when a reaction
between two monomers does not result in film formation
because of slow reaction rates, high diffusion rates, or
powder-like precipitation. Most of the reported studies are
characterized by a low diversity in chemical structure among
thin-film monomers.13,14 This low monomer diversity, in con-
junction with an absence of negative results, hinders the
understanding of the relationship between the input para-
meters and the result of interfacial polymerization. Predictive
models built solely on positive-outcome data will be heavily
biased and cannot be used to explore new out-of-band reactions
and chemical structures. Recently, these data-driven appro-
aches have emerged to aid and speed up the process of thin-
film material design. These works usually use data from the
curated literature to build machine learning algorithms, which
are then applied to large virtual datasets to identify outstand-
ing monomer candidates in a high-throughput fashion.14–19

However, approaches inherently assume that a thin-film can
be fabricated from the suggested ‘lead-like’ monomers, ignor-
ing limitations in solubility, reactivity, and film-forming
ability. Therefore, their success in exploring new monomeric

structures and reactions is limited. Furthermore, datasets used
to train machine learning model to predict the expected flux
and rejection for membranes are not suitable to predict thin-
film formation, as they are trained only on positive results,14–18

and are also limited to only membrane and separation applica-
tions. Similarly, reaction prediction tools are also available,20

but they only provide information on whether a reaction occurs
in a single phase but might not be applicable for interfacial
polymerization.

Therefore, we opt to create and provide an open-access
reaction dataset with a diverse set of monomers, focusing on
a specific set of reactive groups by tackling the first stage of the
divide & conquer approach. We also report negative results, as
they allow us to develop a classification algorithm to predict
whether a film can be formed given the input parameters.
Having a stable, defect-free thin-film at the interface is an
essential prerequisite, albeit not the sole criterion for any
successful polymer thin-film development. Assessing whether
a film can be formed is crucial in the early stages of develop-
ment. Recognizing the foundational importance of thin-film
formation in material development, we conduct a comprehen-
sive, data-driven study to illuminate this critical initial step. We
perform interfacial polymerization reactions between 18
organic-phase and 73 water-phase monomers, assembling an
extensive and chemically diverse dataset to date, greatly exceed-
ing the overall combined scope of the previous literature.13,14,21

Rather than focusing only on monomer diversification, we aim
to explore whether film formation can be predicted from the
initial monomer chemical structure and reaction parameters,
such as concentration. Using our dataset, we develop machine

Fig. 1 Schematic representation of membrane development cycle and our workflow. (A) The nine stages of thin-film material development with the
three highlighted phases representing the divide & conquer approach; (B) workflow of the study discussed herein including experimentation,
calculations, featurization, machine learning models and explanations.
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learning models that predict thin-film formation and classify
optical images into distinct morphological categories. We incor-
porate features from density functional theory (DFT) calculations
and apply advanced techniques, including leave-one-out learning
and feature importance extraction for interpretability (Fig. 1B).
Furthermore, we present the first comprehensive optical image
collection dedicated to thin-film classification. To the best of our
knowledge, this work represents the first data-driven exploration
of thin-film formation from a chemical structural point of view.
We aim to initiate a paradigm shift in the development of polymer
thin-film materials by leveraging a divide & conquer approach.
By focusing on the crucial first step of film formation, our
approach aligns with the anticipated data-driven future of
membrane science and integrates well with the emerging
inverse design methodologies.

2 Results
2.1 Interfacial polymerization

Our proposed divide & conquer approach (Fig. 1A) clusters the
historical TFC membrane materials pipeline into three major
steps: early-stage exploration; fine tuning as a middle stage; and
the final application step as the late stage. The rationale behind
this separation lies in the current slow idea-to-application
approach, which is not compatible with rising data-driven
methodologies.12 The output of the exploration stage is a large
number of free-standing films with material characterizations
such as AFM, SEM, and infrared spectra. The second stage of
the pipeline is fine tuning, which builds upon the positive
results of the exploration stage and outputs TFC membranes
on support, with performance characterization results such as
rejection and permeance. At the end of the second stage, an
application concept can be proposed based on the preliminary
performance results. For example, whether the membranes
would be better suited for reverse osmosis, nano-, ultra-,
or microfiltration applications. The last stage is the applica-
tion phase, which involves scale-up and pilot deployment and
sources the membranes for narrow applications addressing a
given industrial problem. We tackled the first stage of our
divide & conquer pipeline by selecting 18 organic-phase
and 73 water-phase monomers and performing pairwise inter-
facial polymerization reactions between them. Selection cri-
teria were the sufficient solubility in the phases, stability and
chemical diversity. The water-phase monomers contained bis-
and tris-hydroxy and amine functionalities, while the organic-
phase monomers contained acyl chlorides, benzyl bromides,
isocyanates, isothiocyanates, and sulfonyl chlorides as bis and
tris functionalities (Fig. 2A). Except one non-reactive amine,
all selected monomer pairs were expected to polymerize based
on their reactivity, forming either a linear polymer or a net-
work polymer. Although linear polymer thin-film materials are
atypical, they have been reported before.22

Of the 1246 reactions performed, 190 thin-films were formed
(Fig. 2A–C), resulting in an approximate 13% hit ratio (hit
ratio = number of positive reactions/total reactions, Fig. 2B).

In particular, the hit ratio for amines and alcohols with acyl
chlorides was 51% and 20%, respectively, and notably lower for
isocyanates and isothiocyanates (9%) and sulfonyl chlorides
(20%). Under our reaction conditions, benzyl bromides did not
form a film with any of the water-phase monomers. Given that
we focus more on the exploration of monomers, optimization
of every reaction is out of the scope of our investigation, and
furthermore, negative results contribute equally in the scoping
out the design space. Fig. 2D shows the chemical space between
our reaction monomers and the ones from the literature. We
performed 6.5 times more thin-film polymerization reaction
that were reported in the literature. Moreover, the chemical
diversity of our dataset is larger than of the literature visualized
by the spreadingness in the latent space.

We characterized the thin-films via optical microscopy and
atomic force microscopy (AFM) imaging (Fig. 2E–G). Based on
the characteristics of the optical images, five classes of poly-
mers were identified: dendritic, dense-gel-like, crystalline, non-
crystalline with defects, and non-crystalline dense. These
classifications are based on visual examinations and must not
be confused with the actual crystallinity determined via other
techniques like X-ray crystallography. The optical images were
classified purely based on visual pattern observation. The AFM
height measurements revealed a skewed count distribution of
average thickness across all thin-films (Fig. 2G). The average
thin-film thickness measured by AFM was 819 nm, with a
maximum of 16.9 mm. The formation of films is a diffusion-
limited process, where the diffusivity of monomers across the
interface plays a crucial role in determining the morphology
and structure of the film. Some monomers react to form a
homogeneous film, while other monomer combinations form
precipitates (e.g., no film formation). The outcome depends on
the monomer type and its chemical properties. The diffusivity
is controlled by the type of monomer and the solvents used.23

For example, the diffusivity of the commonly used water-phase
monomer m-phenylenediamine (MPD) is higher in n-hexane
compared to n-heptane and cyclohexane, which aligns with the
solvent viscosity model.23 A solvent with lower viscosity and
lower surface tension tends to improve the diffusion of amine
monomers, ultimately leading to thinner polyamide films with
higher permeance.24

Surprisingly, most of the minor classes originated from
water-phase monomers containing the hydroxyl group, and
only a few were assigned to amines (Fig. 3A). The four example
images are shown in Fig. 3B–E. More than 75% of the thin-films
belong to the noncrystalline dense class, and the rest of the
images are almost evenly distributed among the remaining
classes. The number of hydroxyl and amine monomers was
balanced, with 36 and 37 monomers. Fig. 3F show rough and
smooth example surfaces for two different thin-films from
different reaction types. For a comprehensive list of optical
and AFM images, refer to Fig. S1–S122. However, diffusion
limitations do not explain why some monomers did not form
a film. We also observed film formation for pyridine-2,6-
diamine with fumaryl chloride and sebacoyl chloride, but not
with succinyl chloride, although the three organic monomers
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are all open-chain aliphatic carbonyl chlorides with two reactive
functional groups (Fig. 3C). We attribute this phenomenon to
polymer chain entanglement, which could sufficiently stabilize
the films. Similar linear polymer thin-films have been reported
before.22

The release of our thin-film formation dataset marks a
milestone for data-driven TFC membrane development using
interfacial polymerization. Although seemingly less valuable on
the surface level, negative results are just as vital as positive
results, in that they deepen our understanding of the design/
variable space. These negative results could help us to deter-
mine when the model is operating out-of-boundary or within
training parameters. Furthermore, this dataset has ramifica-
tions for eventual reinforcement learning or autonomous
experiments. Therefore, we urge the polymer and membrane
community to report negative results to help better understand
the film formation process and facilitate the implementation of
machine learning in the field.

2.2 Predicting thin-film formation

Using our film formation dataset combined with available
literature data, we created three datasets and trained five
machine learning models on them (Table 1). The D1 dataset
contains 1719 datapoints with our film formation data and the

aggregated literature data. This literature data contained dupli-
cated monomer-pairs but at different concentration and in
different solvents. The D2 dataset contained our data with only
the chemical structures and D3 contained our data with the
chemical structures and the additional calculated DFT features.
The D4 dataset only contained the optical images as input
features. The raw datasets contain the thin-film reaction para-
meters, such as solvent type of the phases and the monomer
concentrations and the chemical structures of the monomers
stored as SMILES strings. Before training the machine learning
models, the data were preprocessed. All datasets were split
into training, validation, and test sets using a five-fold cross-
validation with split ratios of 0.6/0.2/0.2, respectively25 and the
SMILES strings were converted to either molecular graphs or
Morgan fingerprints.

The task of the machine learning models were to predict
the binary outcome of the film-formation. This task is more
suitable for early phase research compared to the currently
available machine learning approaches, which are mainly
focused on membrane performance prediction.14–18 The five
machine learning approaches used were logistic regression,
support vector machine (SVM), extreme gradient boosting tree
with linear (SVM-linear) and Gaussian kernel trick (SVM-rbf),
Naive Bayes and a graph neural network (GNN). The logistic

Fig. 2 Thin-film formation reaction results. (A) Thin-film formation reaction scheme and the functional groups used in this study; (B) schematics on the
thin-film formation experiments and the summary of the positive and negative results; (C) outcome of the example of three interfacial polymerization
reaction of pyridine-2,6-diamine with three different acyl chlorides. The positive and negative signs refer to positive and negative film-formation
experiments; (D) principal component analysis (PCA) coupled t-distributed stochastic neighborhood embedding (t-SNE) plot to visualize the chemical
diversity and spreadness between this work and the current literature; (E) primary structures identified for this works dataset using a PCA-tSNE plot;
(F) percentage distribution of the five primary structure classes determined from the optical images; (G) count distribution of film-thickness.
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regression model and the SVM-linear are linear models that
establish a linear relationship between the input features and
the predictions. The other models are considered non-linear.
The task of each model was to predict the binary outcome of the
film-formation reaction being either negative or positive. The input
data and features are the same for all the models except the GNN.
The GNN model uses molecular graphs as input, with an option to
add extra features, such as concentration or DFT calculation
energies to be concatenated to the molecular graph. The logistic
regression, SVM-linear, SVM-rbf, XGB, Naive Bayes models uses
tabulated data where the chemical structural information is first
converted to Morgan fingerprints (extended connectivity finger-
prints with radius of 2 or length of 128) and used as input.

Table 2 shows the test validation scores for four metrics:
Matthews correlation coefficient, accuracy, receiver operating
characteristic area under the curve (ROC-AUC) and the F1
scores. These metrics are widely used in binary classification
and the MCC is considered the most reliable single-metric.26

A comprehensive overview of the metrics are detailed in the
Methods section. On D1, all models except Naive Bayes perform
similarly (MCC range between 0.869–0.853), with overlapping
confidence intervals. Logistic regression scores the highest
MCC and ROC-AUC, while GNN scores the highest F1. For the
D2 dataset, the MCC scores are lower for all models, ranging
from 0.412 for the Naive Bayes (Gaussian) up to 0.742 for the
XGB due to the more challenging, imbalanced setting (lower p/
n ratio). With class-weighting, XGB has the highest MCC and
accuracy, GNN has the highest F1, and logistic regression has
the highest ROC-AUC. However, the test results differences
across the top three models remain modest and within over-
lapping confidence intervals. However, the XGB model per-
formed the best on the main MCC metric on the D2 dataset.

Similarly to the D1 results, the Naive Bayes models per-
formed the worst. On the D3 dataeset, adding DFT features
yields small but model-dependent changes. Logistic regression
has the highest MCC and ROC-AUC scores, while GNN has the
highest accuracy and F1 scores with overlapping confidence
intervals. Overall, linear and non-linear models capture the
main structure of the problem under random splits, with non-
linear models (notably XGB) benefitting more from class
reweighting on the imbalanced datasets. Removing the mole-
cular fingerprints from D3, we observed a drastic drop in the
MCC performance, indicating that the DFT and the process
parameters are not enough for accurate film formation predic-
tion. Except the Gaussian Naive Bayes, all models show higher
scores for the D3 dataset than for the D2 dataset. Table S7 in
the SI displays the non-balanced results.

We observed a noticeable deviation from the baseline score for
the different functional groups for the D1 dataset for three models
on the test sets: XGB, GNN and logistic regression (Table 3). The
models performed very poorly for isocyanates but had similar
performance scores for the other functional groups. This negative
shift for the isocyantes for all three models is an expected behavior
for our dataset where the positive film formation class is very low;
thus the classifier defaults back to predicting the majority negative
film formation class. Consistently, the F1 score decreases from
0.92 to 0.68 for the XGB model, indicating poor recall on the
minority class. For isocyanates, XGB and GNN models show very
low ROC-AUC scores of 0.452 and 0.19, respectively. The low ROC-
AUC scores show that the ranking of positives versus negatives is
close to non-informative, meaning that the score distribution itself
does not separate the outcome classes. A ROC-AUC substantially
below 0.5 suggests a systematic misranking of isocyanate instances
by the learned representation for this functional group, meaning
that the positive instances are counter-intuitive for the model.
Sulfonyl chlorides behave similarly to isocyanates but with lesser
deviation from the baseline scores. These functional group effects
are also model-consistent, suggesting that both the descriptor and
graph-based representation might lack critical features to describe

Table 1 The four datasets used in this work. The p/n ratio denotes the
positive/negative ratio in the dataset. The positive examples are those
where film formation were observed

Dataset
name

Total
size

Train
size

Validation
size

Test
size Features

Film/
no-film
ratio Contains

D1 1719 1031 344 344 6 0.34 Our data &
literature

D2 1246 747 249 250 6 0.13 Our data
D3 1246 747 249 250 47 0.13 D2 & DFT
D4 486 389 97 — — 1.00 Optical

images

Fig. 3 Thin-film formation reaction results. (A) Percentage distribution of
the five primary structure classes for the different monomers; crystalline
(B); non-crystalline (C); dense (D); and gel-like (E) optical images of
different monomer pairs. Optical images for all thin-films are shown in
Fig. S1–S61; (F) example AFM surface images of different monomer pairs.
All AFM images are shown in the Fig. S62–S122.
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the underlying chemistry. Nonetheless, the highest MCC and
accuracy scores were reached by the amine and alcohol functional
groups, the two main reactive functionalities of the water-phase
monomers. The prediction of isocyanates and sulfonyl chlorides is
challenging for the models because of the uneven distribution of
the film-formation outcomes in the training data. For example, the
outcome of the reaction is more dependent on the water-phase
monomer than on the type of isocyanate. However, the result of
film formation is more dependent on the type of sulfonyl chloride
than the water-phase. Fig. 4 shows this monomer dependence as
a reaction outcome table. Compared to isocyanates (Fig. 4C),
the film-formation outcome is more driven by the organic-phase

monomers for sulfonyl chlorides (Fig. 4B). In case of acyl chlorides
(Fig. 4A) shows structured dependencies depending on the mono-
mers in the water- or organic-phase. The two Naive Bayes models
with a Gaussian and Bernoulli distribution trained on the D2
dataset with only fingerprints (Table 2) also indicate that the data
sets are better modeled using the Bernoulli distribution rather
than a pure random event.

2.3 Leave-one-out predictions

The test scores in Fig. 4 were reported by random data splitting,
which means that the original dataset was randomly split into
training, validation, and test sets. This random splitting is

Table 2 Mean performance metrics for different models and datasets using random splits. Errors are represented as the standard deviation from the
mean value for a 5-fold cross-validation. Higher score the better. Bold highlights represents the highest scores for a given dataset and metric. Data are
given as mean average values and the error represents the standard deviation of the cross-validation test sets. SVM: support vector machine, rbf: radial
basis function, XGB: extreme gradient boosting, GNN: graph neural network. MCC: Matthews correlation coefficient. ROC-AUC: receiver operating
characteristic area under the curve. Bold indicates the highest mean per dataset metric. Table S7 in the SI displays the non-balanced results

Model Dataset MCC Accuracy F1 ROC-AUC

Logistic regression D1 0.869 � 0.021 0.938 � 0.01 0.92 � 0.014 0.986 � 0.003
SVM-rbf D1 0.858 � 0.03 0.933 � 0.014 0.911 � 0.02 0.971 � 0.011
XGB D1 0.860 � 0.020 0.934 � 0.009 0.914 � 0.015 0.931 � 0.009
Naive Bayes (Gaussian) D1 0.774 � 0.025 0.888 � 0.016 0.829 � 0.022 0.963 � 0.011
GNN D1 0.853 � 0.025 0.935 � 0.011 0.922 � 0.013 0.901 � 0.017
Logistic regression D2 0.702 � 0.039 0.905 � 0.011 0.74 � 0.042 0.968 � 0.006
SVM-linear D2 0.647 � 0.06 0.913 � 0.019 0.681 � 0.05 0.954 � 0.011
SVM-rbf D2 0.61 � 0.043 0.905 � 0.005 0.66 � 0.044 0.942 � 0.012
XGB D2 0.741 � 0.041 0.924 � 0.019 0.774 � 0.055 0.896 � 0.033
Naive Bayes (Gaussian) D2 0.412 � 0.026 0.668 � 0.052 0.468 � 0.044 0.787 � 0.012
Naive Bayes (Bernoulli) D2 0.508 � 0.052 0.793 � 0.042 0.567 � 0.049 0.911 � 0.017
GNN D2 0.597 � 0.076 0.914 � 0.017 0.782 � 0.056 0.638 � 0.078
Logistic regression D3 0.72 � 0.039 0.912 � 0.012 0.756 � 0.041 0.969 � 0.005
Logistic regression D3 w/o fingerprints 0.556 � 0.047 0.914 � 0.008 0.578 � 0.044 0.917 � 0.019
SVM-linear D3 0.635 � 0.05 0.912 � 0.016 0.671 � 0.05 0.952 � 0.005
SVM-rbf D3 0.667 � 0.047 0.918 � 0.014 0.706 � 0.046 0.944 � 0.013
XGB D3 0.687 � 0.055 0.906 � 0.017 0.732 � 0.050 0.882 � 0.027
Naive Bayes (Gaussian) D3 0.482 � 0.059 0.757 � 0.057 0.539 � 0.055 0.853 � 0.031
GNN D3 0.625 � 0.02 0.919 � 0.009 0.793 � 0.026 0.662 � 0.015

Table 3 Functional group results for the XGB and GNN models for the D1 dataset. Signed percentage values represent the change from the overall
values. XGB: extreme gradient boosting, GNN: graph neural network. MCC: Matthews correlation coefficient. ROC-AUC: receiver operating
characteristic area under the curve. The higher score the better. Values in parenthesis represents the deviation from the overall value and only test
results are given

Model Functional group MCC Accuracy F1 ROC-AUC

XGB Overall 0.869 0.938 0.92 0.986
Acyl chloride 0.776 (�10.70%) 0.904 (�3.62%) 0.879 (�4.46%) 0.931 (�5.58%)
Isocyanate 0.434 (�50.06%) 0.954 (+1.71%) 0.686 (�25.43%) 0.452 (�54.16%)
Alcohol 0.842 (�3.11%) 0.941 (+0.32%) 0.926 (+0.65%) 0.88 (�10.75%)
Amine 0.86 (�1.04%) 0.93 (�0.85%) 0.93 (+1.09%) 0.931 (�5.58%)
Sulfonyl chloride 0.674 (�22.44%) 0.893 (�4.80%) 0.8 (�13.04%) 0.727 (�26.27%)

GNN Overall 0.853 0.938 0.986 0.92
Acyl chloride 0.748 (�12.31%) 0.89 (�5.12%) 0.878 (�10.95%) 0.918 (�0.22%)
Isocyanate 0.262 (�69.28%) 0.963 (+2.67%) 0.554 (�43.81%) 0.19 (�79.35%)
Alcohol 0.814 (�4.57%) 0.942 (+0.43%) 0.904 (�8.32%) 0.849 (�7.72%)
Amine 0.855 (+0.23%) 0.927 (�1.17%) 0.927 (�5.98%) 0.924 (+0.43%)
Sulfonyl chloride 0.713 (�16.41%) 0.893 (�4.80%) 0.875 (�11.26%) 0.78 (�15.22%)

Logistic regression Overall 0.869 0.938 0.92 0.986
Acyl chloride 0.801 (�7.83%) 0.914 (�2.56%) 0.893 (�2.93%) 0.938 (�4.87%)
Isocyanate 0.527 (�39.36%) 0.959 (+2.24%) 0.741 (�19.46%) 0.545 (�44.73%)
Alcohol 0.86 (�1.04%) 0.949 (+1.17%) 0.932 (+1.30%) 0.894 (�9.33%)
Amine 0.87 (+0.12%) 0.935 (�0.32%) 0.935 (+1.63%) 0.936 (�5.07%)
Sulfonyl chloride 0.758 (�12.77%) 0.917 (�2.24%) 0.872 (�5.22%) 0.811 (�17.75%)
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representative for testing when the monomer pairs were already
seen by the dataset separately but not together. However, in real
world applications, we want the model to predict the outcome
of unseen molecules. Therefore, in a leave-one-out testing
approach, we evaluated the performance of the GNN, XGB,
and the logistic regression models by selectively removing each
monomer instance and using it as a test set. In our case, leave-
one-out learning refers to the evaluation method when the
model only sees the monomer in the test time and not during
training. Fig. 5A shows that the XGB model outperforms the
GNN model in leave-one-out applications, with a difference of
0.016 points in the MCC score for the D1 dataset (water only).
However, both the XGB and the GNN models outperformed the
logistic regression model by a large margin. This difference is
substantially larger than the average difference during random
sampling (Fig. 4A). This result indicates that the logistic
regression struggle to extrapolate from the chemical space of
the training set and the XGB model is best suited to explore
new monomers. The leave-one-out test by the XGB model
showed higher true positives (expected film formation) and
lower false negatives (expected no film formation). The com-
parison of Fig. 5B and C underscores the better expressiveness
of the XGB model. The GNN models in Fig. 5B and C have
higher standard deviations in the 1-MCC scores. Compared to

the GNN, the XGB models showed narrower 1-MCC scores
(Fig. 5B and C).

Fig. 5D shows an example of a water-phase monomer,
octane-1,8-diamine, with six organic-phase monomers. In the
wet-lab experiments, all monomers formed a film with the
exception of isocyanate. Although the GNN model incorrectly
predicts no film formation in all instances, the XGB model
correctly predicts four out of six instances of film formation.
The logistic regression model predicts film-formation for all
instances. Fig. 5E shows an example of an organic-phase
monomer with six water-phase monomers. In wet-lab experi-
ments, excluding the two phenols, all amine water-phase
monomers reacted with the acyl chloride. Similarly to Fig. 5D,
the GNN only predicts two out of six examples correctly, while
the XGB model correctly predicts all instances (Fig. 5E). The
logistic regression model correctly predicts four out the six test
examples. The better generalization capabilities of the XGB
model in our case make it better suited for future inverse
design or high-throughput virtual searches. The low perfor-
mance of the logistic regression in leave-one-out predictions
could be explained by that the logistic regression model is a
linear model, while the XGB and the GNN are non-linear. The
seemingly lower performance of the GNN model compared to
the regression in Fig. 5D and E are attributed to cherry-picking.

Fig. 4 Film-formation reaction outcome table of amines. (A) Acyl chlorides, (B) sulfonyl chlorides, (C) isocyanates. The code-resolutions are detailed
in Table S2. Green color denotes positive film-formation outcomes, yellow color denotes no film-formation outcomes. Each cell represents a
film-formation reaction outcome between the water-phase amine monomers (y-axis) and the organic-phase monomers (x-axis); (D) example structures
of the monomers with their respective labels.
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We speculate that chemical-structure extrapolation might
depend on non-linear feature correlations, which the logistic
regression cannot capture.

2.4 Importance of DFT features

The test scores between the D2 and D3 datasets revealed that the
XGB model performs better when DFT calculations are included
(Table 2). These DFT features resulted from a systematic study
of the non-covalent interactions between both monomers and the
two solvents, water and n-heptane. Each entry contained the
results of four relaxed structure pairs, each with 11 electronic
indices. These 44 additional features were used during the training
of D3, while D2 did not contain these features. Fig. 6A–D show the
relaxed structure of a water-phase and an organic-phase monomer
with both water and n-heptane (Fig. 6A and B). The calculated
features include, for example, HOMO/LUMO energies, electro-
philicity, and ionization energies. The full list of calculated features
can be found in the Methods section. We performed a SHAP and
feature importance analysis on the XGB and logistic regression
results, respectively, to better understand the impact of the DFT
features on the prediction performance. The SHAP analysis high-
lighted that the XGB model extensively uses the DFT features
during prediction (Fig. 6E) for the D3 dataset. For the D2 dataset,
where the XGB model can only use Morgan fingerprints for
predictions, the test scores are lower (Fig. 4B). These indicate that

the calculated DFT features could slightly improve the prediction
performance in all instances, but the prediction does not explicitly
depend on them. For the XGB SHAP results, the 10 best perform-
ing features have a negative score, meaning that their DFT value or
the presence or absence of fingerprints drives the model for the
prediction of negative film formation. This observation is expected
due to the low positive hit ratio (13%).

In L1-regularized logistic regression, a smaller subset of
features can be identified that model the underlying pattern
in the data reasonably well.27 The weight of the features can
then be directly associated with their relative importance
during prediction given the linear nature of the model. Fig. 6G
and H shows the average feature importance of the 10 best
performing features by their absolute values for the logistic
regression model for the D3 and D2 datasets respectively. Similarly
to the XGB-SHAP results, additional DFT features are included in
the top performing features (Fig. 6G); however, to fewer instances
compared to Fig. 6E. HOMO energies, ionization energy, electro-
philicities, dipole moment and polarizatbility had the highest
feature importance for both XGB and the logistic regression.

Feature importance values for the D2 dataset (Fig. 6F and H)
share similarities with the D3 results (Fig. 6E and G), suggest-
ing that the addition of DFT features did not affect the pre-
dictions significantly. These observations are in line with
the minor differences in the D2 and D3 test scores (Table 1).

Fig. 5 Leave-one-out prediction results. (A) Average evaluation score of the XGB, GNN and logistic regression models on the water and organic leave-
one-out tests. Average MCC score for the XGB (B) and the GNN (C) model on the water and organic leave-one-out test. Data are presented as moving
average values; the shading represents the standard deviation. Example water- (D) and organic-phase (E) monomer test with six organic- and water-
phase monomers, respectively. The plus sign represents positive outcome for the wet-lab experiment, GNN, XGB and logistic regression models.
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The top performing fingerprints are similar across the D2 and
D3 datasets and the XGB and the logistic regression model.
These fingerprints are most commonly simple structures, such
as hydroxy groups, secondary or tertiary aliphatic carbon atoms
with negative average importance scores. Only the carbonyl and
the imine-like Morgan-bits showed positive average importance
scores (Fig. 6H).

2.5 Image classification

We designed a deep-learning model for classifying films based
on optical images. As depicted in Fig. 7A, the model comprises

a visual encoder that extracts salient features from the images
and a linear classifier that assigns a class label based on these
features. The model was trained using a fully supervised
approach. Given a labeled dataset D ¼ xi; yið Þni¼1, the optimal
model parameters f were learned by minimizing the error
between the model’s predictions and the ground truth labels,
following the optimization function: L f xið Þ; yið Þ.

To identify the most effective visual encoder, we experi-
mented with state-of-the-art architectures, including the
ResNet family (ResNet18, ResNet34, ResNet50) and the
EfficientNetv2 family (EfficientNetv2-s, EfficientNetv2-m).28,29

Fig. 6 Geometry optimization and SHAP analysis. Relaxed structure between a water-phase monomer with n-heptane (A) and water (B). Relaxed structure
between an organic-phase monomer with n-heptane (C) and water (D). SHapley Additive exPlanations (SHAP) results of the XGB models for all five folds of the
validation for (E) D3 and (F) D2 datasets. Average feature importance of the logistic regression models for the (G) D3 and (H) D2 datasets. ‘‘mon. a’’ and ‘‘mon. b’’
denote the water and organic-phase monomers, respectively. The blue-highlighted atoms of the Morgan-bit structures denotes non-aromatic atoms. Data are
presented as average values. Error bars represents standard deviation. o denotes electrophilicity; DM denotes dipole moment, HOMO/LUMO denotes highest/
lowest occupied/unoccupied molecular orbital in eV, ELUMO denotes the electronic lowest unoccupied molecular orbital in eV.
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Given the limited and imbalanced nature of our dataset, we
leveraged pretrained models on ImageNet-1K30 to mitigate the
risk of overfitting. Additionally, to address the class imbalance,
we applied a weighted sampling strategy that increases the
probability of selecting instances from underrepresented film
classes. This approach helps to prevent the model from becom-
ing biased towards the dominant ‘‘non-crystalline dense’’ class,
which constitutes the majority of the dataset, as shown in
Fig. 2F.

In Table 4, we report the average accuracy, which accounts
for the per-class accuracies presented in Fig. 7B, thereby
avoiding bias towards the most prevalent class. Our model,
employing EfficientNetv2-m as the visual encoder, achieved
an accuracy of 85%, outperforming all other tested models by
over 5%. Furthermore, Fig. 7B demonstrates that this model
consistently performs well across various classes, including
those with limited data, such as the ‘‘crystalline’’ class, which
represents only 8% of the dataset.

To further investigate the performance of our model
with EfficientNetv2-m as the visual encoder, we utilized

gradient-weighted class activation mapping (Grad-CAM).31

This technique highlights the image regions most influential
in the model’s decision-making process. Fig. 7C and D illus-
trates two examples of correctly classified instances from
different classes, revealing that our model effectively cap-
tures the relevant features necessary for accurate classification.

Fig. 7 Image classification model outline and results. (A) Our model leverages a pretrained visual encoder on ImageNet-1k and a linear classifier to
predict the film type from the optical images. (B) We analyze the accuracy per class. It is worth noting that EfficientNetv2-m outperforms all the other
visual encoders in most classes and obtains a performance of over 78% in all classes. Grad-CAM visualizations for crystalline (C), non-crystalline dense (D)
and dense gel-like structures (E). We leverage Grad-CAM to explain the model’s decision. It generates heatmaps highlighting the regions of the original
images that the model considers to classify them. All displayed Grad-CAM images were predicted correctly by the model.

Table 4 Image classification results by model type. We report the average
of the accuracies, F1-scores, ROC-AUC and MCC scores per class to
handle the data imbalance. It is important to note that the EfficientNetv2-
m, the biggest method we evaluated, outperforms the others by a large
margin

Model
Model
size

Num.
output
features

Avg
Acc.

Avg.
F1-score

Avg.
ROC
AUC

Avg.
MCC

ResNet18 11.2 M 512 72% 83% 95% 63%
ResNet34 21.2 M 512 76% 87% 96% 70%
ResNet50 23.5 M 2048 81% 89% 97% 75%
EfficientNetv2-s 20.2 M 1280 80% 90% 97% 77%
EfficientNetv2-m 52.9 M 1280 85% 93% 99% 84%
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For instance, the model pays more attention to the edges and
clusters on the optical images Fig. 7C–E.

3 Discussion

Our study provides a paradigm-shifting approach for the early
phase of TFC membrane development. Compared to previous
approaches, our focus on only the film-formation data allowed
us to develop predictive models to aid this early phase of
discovery. We proposed a divide & conquer pipeline to reverse
the old application-focused paradigm to be more aligned with
modern data-driven approaches. Separately focusing on the
first exploration stage alleviates the pressure to report only
those use cases where the monomer-pair dissolved in the
solvents; formed free-standing films; successfully attached to
a support; analyzed; and proposed an application for an
industrially relevant use case (Fig. 1A). We only tackle the first
stage of the divide & conquer challenge by selecting a large
number of water- and organic-phase monomers to perform
interfacial polymerization reactions across them. The rationale
behind our proposed pipeline is that current TFC research only
employs limited number of monomers, mainly focusing on a
selected few reactive acyl chlorides and diamines, which were
discovered and developed in the early 70’s.32 Our divide &
conquer shifts the focus towards data-centric membrane devel-
opment. The low hit ratio of approximately 13% in the 1246
reactions highlights the challenges in achieving successful
thin-film formation, as well as the importance of reporting
negative data. Performing high-throughput reactions with high
hit-ratio would minimize material needs. This low success rate
aligns with the inherent complexity of the interfacial polymer-
ization process, where multiple variables such as monomer
reactivity, diffusion rates, concentration, and interface proper-
ties come into effect. Our study focused on diversifying both the
organic- and the water-phase monomers. Despite all monomers
having reactive functional groups, some monomer pairs did not
form free-standing films, which indicates that factors beyond
simple reactivity, such as polymer chain entanglement, solvent
interactions, and oligomer solubility, might play important
roles. However, quantitative exploration of these underlying
factors has not been determined, and it remains a topic of
debate. Nonetheless, our dataset containing an extensive amount
of negative examples is a valuable resource on its own for future
research. Our dataset contains both more organic- and water-
phase monomers than the combined available literature.13,14,17,33

We also showed several instances in which film formation can be
realized using monomers with two reactive functional groups,
forming linear polymers. However, thin-film membranes with
linear polymer chains have been described before.22 We also
incorporated thin-film polymers that are less utilized, such as
polysulfonamides. The observed structured dependency across
the film-formation outcomes highlights that if monomers tend to
form films, they usually form films with all other monomers. We
hypothesize that the underlying reactivity and diffusion of each
monomer result in this highly structured binomial distribution.

The structured distribution suggests the existence of one or more
molecular or process features that the outcome is highly depen-
dent for both the water- and organic-phase monomers. This under-
scores the potential of the dataset in the development of thin-film
materials, including artificial intelligence and ML applications.
Our dataset serves as the first step towards closing the loop34 in
materials development for porous materials35 and polymers.36

Our optical microscopy analyses revealed that the majority
of the films were noncrystalline and dense, suggesting that our
selected monomers tend to favor the formation of amorphous
polymers. The skewed distribution of thicknesses observed in
the AFM measurements further supports the idea that
diffusion-controlled processes dominate film formation, lead-
ing to substantial variability in film morphology. The identifi-
cation of different structural classes based on optical imaging
provides a framework for categorizing thin-film morphologies,
which could be valuable for future studies aiming to optimize
film properties or to study their structure–property relationships.
These findings could facilitate the development of targeted
materials by helping select the most promising monomer pairs.

The machine learning models developed in this study
demonstrated promising predictive capabilities, particularly
the XGB model, which outperformed all models in both ran-
dom and the GNN in leave-one-out tests. Boosting trees usually
outperform neural networks on tabular data, where the input
features are individually meaningful and lack strong multi-
scale temporal or spatial structures37 and they are usually
heterogeneous and noisy with high cardinality and different
scales.38 Boosting trees can efficiently determine the decision
space using the hyperplane-like boundaries in the tabular data.
However, the GNN makes use of the node-neighborhood and
node features of the molecular structures. Based on the SHAP
analysis results from Fig. 6E, the additional tabulated features,
such as electronic properties play a key role in determining film
formation. These tabulated features are more suited for the
XGB and likely causes the higher performance compared to the
GNN. The marginal difference between linear models (logistic
regression, SVM-linear) and the other non-linear models sug-
gest that the structured binomial distribution of the data can be
modeled using log-linear models. The high predictive perfor-
mance of the logistic regression in the random splitting test
suggest that data can be efficiently explained with linear
models, while nonlinear models add only a minor improve-
ment. Introducing class-weighting to address the strong class
imbalance produces predictable shifts in the four metrics.
Balanced training moves the decision boundary toward the
minority class, typically increasing recall (and thus F1 and
often MCC) while also modifying ranking, which resulted
in the ROC-AUC score changes. Consistent with this, after
reweighting we observe modest increases for XGB on D2
and a trade-off for GNN (higher F1 with a lower MCC). These
changes are quantitatively small, mostly within cross-validation
uncertainty. While the inclusion of DFT-calculated features
only slightly improved the predictive accuracy of the XGB
model, it suggests that additional calculated features could
improve the overall predictive power. However, the calculated
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DFT features alone are not enough for an accurate film formation
prediction. Thus, molecular features play a crucial role in deter-
mining the film formation outcome directly or indirectly.
As expected, the low positive film formation ratio, the most
important molecular Morgan-bits have negative mean importance
values for both the XGB and the logistic regression model. The
most important molecular Morgan-bits were simple structural
parts. An indirect effect could be the altered reaction or diffusion
rate caused by a particular molecular moiety. The ability of the
XGB model to generalize to unseen monomers in the leave-one-out
tests can be a useful tool in the design of new monomers for thin-
film applications. In the leave-one-out test, the logistic regression
scored notably lower than both the GNN and the XGB, suggesting
that extrapolation to new monomer pairs requires nonlinear
models. This result is in strong contrast with the results from
random splitting, where logistic regression outperformed XGB and
GNN. The XGB model’s extrapolation capability is particularly
important for the inverse design of novel materials, where the
goal is to identify monomer candidates with a high likelihood of
forming stable films. However, more comprehensive data includ-
ing variations on the concentration, solvent, and temperature of
the film formation are necessary. Our study is the first to address
the importance of film-formation and develop models to predict
polymer thin-film formation. The strong linearity of the model
further suggests that if a single example is provided to the model
for a new monomer, further film formation can predicted with
high accuracy. This result would help researchers streamline and
narrow wet-lab experimentation.

The machine learning models developed in this study demon-
strates the potential of artificial intelligence to advance materials
characterization and accelerate the early phase of the develop-
ment cycle of TFC membrane materials. By enabling accurate
classification of membrane formation from monomers, the model
makes the workflow more efficient in materials research. The
optical image classification lays the groundwork for future studies
aiming to establish stronger correlations between morphological
features and material properties, ultimately aiding in the rational
design of thin-films for targeted applications.

Overall, this study provides a robust dataset and predictive
tools that can be leveraged for the rational design of new
materials. Our approach is a paradigm shift from the conven-
tional polymer thin-film works. High-throughput and auto-
mated robotic applications are on the rise.39,40 The release of
our thin-film formation dataset can be used to close the loop in
material synthesis applications.41,42 By encouraging the shar-
ing of both positive and negative results, we aim to foster a
more comprehensive understanding of the factors that govern
successful thin-film formation, ultimately accelerating the
development of next-generation polymer thin-film materials.

4 Methodology
4.1 Thin-film formation reactions

All chemicals were purchased from commercial suppliers without
further purification. The thin-film formation reaction were

performed according to literature data.43 In summary, the
monomers were dissolved at given concentrations in water
(2.0 wt/vol%) and heptane (0.15 wt/vol%) and then poured in
this order into a small (5 ml) flat bottom screw-cap vial. The
reaction left for running between 3 minutes for amines and
18 minutes for alcohols. In total, 1246 reactions were per-
formed and 190 films were analyzed. For a detailed description
on the reaction parameters and preparation, please refer to the
Supplementary Methods. Except DB32 (Table S2), all organic-
and water-phase monomers were expected to undergo chemical
reaction with their respective pair. The hard-negative example
was selected to monitor and eliminate false positive film
formation reaction (human misclassification). Usual prepara-
tion time included around three hours solution and vial pre-
paration, while setting up the reaction took around half an
hour while cleanup took another 10–15 minutes. The reactions
were done in batch and parallel and the approximated produc-
tivity was around 20 reactions per day calculating by 7–8 hours
laboratory time per day.

4.2 Optical and AFM height images

The optical images of the free-standing thin-films were taken
on Olympus Material Microscope BX61 (OLYMPUS, Japan) at
three magnifications. The height profiles of all the samples
were estimated by conducting atomic force microscopy (AFM)
using Dimension Icon SPM (Bruker, USA). A scan area of 20 mm
by 20 mm was scanned in tapping mode in air using a RTESPA
probe (Bruker). The AFM images were further processed in
Gwyddion software to extract the height profiles. All optical and
AFM images are presented in Fig. S1–S122.

4.3 Optical image classification

The human expert classification of TFC membrane morpho-
logies was based solely on their appearance under an optical
microscope. Given the limited availability of optical images of
TFC membranes in the literature, drawing direct analogies with
similar polymeric systems is challenging. However, the closest
resemblance was found with the microstructures of metallic
alloys, which often display distinct crystalline and dendritic
patterns and are well-documented in the literature. Membranes
with crystalline morphology exhibited crystallite-like micro-
structures, resembling those commonly observed in metallic
alloys such as steel or brass.44 The membranes featured similar
dark regions similar in appearance to alloy grains, hence the
term ‘‘crystalline.’’ Membranes with non-crystalline dense cate-
gory lacked the distinct domain structures observed in crystal-
line morphologies. Instead, they appeared homogeneous and
uniform under the microscope, with no visible crystalline
features. Dense gel-like membranes displayed a sticky, gel-
like texture and appearance, which was also apparent during
handling. The dense and cohesive nature of the morphology led
to the label ‘‘dense gel-like.’’ Membranes with dendritic cate-
gory included membranes with branched, tree-like patterns
resembling dendritic microstructures frequently reported in
metallic alloys such as 304 stainless steel. Membranes display-
ing this distinctive pattern were classified as dendritic.39,45
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The non-crystalline dense with defects membranes were mor-
phologically similar to the ‘‘non-crystalline dense’’ type but
featured prominent dark regions that interrupted the otherwise
homogeneous background. These darker zones were inter-
preted as defects, distinguishing them from the defect-free
dense membranes.

4.4 Density functional theory calculations

Geometry optimizations and subsequent vibrational frequency
analyses were carried out at the M06-2X/6-31++G** ref. 46–48
level of theory and no imaginary frequencies were obtained for
both the complexes and the individual monomers. M06-2X is
one of the widely accepted global hybrid functional developed
by Zhao and Truhlar and the performance of the functional well
tested for noncovalent interactions, thermochemistry, and
kinetics. All electronic structure calculations were carried out
with the computational chemistry software package Gaussian
0949 and results were analyzed with the help of the GaussView
6.0 program.50

The conceptual DFT reactivity indices such as chemical
potential (m), hardness (Z), softness (S), electrophilicity (o),
dipole moment and polarizability (a) could be vital to under-
stand the chemical reactivities of the system and whose analy-
tical explanations are defined as follows:

m ¼ ELUMO þ EHOMO

2
(1)

Z ¼ ELUMO � EHOMO

2
(2)

S ¼ 1

2Z
(3)

o ¼ m2

2Z
(4)

hai ¼ 1

3
axx þ ayy þ azz
� �

(5)

where EHOMO (HOMO-highest occupied molecular orbital) and
ELUMO (LUMO-lowest unoccupied molecular orbital) is the
frontier molecular orbital energies, hai is the mean of diagonal
components (axx, ayy, azz) of the polarizability tensor.

The interaction energies (IEs) for the complexes with water
and n-heptane molecules adsorbed were calculated using a
supermolecule approach and corrected for basis set super-
position error (BSSE) using the counterpoise (CP) procedure
suggested by Boys and Bernardi.51

IE = Ecomplex � (Ehost + Eguest) (6)

Where Ecomplex is the total energy of the complex formed
between the monomers and water/n-heptane. Both Ehost and
Eguest represent the energies of the monomer and water/
n-heptane, respectively.

4.5 Literature data collection

The literature data was collected building upon previous
works17,33 and from the open membrane database.21 We aggre-
gated data from 163 peer reviewed research articles and
removed those duplicates, where the two phases monomers
and the concentration were pairwise the same. The final
literature data contained 477 entries with.

4.6 Datasets

We created four different datasets from our reaction data,
literature, and image data (Table 1). We used a five-fold cross
validation test dataset on D1–D3 to get a more average sense of
model performance. The D1 dataset was the combination of the
literature data with our in-house measurements, providing
1719 trainable examples. D1 contained different solvents, con-
centrations, and a variety of monomers, but all were positive
examples (film formed). The D2 dataset contained only our
work without DFT calculations. D3 contained all of the D2
dataset as well as the DFT calculation results. The total train-
able examples were 1246 for both D2 and D3. The split ratios
for D1–D3 were 80%/20% between train and the test. The train
set was further split into train and validation set by 75%/25%
ratio. The model parameters were fit on the training set, while
hyperparameters were fit using the validation set. After model
training, the test set was used asses the final trained model’s
performance. D4 contained 486 images, three images per film
using different magnifications at different spatial positions.

4.7 Computational methods

The graph neural network used herein was built via chemprop52

using a directed message passing neural network architecture.53,54

The XGB model was trained using the xgboost python library.55

Chemical data preprocessing and visualization were done by the
rdkit python package.56

The binary Matthews correlation coefficient (MCC) is
defined as:

MCC ¼ TP � TN� FP � FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTPþ FPÞðTPþ FNÞðTNþ FPÞðTNþ FNÞ

p (7)

where: TP is the true positive count, TN is the true negative
count, FP is the false positive count and FN is the false
negative count. We chose binary MCC over the traditional
ROC-AUC score because the binary MCC involves positive
and negative prediction values and generally has better
specificity and sensitivity.57 MCC is also advantageous
against other metrics, such as F1 score and accuracy26

because it considers all four elements of the confusion
matrix (TP, TN, FP, FN), ensuring a high MCC only when
true positives, true negatives, positive predictive value, and
negative predictive value are all high. This is unique, as other
metrics might score high despite misclassifications in one
of these areas. MCC incorporates dataset prevalence and
classifier bias, making it robust against distortions that class
imbalance might introduce. This is important in our case,
because all datasets have a strong class imbalance. A high
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MCC indicates that the model is simultaneously good at
identifying both film-forming and non-forming monomer
pairs, which mirrors the experimental need to balance dis-
covery of new films against avoiding dead-end reactions.

ROC-AUC ¼
ð1
�1

TPRðtÞdðFPRðtÞÞ (8)

where: TPR(t) is the true positive rate at threshold t and
FPR(t) is the false positive rate at threshold t. ROC-AUC
measures how well the model ranks monomer pairs by their
predicted probability of film formation. A high ROC-AUC
means true film-forming reactions tend to receive higher
scores than non-forming ones to prioritize candidates for
follow-up testing. We can choose a ROC-AUC threshold to
balance the acceptable false positive rate against the desired
hit rate.

The F1 score is the harmonic mean of precision and recall:

F1 score ¼ 2 � Precision � recall
Precisionþ recall

(9)

where:

Precision ¼ TP

TPþ FP
(10)

Recall ¼ TP

TPþ FN
(11)

and TP, FP, and FN are the numbers of true positives, false
positives, and false negatives, respectively. In our reaction
screening context, a high precision minimizes wasted effort
on false positives (monomer pairs that did not form a free-
standing membrane), while a high recall ensures that the
model does not overlook promising film-forming reactions.
The F1 score is the trade-off between experimental cost and
discovery rate.

The accuracy is defined as:

Accuracy ¼ TPþ TN

TPþ TNþ FPþ FN
(12)

where TN is the number of true negatives. Accuracy simply
defines in an absolute value, how many film formations (either
positive or negative) were predicted correctly. Accuracy in our
case is prone to be overestimated because of the imbalanced
dataset.

The binary cross-entropy (BCE) loss is defined as:

BCE ¼ � 1

N

XN
i¼1

yi log pið Þ þ 1� yið Þ log 1� pið Þ½ � (13)

where yi is the true label and pi is the predicted probability for
the i-th sample. The BCE was used to calculate the loss term
in both the GNN and the XGB models’ training. All the other
metrics (F1, ROC AUC, MCC) were monitored during the trainin
but were not used as a loss function.

4.8 Graph neural network

The directed message passing graph convolution neural net-
work (GNN) was based on the Chemprop v2 python package.52

The inputs were the monomer SMILES which are internally
transformed into RDKit molecular graphs by Chemprop. Mono-
mer concentration, one-hot encoded solvent types, and the DFT
results were added as additional inputs. The initial atom
(atomic number, number of bonds to other atoms, formal charge,
hybridization, aromaticity, etc.) and bond features (conjugation, in-
a-ring, stereochemical information) are passed to the directed
message passing algorithm as detailed in the original publi-
cation.52 After hyperparemeter optimization for each five folds
separately, the best settings for each fold are detailed in Table 5.
All other hyperparameters were set to default values. The Chem-
prop v2 built-in optuna was used for hyperparameter optimization.
Class imbalance was handled by providing the network with an
auxiliary dictionary of instance-level class weights, computed from
the positive-to-negative ratio.

4.9 Extreme gradient boosting

The XGB package was used to perform the model optimization
in python.55 The same cross-validation folds were used as in the
GNN model. XGB is an ensemble technique which trains
several weak learners sequentially to predict the output label
and the final prediction is the weighted sum of these weak
learners. The weak learners are decision trees and the boosting
refers to the sequential training in XGB: the subsequent learners
are aimed to reduce the error of the previous learners. XGB cannot
handle molecular-graph objects natively; therefore, the corres-
ponding 128-length Morgan fingerprint vectors were used as input.
All other inputs, such as the DFT, one-hot encoded solvent type,
and concentration values were concatenated to the Morgan finger-
prints and used as inputs. The task was binary classification to
predict film formation or no film formation from the given input
features. XGB is an ensemble technique which trains several weak
learners sequentially to predict the output label and the final
prediction is the weighted sum of these weak learners. The weak
learners are decision trees and the boosting refers to the sequential
training in XGB: the subsequent learners are aimed to reduce the
error of the previous learners. We used a bayesian optimization
method implemented using optuna58 to find the best hyperpara-
meters for the XGB model. The hyperparameters are detailed
in Table S1. Class imbalance was handled using the built-in
‘scale_pos_weight’ parameter, set based on the positive-to-
negative class ratio.

4.10 Logistic regression

A logistic regression model was built using scikit-learn
(v1.5.2).59 The data was scaled using zi = (xi � m)/s where zi

Table 5 Optimal hyperparemeters for each fold for the GNN model after
hyperparameter optimization

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

Depth 5 3 3 5 5
Message_hidden_dim 900 600 500 800 800
Dropout 0 0 0 0 0
Activation RELU LEAKYRELU RELU LEAKYRELU RELU
ffn_num_layers 1 2 2 2 2
ffn_hidden_dim 900 1100 1000 500 900
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and xi are the scaled and original features, m is the sample
mean and s is the standard deviation. The fitting run for a
1000 iterations with a ‘liblinear’ solvent in scikit-learn. The
output values were scored using BMMC, accuracy, F1-score and
ROC-AUC, similarly to the other models. In logistic regression,
the model optimizes the probability function to predict the film
formation outcome (P(Y = 1|X)):

PðY ¼ 1jXÞ ¼ 1

1þ e� xTXð Þ

where w and X are the model weights and features, respectively.
Logistic regression is a linear model, and the logits of the
prediction probabilities are the linear combinations of the
weights and features. This results in highly explainable model
by examining the relation of ewi to 1. We used L1 penalty during
the training. The average feature importance was calculated
between the 5 fold cross validation test results. Class imbalance
was mitigated by adjusting the loss contribution of each class
according to the ratio of positive to negative samples.

4.11 Support vector machine

The SVM model was built using scikit-learn (v1.5.2).59 The SVM
is a supervised model that is tasked to find the maximal
marginal hyperplane between two clusters of datapoints.60

We used bayesian optimization, implemented in optuna58 to
search for the optimal hyperparameters (C and gamma) sepa-
rately for a linear SVM (SVM-linear) and one with a radial basis
function kernel trick SVM (SVM-rbf). The linear SVM tries to
minimize the function g given a training set S = {(x(i), y(i));
i = 1, . . ., m}:

g ¼ min
i¼1;...;m

gðiÞ
w

wk k

� �T

xðiÞ þ b

wk k

 !
(14)

where w are the weights and xi are the features. For the kernel
trick, we used the Gaussian kernel:

Kðx; zÞ ¼ exp � x� zk k2
2s2

� �
(15)

where s is a hyperparameter. Class imbalance was handled via
automatically adjusting the C penalty value for the minority
class (positive film formation).

4.12 Naive Bayes classifier

The Naive Bayes classifier was used to predict the outcome of
the film formation. The model used a Bernoulli Naive Bayes-
based approach to assign a class ŷ = Ck for any k:

ŷ ¼ argmax
k2f1;...;Kg

p Ckð Þ
Yn
i¼1

p xi Ckjð Þ (16)

where n is the number of samples. The probability (p) of the
Gaussian Naive Bayes classifier is modeled using:

p x ¼ v Ckjð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
2psk2

p e
� v�mkð Þ2

2sk2 (17)

where s and m are the variance and mean, respectively.

The probabilty of the Bernoulli Naive Bayes classifier is
modeled using:

p x Ckjð Þ ¼
Yn
i¼1

pxiki 1� pkið Þ 1�xið Þ: (18)

Class imbalance was mitigated by adjusting the prior prob-
ability term for the minority class.

4.13 Image classification data

We conducted our experiments using the limited and imbal-
anced dataset D4, as detailed in Table 1. This dataset comprises
486 optical images representing five distinct film types: non-
crystalline dense, dendritic, crystalline, dense gel-like, and non-
crystalline dense with defects. As illustrated in Fig. 2F, there is a
notable imbalance, with the non-crystalline dense class sub-
stantially outweighing the other classes. To ensure a thorough
and rigorous evaluation, we employed a cross-validation strat-
egy with K = 4 folds, carefully ensuring that the validation sets
from each fold were mutually exclusive. For each fold, the
dataset was split into training and validation sets, maintaining
an 80% to 20% ratio. To address the pronounced class imbal-
ance, we preserved the original distribution of classes in both
the training and validation sets by applying the respective class
proportions.
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