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Accurate modelling of the structural and dynamic properties of the
solid electrolyte interphase (SEl) in lithium-ion batteries remains a
longstanding challenge due to the high complexity of the SEI structure
and the lack of structural information. Atomistic simulations using
molecular dynamics (MD) can provide insights into the structure of
the SEI but require large models and accurate interatomic potentials;
however, existing computational tools struggle to evaluate these
potentials in mixed-material systems efficiently and reliably. Here, we
demonstrate the effectiveness of machine learning interatomic poten-
tials (MLIPs) defined using amorphous structures as reference data,
specifically the moment tensor potential (MTP), combined with density
functional theory (DFT) calculations and active learning loops that
enable rapid sampling of MD trajectories. For SEIl relevant materials
(e.g., LiCOs, bulk Li, LiPFs, and Li;EDC), our trained MTP models
accurately capture the key structural properties (e.g., lattice parameters,
elastic constants, or phonon spectra). For the dynamical properties of
monoclinic Li,COs; and amorphous Li,EDC, the models are validated
against previous theoretical predictions in the literature. Particularly, we
illustrate the finite temperature effects on computing energy barriers.
The determined mechanism of dominant diffusion carriers (Li vacancy,
interstitial Li, and Li Frenkel pair) in LiCOs is highly consistent with DFT
calculations. Furthermore, we show that the generated training data-
sets can be applied to train graph-neural-network (GNN)-based intera-
tomic potentials that can further improve accuracy. The developed
machine learning workflow provides a scalable approach for SEI
modelling, enabling simulations at larger time and length scales to
tackle the limitations of conventional DFT methods.

1. Introduction

Over the last decade, the widespread adoption of electric
vehicles and portable electronics has surged dramatically,

Institute of High Performance Computing (IHPC), Agency for Science, Technology
and Research (A*STAR), 1 Fusionopolis Way, #16-16 Connexis, Singapore 138632,
Republic of Singapore. E-mail: ngmf@a-star.edu.sg

10770 | Mater. Horiz., 2025,12,10770-10781

Juan Manuel Arce-Ramos,

ROYAL SOCIETY

e
PP OF CHEMISTRY

Enabling accurate modelling of materials for a
solid electrolyte interphase in lithium-ion
batteries using effective machine learning
interatomic potentials

Yang Hao Lau and

New concepts

The present study introduces a machine learning-driven framework for
modelling the complex structure and dynamics of the solid electrolyte
interphase (SEI) in lithium-ion batteries. By leveraging moment tensor
potentials (MTPs) trained on density functional theory (DFT) data, the
approach enables accurate and scalable molecular dynamics simulations.
A key innovation lies in the integration of active learning loops and
amorphous configurations, which iteratively refine the training set to
capture a broader range of atomic environments efficiently. The workflow
also demonstrates the transferability of generated datasets to graph
neural network (GNN)-based force fields, offering a pathway to further
improve predictive accuracy for SEI materials.

driven by the advancements in rechargeable Li-ion batteries
(LIBs). However, further improvements are needed not only to
enhance power capacity but also to improve safety, reliability,
and lifespan across diverse applications."”” One of the key
issues in LIBs is the formation of kinetically stable solid
electrolyte interphases (SEIs), which play a crucial role in
battery degradation that results in capacity loss and increased
resistance. Despite extensive research, the structure and evolu-
tion of the SEI remain elusive due to its complexity and the
wide range of physical and chemical processes involved.” The
SEI forms through the sacrificial decomposition of the electro-
lyte and additive molecules during the initial charging of LIBs.*
The structure of the SEI is generally considered to consist of
two distinct layers: an inner layer (close to the anode) primarily
composed of fully reduced crystalline compounds (e.g., Li,CO3,
Li,0, and LiF) and an outer layer (close to the liquid electrolyte)
composed of porous and non-crystalline phases such as organic
dilithium ethylene dicarbonate (Li,EDC) and dilithium buty-
lene dicarbonate (Li,BDC). In practice, the composition of the
SEI is even more complex and influenced by various factors
such as the choice of electrode materials, electrolyte composi-
tions, salt concentrations, and reaction conditions such as the
temperature and applied electric field." A wide range of experi-
mental techniques have been employed to characterize the SEI
in detail.>® However, gaining fundamental insights into SEI
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formation and growth remains challenging due to the inherent
limitations of studying multiscale phenomena experimentally.

In battery materials research, molecular dynamics (MD)
modelling has become a crucial tool for developing next-
generation battery technologies.””® Ab initio molecular dynamics
(AIMD) based on density functional theory (DFT) has been widely
used to model battery materials at the atomic scale, typically
involving a few hundred atoms and picosecond time scales.’
However, AIMD struggles to model the SEI realistically due to its
high computational cost and limited simulation scale.'® Empiri-
cally fitted force fields provide a complementary approach that
can enable large-scale MD simulations by using analytic formu-
las to describe the interatomic interactions.'*"* These models
significantly reduce the computational cost as compared with
DFT. However, the development of traditional force fields, which
requires reparameterization of data points (experimental and/or
quantum chemical data) with significant human involvement, is
a tedious process for complex chemistries (particularly those
involving bond breaking and formation), leading to a low
transferability.

Machine learning-based force fields (MLFFs) are transforming
the way we model complex material systems, offering an efficient
yet highly accurate alternative to traditional interatomic
potentials.’>™"” Recent progress in MLFF models for solid electro-
lyte materials in lithium-ion batteries has demonstrated their
utility in probing structural stability, dopant effects, diffusivity,
and activation energies across a wide range of chemistries.'®*° By
learning energy landscapes directly from first-principles calcula-
tions, MLFFs can bridge the gap between computational efficiency
and quantum-level precision, making them particularly well-
suited for studying intricate environments. Unlike classical force
fields, which rely on predefined functional forms, MLFFs use
flexible, data-driven models to capture a broad spectrum of
atomic interactions. This adaptability is crucial for SEI materials,
where transport properties depend on subtle variations in the
chemical composition, structural disorder, and interfacial effects.
Despite their promise, applying MLFFs to SEI systems remains an
open challenge. One of the primary hurdles is the need for
extensive, high-quality training datasets that comprehensively
represent the diverse atomic configurations found in SEI materi-
als. The SEI consists of a combination of organic and inorganic
phases, often exhibiting both crystalline and amorphous regions,
as well as dynamically evolving interfacial structures. A robust
MLFF must accurately describe interactions among key elements
such as Li, O, C, H, and F, while also capturing the complex
behavior of molecular species like CO,*~ and EDC>™ anions.

A major challenge in MLFF development is the computational
cost associated with generating training data. First-principles
calculations, particularly for large systems, are resource-intensive,
limiting the feasible size of individual training structures to a few
hundred atoms. Consequently, MLFF training datasets must be
carefully curated to maximize coverage of relevant atomic interac-
tions within these constraints. In practical applications, the archi-
tecture and technical setup of MLFFs—including the choice of
reference data, the method of sampling, and the level of theory
used—play a crucial role in determining the reliability and range
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of applicability of the final model. Several strategies have been
proposed to assemble reference datasets from DFT or ab initio
calculations, each with distinct advantages and limitations. For
example, (i) AIMD sampling: running long molecular dynamics
trajectories at finite temperatures to systematically explore relevant
atomic configurations;***" (ii) multiscale training: using lower-
accuracy methods to generate an extensive dataset, followed
by selective high-accuracy DFT refinements to enhance model
precision;*** (iii) active learning: dynamically improving the force
field by incorporating novel configurations encountered during
simulations;**° (iv) enhanced sampling techniques: using bias-
ing methods to accelerate the exploration of rare but important
configurational states;*" and (v) perturbation-based methods: gen-
erating a diverse training set by displacing atomistic structures to
capture high-energy states relevant for diffusion and reaction
pathways.'”*” Although these techniques have been successfully
applied to various material systems, their optimal combination for
SEI modelling remains unclear. The lack of standardized meth-
odologies for constructing SEI-specific training datasets has hin-
dered the development of MLFFs capable of capturing the full
range of SEI phenomena. Additionally, validating MLFF predic-
tions against DFT/experimental data remains an essential but
underexplored aspect of this field. As computational resources
continue to advance, MLFFs are poised to play a pivotal role in
accelerating SEI research. However, achieving their full potential
requires further innovation in dataset construction, model trans-
ferability, and validation frameworks. Addressing these challenges
will be essential for leveraging MLFFs to gain deeper insights into
the fundamental processes governing SEI formation, evolution,
and ionic transport.

In this work, we demonstrate the utility of machine learning
interatomic potentials (MLIPs) developed through systemati-
cally sampling amorphous structures via a batch of short MD
simulations, coupled with an active learning scheme and DFT
calculations, to efficiently and reliably model the major com-
ponents of the SEI in LIBs. Direct comparison and validation of
MLFF predictions against DFT benchmarks for key properties
such as Li* transport barriers, lattice stability, phonon spectra,
and elastic moduli establish trust in the MLFF’s predictive
power for SEI chemistry. While the study builds upon existing
machine learning frameworks such as MTP and MACE, its
novelty lies in developing a domain-specific MLFF workflow
tailored for the SEI—a chemically complex, structurally diverse,
and dynamically evolving region that is poorly described by
classical force fields.

2. Methodology

2.1 Setting up starting configurations

Traditionally, AIMD simulations constitute a straightforward
way to explore configurational space starting with a selected
structure. The temperature of simulations determines which
regions of the potential energy surface (PES) and what energy
ranges (according to the Boltzmann distribution) are explored
in a long-time trajectory. However, for Li,EDC and Li,COj;,
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exploration of the region relevant to rotation and translation of
fluxional groups (EDC>~ and CO5>”) cannot be achieved simply
due to sluggish EDC*~ and CO;>~ species, which usually need a
very long-time simulation at elevated temperatures. On the
other hand, the C-H, C-C and C-O bonds in EDC>~ might
easily break at a temperature >120 °C according to previous
experimental studies, leading to failure of sampling EDC*~
configurations.”® Because of both points, different starting
amorphous configurations with short MD simulations are used
to explore various intramolecular interactions (e.g., EDC*~) and
fluxional groups (CO;>7). In addition, the machine learning
force field parameters are fit for the configurational space of
systems, bulk Li and LiPF.

The SEI exhibits a highly complex chemical environment,
encompassing diverse compositions, interfaces, and stoichiome-
tries. Consequently, its structural properties cannot be adequately
represented by well-defined crystalline phases alone. In many
cases, the interfacial regions of the SEI are inherently disordered
at the atomic scale. To address this, we adopted a strategy that
captures interactions between different compound types and
overcomes the limitations of training machine learning potentials
solely on near-crystalline configurations. Specifically, the initial
structures were generated by randomly blending and packing
varying amounts of Li,EDC, Li,COs, LiPFs and Li species into a
supercell using an initialisation scheme proposed by Vilhelmsen
and Hammer, Fig. $1.>° The supercell involves atoms with a
maximum number of 8 Li,EDC, 16 Li,COj3, 64 Li molecules, etc.
Initially, each system was set up at low density with a large
supercell (Fig. S1). Then it was condensed over 5 ps at 10 K with
a high pressure of 50 kbar in the NPT ensemble, and an
optimization was conducted to relax the atomic positions and
internal stress. These calculations were performed using a uni-
versal machine learning force field implemented in MACE.** In
this work, 120 starting structures were generated this way to
evaluate the training set via the loops described in the following
section (Scheme 1). The results and discussion section demon-
strates that the potential exhibits strong predictive capability for
various properties near equilibrium states (Fig. 1).

2.2 MLFF training procedure

A strategy for sufficiently sampling desired configurations of
atomistic structures is outlined in Scheme 1. The moment tensor
potential (MTP) framework®® and a bootstrapping technique
implemented in the MLIP-3 package®' are used to assemble
the training set via sampling configurations directly from a
targeted atomistic simulation. This concurrent learning proce-
dure allows us to terminate the simulation according to extra-
polation criteria,®" retrain a potential, and restart a simulation.
Given an initial structure, the active learning loop may require
several iterations to produce a robust machine learning
potential. Each iteration of the loop typically follows five key
steps, as illustrated in Scheme 1: (i) initialization: a preliminary
training dataset is generated from a short AIMD simulation,
which is used to construct a pre-trained potential. (ii) Exploratory
simulation: molecular dynamics is performed using the current
potential, during which extrapolative configurations—those that
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fall outside the model’s reliable prediction space—are actively
identified. The MTP-3 software***' employs the extrapolation
grade 7, derived from the D-optimality criterion,*** as a quan-
titative measure of how ‘unfamiliar’ a new atomic configuration
is relative to those already in the training set. If the MD
simulation terminates upon exceeding the predefined extrapola-
tion threshold, y > 10 commonly used for MTP training,”**" an
update to the active training set is required. To accomplish this,
the Maxvol algorithm is employed to select the most informative
configurations from the terminated trajectory.>' In the Li,CO;
system, test runs with y = 8 and y = 10 yielded nearly identical
results, with differences of only 9 meV A~ in force RMSE,
0.2 meV per atom in energy RMSE, and 10 structures in training
set sizes. (iii) DFT calculations: the configurations with y > 2 are

This journal is © The Royal Society of Chemistry 2025
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selected and evaluated using the DFT single point calculation
to obtain accurate reference data including energies, forces,
and stresses. These configurations with DFT information are
then added to the training dataset. (iv) Model update: the MTP
is retrained with the expanded dataset, and the next iteration
using newly trained MTP begins from step (ii). Each cycle
incrementally broadens the model’s training domain and
enhances the stability and transferability of the potential—al-
lowing longer and more reliable simulations without triggering
extrapolation failures. This iterative loop continues until the
simulation completes without surpassing the critical extrapola-
tion grade yprear.”* Notably, for a fixed thermodynamic condi-
tion, each iteration may initiate a different trajectory, as the
molecular dynamics are typically restarted with a new random
velocity seed.

In the MTP framework, the potential energy of an atomic
structure is approximated as the sum of site energies for
individual atoms, where each site’s energy is expanded linearly
using a set of basis functions. MTP introduces degree-like
measures, referred to as “levels,” to determine which basis
functions are included in the interatomic potentials. In our
implementation, we employ MTP at “level 16,” corresponding to
a mid-sized basis set, which enables large-scale MD simulations
with sufficient efficiency. This is particularly advantageous for
investigating SEI materials, where computational speed is criti-
cal. We have observed that this strategy can result in sufficient
sampling for intended applications of the final MTP model
involving MD simulations for equilibrium or close to equili-
brium properties (e.g., radial distribution functions and lithium-
ion diffusion coefficients).

Starting with 120 initial configurations generated via
the scheme discussed in Section 2.1, the active learning
process (see Section 2.2) ultimately produced the final training
set, comprising 8686 structures, which enabled the generation
of 50-ps NVT and NPT trajectories at various temperatures
below 1000 K and pressures of 1 bar and 100 kbar. Training
at MTP “level 16” yields a root-mean-squared error (RMSE)
of 8 meV per atom for energy and a RMSE of 0.34 eV A~* for
forces.
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2.3 DFT and molecular dynamics methods

The DFT calculations were carried out using the Vienna ab initio
Simulation (VASP) package.?*?® The projected augmented wave
method and the generalized gradient approximation of Perdew—
Burke-Ernzerhof (PBE) type for the exchange correlation func-
tional are employed.’” An energy cutoff of 520 eV and an
automatic k-mesh generation are used to converge the energy
and atomic force. The number of k-points in the direction of the
first, second and third reciprocal lattice vectors is determined by
setting the smallest allowed spacing (0.35 A™") between k-points.

All of the MD simulations were performed using the MTP
force field®' implemented as a calculator in the LAMMPS
package®® using a constant time step of 0.5 fs. All simulations
were performed using NPT or NVT ensembles, as appropriate,
using a Nosé/Hoover temperature thermostat and a Nosé/
Hoover pressure barostat, including an ensemble of velocities
from a random number generator with the specified seed at the
specified temperature. The relaxation time constants were cho-
sen to be 100 fs for the thermostat and 500 fs for the barostat. In
the production stage of the MD simulations, the initial geome-
tries of the amorphous Li,EDC were created using the disor-
dered system builder as implemented in ASE proposed by
Vilhelmsen and Hammer*® (see Fig. S1 and S6 for more details).

2.4 MLIP performance on test sets and validation using DFT

Starting with 120 initial configurations (see Section 2.1), we
perform 50-ps NPT MD simulations at 300 K and 1 bar for each
structure using the trained MTP model. We extract a test set of
20000 sampled structures from those trajectories to evaluate the
model performance. We assess the model’s accuracy by compar-
ing the absolute energies (Fig. 2a) and force components (Fig. 2b)
against the reference level from theory (DFT with the PBE func-
tional). The test root-mean-squared errors (RMSEs) for energy per
atom and force components are 9 meV and 0.21 eV A™, respecti-
vely—closely matching the RMSEs of the training set. This
indicates an accurate and robust model is achieved. More impor-
tantly, nevertheless, the more stringent and useful tests for our
model are quantitatively accurate predictions of various properties

15 (b)

10

MLFF forces (eV/Angstrom)
<)

-10 R2=0.96
- RMSE=0.21 eV/A
-15 -10 -5 0 5 10 15

DFT forces (eV/Angstrom)

Fig. 2 Correlation of test set energies (a) and atomic force x components (b) of the DFT level with the MTP predictions.
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(e.g., lattice parameters, elastic constants, phonon spectra, radial
distribution functions and lithium-ion diffusion coefficients) of
materials compared to DFT results and previous theoretical
predictions in the literature. These tests are discussed in
Section 3.

3. Results and discussion

3.1 MLFF performance in predicting material properties at
local energy minima

We present validation calculations for the lattice parameters
and elastic constants of various inorganic and organic materials,
including monoclinic Li,COs, bee bulk Li, hexagonal LiPF,, and
organic Li,EDC, in Fig. 3. Additionally, we consider two high-
pressure phases: hexagonal Li,CO; and fcc bulk Li. Experimental
data for the atomic structure of crystalline Li,EDC are unavail-
able; however, XRD measurements suggest an orthorhombic
structure with lattice constants (@ = 14.10 A, b = 12.66 A, ¢ =
5.20 A), accommodating six Li,EDC molecules based on the
estimated density.”® Since our goal is to compare MLFF predic-
tions with DFT-derived lattice parameters, we limit our calcula-
tions to a unit cell containing a single Li,EDC molecule (Fig. 3).
The MTP calculations accurately reproduce the DFT-derived
lattice parameters, with absolute deviations within 2%
(Table S1). Moreover, elastic constants are fundamental material
properties that are closely linked to the second derivative of the
potential energy and chemical bonds between atoms. The MLFF
model provides reasonable predictions of the elastic properties
across different materials, closely matching the DFT values and
effectively capturing variations among them (Table S2). Overall,
the MLFF model demonstrates good agreement with DFT calcu-
lations of material properties at local energy minima. Notably,
the training database does not explicitly contain configurations

(d)

b O b
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from these ordered phases, underscoring the model’s accuracy
and transferability.

3.2 MLFF performance in predicting dynamic properties

Simulations on dynamic properties for the SEI require large
atomic models typically containing thousands of atoms. There-
fore, we tested whether the machine-learned potential, trained
on small cells, can scale to larger models and extended time
scales while retaining near-DFT accuracy. To verify this, we
benchmarked the potential on a series of progressively larger
Li,EDC and Li,CO; supercells. The models are constructed
following the scheme in Fig. S1. As an example, we tracked a
long MD trajectory of a large supercell containing amorphous
Li,EDC (Fig. 4a). Throughout the MD trajectory, the MTP
energies track the DFT values within roughly 10 meV per atom.
As shown in Fig. 4b and c, the energy RMSE is essentially
unchanged across cell sizes, while the force RMSE increases
only slightly, from 0.34 to 0.43 eV A™*, for larger supercells.
These results indicate that the MTP remains stable and gives
accurate predictions over long MD simulations on large and
previously unseen configurations.

3.2.1 Li diffusivity within Li,EDC and Li,CO;. Previous
theoretical studies using DFT calculations have proposed three
primary mechanisms for Li transport in SEI components:*=>%*°
(i) Li hopping between neighboring sites,"" (ii) Li hopping
assisted by Li vacancies,*® and (iii) interstitial Li transport via
either a “knock-off” mechanism® or open-channel diffusion.*®
The predominant Li migration mechanism in the simulations
of stoichiometric Li,EDC and Li,CO; primarily involves Li
hopping between neighboring sites. Our MD simulations show
that, a Li atom adjacent to a vacancy (created when another Li
moves to a different position, Fig. S9) tends to fill the vacant
position during Li migration. Due to the strong interaction

(c)

Fig. 3 Atomic structure of monoclinic Li,COs (a), hexagonal Li,COs (b), organic Li,EDC (c), bcc bulk Li (d), fcc bulk Li (e), and hexagonal LiPFg (f). Red —
oxygen, green — lithium, brown — carbon, white — hydrogen, light purple — phosphorus, and silver — fluorine. Solid lines indicate the unit cells.
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Fig. 4 Correlation of test set energies and force at the DFT level with the MTP predictions. (a) Atomic structure of an amorphous Li,EDC in a large cell
(left), and the total energy per atom calculated using DFT and MTP from a long MD trajectory. Energy (black) and force (blue) root-mean-squared errors
in (b) Li,EDC and (c) Li,COs for a series of supercells with different atomic sizes, with the horizontal axes indicating the different number of atoms in
supercells.

between Li* and CO;>", stoichiometric Li,CO; exhibits a high requires an energy barrier of 1.19 eV (Fig. 5a). Unlike pure
activation energy hop barrier of approximately 1.2 eV (Fig. S8). Li,COj3, the presence of a Li vacancy and interstitial Li signifi-
Nudged elastic band (NEB) calculations using MTP further cantly enhances diffusion, particularly at lower temperatures,
indicate that the formation of a neutral Li Frenkel pair via Li through the hopping mechanism assisted by the Li vacancy and
migration into an open channel along the [010] direction the knock-off diffusion mechanism, respectively. As shown in
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Fig. 5 Energy profile of the pathway following (a) the generation of a neutral Li Frenkel pair, (b) the neutral Li vacancy diffusion, and (c) the neutral Li
diffusion via a knock-off mechanism. Black — DFT, blue — MTP, and yellow — MACE. The nudged elastic band method*® as implemented in ASE** was
used to locate the energy barrier of Li diffusioninal x 2 x 2 supercell of Li,COs. The atomistic structures of initial, transition, and final states are shown in
Fig. S10.
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Fig. 5b and c, the energy barriers calculated using MLFFs and
DFT via the NEB method closely align with the values estimated
from diffusivity. The barriers also align with the previous DFT-
determined range of 0.20 to 0.60 eV for interstitial Li
transport,”**> demonstrating the reliability of our trained
MLFFs in capturing SEI properties.

Finite-temperature dynamics offer critical insights into lithium-
ion transport within the SEI materials, which is an important
method for understanding batteries based on electrode-electrolyte
systems. The experimentally determined activation energy
(~0.60 eV) near the anode is expected to be an average value over
the multiphase SEI including different interfaces.*>*> Accurately
predicting lithium-ion transport across different phases requires
well-trained force fields. As an example, we consider models
consisting of 1440 atoms from a 3 x 5 x 4 supercell of monoclinic
Li,CO;, as well as an amorphous model containing 72 Li,EDC
molecules (Fig. S6 in the SI) with 1152 atoms. MD simulations
were performed at elevated temperatures (600-900 K for Li,CO;
and 400-600 K for Li,EDC) to ensure that the system reached a
diffusive regime, allowing the analysis of temperature-dependent
transport behaviours. The self-diffusion coefficient (D) was calcu-
lated using the Einstein relation at temperatures where diffusion
was observed in NPT simulations at a pressure of 1 bar:

(MSD(7))

D,‘ == 1
it 2nt

1—00

Here, MSD(¢) represents the mean-square displacement of Li over
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time ¢, with (-) denoting the ensemble average. The parameter 7
corresponds to the dimensionality of the system, where n = 3 for
three-dimensional diffusion in our model. Note that, at low
temperatures (T < 400 K for Li,EDC and T < 600 K for Li,COj),
atomic vibrations dominate, with few diffusion hopping events
observed within the simulation timescale. Before evaluating the
mean-square displacement of Li, the atomic models were equili-
brated for at least 80 ns for the amorphous Li,EDC supercell
(Fig. S6) and 1 ns for the crystalline Li,CO; supercell.

The diffusive behaviour of Li ions is evident from the linear
increase of MSD with time (Fig. S7), and the temperature
dependence follows an Arrhenius-like relationship, appearing
linear in the plot of log(D) vs. 1/T (Fig. 6). While the MSD is
higher at elevated temperatures, Li hopping events are signifi-
cantly reduced at room temperature, leading to much lower
diffusivity. At 300 K, our simulations yield lithium-ion diffusiv-
ities of 1.25 x 10~ m? s~ * for Li,EDC and 1.32 x 10" ** m?*s*!
for Li,CO; (Fig. 6). The diffusion coefficient in Li,EDC is
consistent with the value (~10""'® m* s™') obtained using the
revised many-body polarizable APPLE&P force field.'*> To the
best of our knowledge, only Tasaki et al® have previously
reported Li diffusion in crystalline Li,CO; at room temperature,
using the COMPASS force field with parameters by defined
Accelrys, Inc. In detail, they used a Li,COj; crystal model with a
simulation cell of approximately 20 A per side and performed
1 ns NPT ensemble simulations. In our study, we employed a
larger supercell (~25 A) and extended the simulation time to
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Fig. 6 Diffusion coefficients of Li obtained from MD simulations of pure Li,COs (a), Li,COz with interstitial Li (b), Li,CO3 with the Li vacancy (c) and
amorphous Li,EDC (d). The dashed lines highlight the implied Arrhenius-like dependence for Li transport.
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20 ns under the NPT ensemble (Fig. S7) in order to evaluate the
Li" diffusion coefficient in Li,CO;. However, our calculated Li
diffusion coefficient for Li,CO; is approximately eight orders of
magnitude lower than the value, 9 x 10~ ** m® s, reported by
Tasaki et al.*® This discrepancy may arise from differences in
computational models or the methodologies used to estimate
diffusivity. Our calculated value (1.32 x 107>* m®> s™' for
Li,CO;) was used to derive the activation energy barrier
(Fig. S8a), which was further validated via DFT calculations
presented in Fig. 5. Moreover, a comprehensive study of Li
transport in Li,EDC, combining experimental measurements
with the APPLE&P force field,'? has indicated that the diffusion
coefficient of 8 x 107"> m*> s~ reported by Tasaki et al. is
significantly overestimated compared to our more consistent
value of ~10" " m* s~

The obtained activation energy barrier for Li-ion diffusion is
0.64 eV for Li,EDC (Fig. S8), which closely aligns with the
previously reported value of 0.66 eV using the classical force
field."* For crystalline Li,COs;, the barrier is 1.19 eV, which is highly
consistent with our DFT prediction and falls within the range of
0.78-1.34 eV measured using solid-state NMR spectroscopy.””
Within the voltage range of lithium-ion batteries, excess interstitial
Li is expected to dominate the diffusion process due to its lower
formation energy compared to other defects (e.g., Li vacancy and Li
Frenkel pair)” making it a key factor in estimating energy
barriers.”***® Our simulations reveal a more rapid linear increase
in the MSD curve (Fig. S7 in the SI) in the presence of an extra
interstitial Li in the Li,CO; model with 1440 atoms, confirming its
impact on diffusivity. The concentration of interstitial Li-doped
Li,CO; is about 7.1 x 10*° m >, which is close to the concentration
used in SEI growth modelling.*® Fig. 6b further illustrates the
Arrhenius-like relationship. The diffusivity of the interstitial Li
model at 300 K is 4.25 x 10~ m”> s™', comparable to the values
obtained using AIMD (7.6 x 10~ ** m* s~")** and the standard 6-12
Lennard-Jones (L) potential (3.3 x 10~ *® m”* s~ *).*! The activation
energy for interstitial Li diffusion in Li,COj; is found to be 0.18 eV.
Additionally, Li vacancies are frequently reported as point defects
that facilitate Li transport in Li,CO5.*® At 300 K, the Li vacancy
diffusivity is 8.0 x 107" m” s ' with an activation energy
of 0.24 eV, with both values comparable to those of interstitial
Li. The close agreement between energy barriers estimated from
DFT-based NEB calculations and those obtained from MLFF-based
MD simulations further validates the high accuracy of our
trained model.

The diffusivities of interstitial Li and Li vacancies in Li,EDC
at 300 K are 1.65 x 107* m? s™! and 6.11 x 10~ ** m?* s,
respectively, with the corresponding energy barriers of 0.49 eV
and 0.56 eV. These values suggest that the organic Li,EDC
exhibits lower ionic mobility than the inorganic Li,COj3, aligning
with experimental findings where the stripping of the Li" solva-
tion sheath® and the diffusion of Li* from the organic to the
inorganic layer® are identified as key steps in anode processes.

We explicitly calculated the ionic conductivities of both
Li,CO; and Li,EDC using the Nernst-Einstein relation: ¢ =
nz’q*D/ksT, where o is the ionic conductivity, n is the charge
carrier concentration, D is the diffusion coefficient, T is the

This journal is © The Royal Society of Chemistry 2025
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temperature, z = 1 is the charge number for Li', g = 1.602 x
10~"° C is the elementary charge, and k5 = 1.381 x 10" > JK ' is
the Boltzmann constant. We adopt a larger supercell contain-
ing more atoms for the ionic conductivity calculations so that
the system size is more comparable to other theoretical work.
Previous studies®’® have shown that ionic conduction in
inorganic Li,CO; primarily occurs via interstitial Li defects.

The charge carrier concentration n of Li interstitials in
Li,CO; computed using a supercell including 3457 atoms is
2.98 x 10%° m>. The calculated ionic conductivity based on the
computed diffusion coefficients (1.76 x 10~'* m> s~ " at 300 K)
is 3.25 x 107> S m™ . Available experimental studies reported
that the ion conductivity of Li,CO; is ~107% § m '3
Nevertheless, the theoretical reported values based on DFT
and the continuum approach typically range from 10 °® to
107® S m~1.**”® For Li,EDC, unlike Li,COj;, the dominated
ion conduction mechanism remains experimentally unclear.
Therefore, both intrinsic Li and Li interstitials might contribute
to the conduction. With this assumption, the estimated charge
carrier concentrations for Li,EDC using a supercell including
2688 atoms range from 3.50 x 10%° to 1.18 x 10*®* m™>. The
calculated ionic conductivities range from 7.60 x 10™* to 2.26 x
107® S m™' based on the computed diffusion coefficients
(1.04 x 107" m?> s™* at 300 K). The experimental ionic con-
ductivity is ~1077 S m~", while a forcefield based modelling
gives values ranging from 10 °to 10" S m~"."

Despite the calculated value of Li,CO; being higher than the
experimental value, our result is in good agreement with other
theoretical work, whereas the Li,EDC result agrees with both
experimental and other theoretical works. We note that the
ionic conductivity calculated from modelling in the literature
tends to be higher. This discrepancy could primarily stem from
the fact that it is computationally challenging to model the
experimental charge carrier’s concentration which requires a
very large supercell. Therefore, a higher concentration of charge
carrier is assumed in modelling (i.e., adopt a relatively smaller
supercell), which could result in higher ionic conductivity.
Nevertheless, the trend obtained from the present work remains
consistent with other modelling and experimental work.

3.2.2 Li transport between Li(111) and Li,CO3(001) interfaces.
We present a case study of Li(110)/Li,CO;(001) and Li(111)/
Li,CO3(001) interfaces (Fig. S12) to demonstrate the applicability
and extensibility of our MLFF workflow to interfacial systems. The
interface energies are 0.44 and 0.35 J m~> calculated using the
MTP model for both interfaces, respectively, which are consistent
with DFT values, 0.52 ] m~2 and 0.46 ] m™ >, respectively. We have
observed that the Li(111)/Li,CO3(001) interface is denser than the
Li(110)/Li,CO5(001) interface due to Li atoms from metal Li form
more bonds with the O of COj; at Li,CO5(001), leading to a more
stable interface between Li(111) and Li,CO3(001) surfaces.

In addition, previous DFT studies suggest that the Li(001)/
Li,CO;3(001) interface exhibits relatively high mechanical
strength with a reported interface energy of 0.49 J] m 2% yet
Li" migration across it has not been thoroughly investigated.
Our MD simulation for Li(001)/Li,CO3(001) interface shows that
Li(001) changes to Li(111) after 5 ns at 300 K, indicating that
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Li(111) is the lowest energy surface. Therefore, we have inves-
tigated Li-ion transport across the Li(111)/Li,CO5(001) interface
(Fig. 7). MLFF-MD simulations performed under an applied
electric field show that Li transport takes place from Li(111) to
Li,CO3(001), as shown in Fig. 7. With the application of the
electric field (right to left), the migration process takes place
along the atomic chain (the five Li atoms labelled by numbers
1 to 5 in Fig. 7). Like the diffusion pathway in the ‘“knock-off
mechanism”, these Li atoms at sites from 5 to 1 take turns as
the diffusing interstitials, move in four knock-off steps, and
finally push the Li atom to the left side of Li,CO;.

3.2.3 Li-related radial distribution functions. We further
analyze the structures of amorphous Li,EDC and crystalline
Li,CO; by examining their radial distribution functions (RDFs)
obtained from MD simulations at 300 K and elevated tempera-
tures of 500 K (Li,EDC) and 700 K (Li,CO3). As shown in Fig. 8,
the first Li-Oc peak for both materials appears at around 1.96 A,
indicating that the Li-Oc distance is primarily governed by
electrostatic interactions between the Li cation and the carbonyl
oxygen atom. Each Li ion coordinates with approximately four
oxygen atoms, bridging aggregates of EDC>~ and CO;>~ anions,
as illustrated in Fig. 8b and d. The first Li-Li RDF peak shows
that Li atoms are more widely spaced in Li,CO; (3.00 A, Fig. 8c)
compared to Li,EDC (2.89 A, Fig. 8a). At elevated temperatures,
the probability of Li coordinating with oxygen decreases slightly
as compared to that at 300 K, reflecting increased Li mobility. In
Li,EDC, Li atoms exhibit a strong preference for coordinating
with carbonyl oxygen (Oc) rather than ether oxygen (Oe), as
confirmed by the Li coordination number in Fig. 8b. The Li-
Oe peak appears at a slightly larger distance (2.12 A) compared to
the Li-Oc peak. The extended Li coordination shell, defined by
the minimum following the first Li-Li RDF peak at 3.91 A,
indicates that Li" remains surrounded by Oc in this secondary
coordination environment. These findings are in strong agree-
ment with previous simulations."'* Additionally, due to the low
interstitial-to-lattice Li ratio (1/480), the RDFs of pure and
interstitial-doped Li,CO; remain indistinguishable (Fig. S11).

3.2.4 Improvement of the MTP model. Training at MTP
“level 16” (92 descriptors) yields excellent performance for
energy predictions, with a root-mean-squared error (RMSE) of

Fig. 7 MLFF-MD simulations performed at 300 K under an applied elec-
tric field (0.03 eV e A™Y) using the QEq method®” to reveal lithium
transport from Li(111) to Li,CO3z(001). (a) Atomic structure of the Li(111)/
LioCOs(001) interface. Snapshots of the MD trajectory at (b) 1.4 ps and
(c) 1.5 ps illustrate the migration process.
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8 meV per atom. However, the RMSE of force prediction is
0.34 eV A™%. On a 128-core system (Dual-CPU AMD EPYC 7713),
this setup achieves a physical simulation time of approximately
10 nanoseconds per day for a supercell containing ~ 1000 atoms.
Higher-order tensor terms only slightly improve accuracy but at a
super-linear increase in computational cost. For instance, increas-
ing the MTP level to 22 (288 descriptors) reduces the RMSE to
6 meV per atom for energy and 0.31 eV A~" for forces, but at the
cost of tripling the computational time. Given the chemically
complex environments within SEI materials, MTP—which relies
on a fixed basis expansion—performs well for smooth, interpola-
tive energy landscapes but may struggle with capturing non-
polynomial energy variations. As shown in Fig. 5, MTP exhibits
energy barrier deviations of 0.03 to 0.07 eV for Li diffusion in
Li,CO; when compared to DFT calculations.

We have therefore further developed and validated an
equivariant neural network model named MACE,*® to assess
whether the training dataset generated through iterative loops
based on MTP models can be leveraged to capture subtle
interatomic interactions with higher fidelity. The goal is to
improve transferability across diverse material environments
while enhancing accuracy. Training at MACE using about one
million parameters yields a RMSE of 2 meV per atom for energy
and a RMSE of 0.07 eV A™* for forces (Fig. $2). Compared to the
MTP model, the MACE model also achieves significantly lower
RMSEs for both energy and forces on test sets (Fig. S2 and S3).
Like the MTP model, the MACE model demonstrates excellent
agreement with DFT calculations for lattice parameters (Table S1),
elastic constants (Table S2), and phonon spectra (Fig. S3). Addi-
tionally, the MACE model improves predictions of energy barriers
for Li transport via three mechanisms in Li,COj; (Fig. 5) compared
to the MTP model. However, despite these improvements, the
computational cost of MACE remains a limiting factor. In large
supercells (~1440 atoms), our current implementation achieves
only ~ 180 picoseconds of MD simulation per day using one GPU
CAR on a machine (Nvidia A100 40 GB). In contrast, MTP models
indicate that equilibrating the amorphous Li,EDC structure
requires at least 60 nanoseconds of MD simulations (Fig. S6),
highlighting a major challenge in applying MACE to SEI systems.
This computational bottleneck restricts its feasibility for long-
timescale simulations, such as studying ion transport across grain
boundaries in SEI's organic or inorganic phases, which evolve due
to dissolution, redeposition, and densification of different phases.
Collectively, both methods highlight the importance of develop-
ing a diverse suite of MLFFs tailored to the specific accuracy-
efficiency requirements of different battery components. Future
extensions may benefit from hybrid strategies that combine the
strengths of local-descriptor models like MTP with other more
expressive approaches such as Sparse Gaussian Process Regres-
sion (SGPR). SGPR, as demonstrated in recent studies®”*° on solid
electrolyte materials, provides not only reliable accuracy but also
intrinsic uncertainty quantification.

While our study focuses on Li,CO; and Li,EDC as represen-
tative SEI components due to their well-characterized roles in
the inorganic and organic phases of the SEI, we acknowledge
that the real SEI is a heterogeneous and dynamic mixture of

This journal is © The Royal Society of Chemistry 2025
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Fig. 8 Radial distribution functions (a) and (c) of Li-X (X = Oc, Oe and Li) and the coordination numbers of Li for Li-X (b) and (d) obtained from MD
simulations of amorphous Li,EDC and crystalline Li,COs at different temperatures.

various species, including LiF, Li,O, organic polymers, and
decomposition products including battery additives.**°" Our
current framework is designed to be extensible, and the active
learning workflow demonstrated here can be applied to incor-
porate additional SEI components in future studies. This work
represents an important first step toward building more com-
prehensive machine learning-based models for the complex
multicomponent nature of the SEL

4. Conclusions

In this work, we have developed a machine learning interatomic
potential approach to address the fundamental mechanism of Li
transport in the SEI in lithium-ion batteries. We showed that the
developed machine learning-based force fields are not only
applicable to the major components of the SEI (ie., Li,CO3
and Li,EDC) but also generalizable to be able to include other
components. e.g. LiF and Li,O. The model trained based on
active learning loops accurately reproduced the lattice para-
meters, elastic constants and phonon spectra across various
SEI components, demonstrating its reliability and transferabil-
ity. Through MD simulations, specifically focusing on amor-
phous Li,EDC and crystalline Li,CO;, we revealed the lithium-
ion diffusion mechanisms in different SEI phases. The obtained
diffusivity values and activation energy barriers were in good
agreement with experimental and computational benchmarks in

This journal is © The Royal Society of Chemistry 2025

the literature, further validating our approach. Overall, the work
has demonstrated the potential of MLIPs in enabling large-scale
high-accuracy modelling of the complex SEI structures in LIBs.
By capturing the complex chemistry and ionic transport beha-
viour with near-DFT precision, our approach paves the way for
predictive simulations that can guide the design of SEI struc-
tures for high-performance lithium-ion batteries.
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