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Machine-learning-assisted discovery of lattice
dynamics signatures of sodium superionic
conductors

Ogheneyoma Aghoghovbia,a Riccardo Rurali,b Mohammed Al-Fahdi, a

Joshua Ojih,a De-En Jiang c and Ming Hu *a

Sodium superionic conductors are key to the development of all-

solid-state sodium batteries. Discovery of new superionic conduc-

tors has traditionally relied on insights from material defect chem-

istry and the transition/hopping theory, while the role of lattice

vibrations, i.e., phonons, remains underexplored. We identify key

lattice dynamics signatures that govern ionic conductivity by ana-

lyzing the phonon mean squared displacement (MSD) of Na+ ions.

By high-throughput screening of a dataset of 3903 Na-containing

structures, we establish a strong positive correlation between

phonon MSD and diffusion coefficients, providing a quantitative

correlation between lattice dynamics and ion transport. To accelerate

this discovery, we incorporate machine learning (ML) into our screen-

ing workflow, using phonon-derived descriptors to rapidly predict

ionic transport properties across a broad structural space. Our findings

reveal that low acoustic cutoff phonon frequencies, low center vibra-

tional density of states of Na+ ions, slightly higher than the acoustic

cutoff frequencies, and enhanced low-frequency vibrational coupling

between Na+ ions and the host sublattice promote superionic con-

ductivity. Phonon mode analysis further demonstrates that only a small

subset of low-frequency acoustic and optic modes contribute dom-

inantly to large phonon MSDs and Na+ ion migration, while higher-

energy modes contribute negligibly. These insights enable the integra-

tion of lattice dynamics descriptors, phonon MSD, Na+ VDOS center,

acoustic cutoff frequency, and low-frequency phonon coupling into

machine learning frameworks, accelerating the discovery and rational

design of high-performance sodium superionic conductors.

1 Introduction

Superionic conductors are materials that enable large-scale
movement of ions within their lattices, resulting in remarkably

high levels of ionic conductivity (s E 1 mS cm�1 or above at
room temperature), which can be observed in liquids, and even
in the solid state,1–3 unlike conventional solids that typically
have a low ion mobility. This characteristic renders them
extremely valuable for applications as solid-state electrolytes
in all-solid-state batteries (ASSBs),4 thermoelectric materials,5

solid oxide fuel cells,2,6 and energy storage.7 Due to their low
manufacturing cost, greater abundance, and comparable
chemical and electrochemical properties, Na-ion batteries are
a promising alternative to Li-ion batteries.8 As a result, sodium
superionic conductors (NASICONs) are gaining significant
interest as solid-state electrolytes for all-solid-state sodium
batteries,3 which are safer when compared to the ignition-
prone nature of liquid electrolytes.9,10 However, there are only
a limited number of materials exhibiting exceptionally high
ionic conductivity compared to liquid electrolytes,11 which
could significantly hinder the big prospects and promising
applications of all-solid-state sodium-ion batteries.12 Therefore,
the discovery and design of novel sodium superionic conductors
remain an ongoing challenge.3

To address it, computational design methods have been
largely employed as a powerful tool for predicting and

a Department of Mechanical Engineering, University of South Carolina, Columbia,

South Carolina 29208, USA. E-mail: hu@sc.edu
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New concepts
Sodium superionic conductors are vital for all-solid-state sodium bat-
teries, yet the role of lattice vibrations in ion transport remains under-
explored. By screening 3903 Na-containing structures, we reveal a strong
correlation between Na+ phonon mean-squared displacement (MSD) and
diffusion coefficients, establishing a quantitative link between lattice
dynamics and ionic conductivity. Machine learning with phonon-
derived descriptors enables rapid prediction across broad structural
spaces. We find that low acoustic cutoff frequencies, suppressed Na+

vibrational density near the acoustic limit, and enhanced low-frequency
coupling with the host lattice promote superionic behavior. Crucially,
only a few low-frequency modes dominate Na+ migration. These results
highlight lattice-dynamic descriptors as powerful tools for machine-
learning-driven discovery and design of high-performance superionic
conductors.
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optimizing superionic conductors.3,13,14 Techniques such as
density functional theory (DFT), ab initio molecular dynamics
(AIMD) simulations, and, more recently, machine learning
algorithms allow for screening new materials with high ionic
conductivity.15–20 In identifying promising Li SICs, first princi-
ples calculations and high-throughput computational screening
have already been widely applied due to the increasing computa-
tional power and their ability to accurately predict both structural
and dynamic properties.2 Fujimura et al. identified promising Li
SICs with a first principles approach, such as Li4GeO4 and Li4SiO4,
exhibiting high ionic conductivity at elevated temperatures.21

Additionally, LiAlSO was predicted to exhibit fast ionic conduction
by Wang et al.22 using first principles calculations. Similar appro-
aches are now being adopted for sodium-based systems. An intui-
tive and straightforward way is to substitute lithium with sodium
in Li-SICs, considering that both Li and Na belong to the same
alkali metal group in the periodic table and thus their chemical
compounds could have similar properties. This approach has
been explored in many studies with some success.3,23,24 While the
computational techniques developed for Li SICs lay an invaluable
foundation for designing and discovering new sodium SICs,
differences in the ion size, mobility, and chemical interactions,
all of which impact material structures and ionic transport
mechanisms, prevent these methods from being fully applicable
for exploring new NASICONs.3 In fact, it has been shown that the
knowledge derived from known Li-SICs cannot be simply utilized
or transferred to design and discover new Na-SICs,3 despite the
chemical similarities between Li+ and Na+. Moreover, although
DFT and AIMD are highly accurate in studying ion transport in
NASICONs,25,26 they are computationally expensive and time-
consuming,2 which limits their wide deployment in screening of
large-scale unknown materials. This limitation opens significant
opportunities for leveraging machine learning (ML) to accelerate
the discovery of NASICONs.

ML has significantly transformed materials discovery in
recent years, offering powerful new tools to predict, design,
and discover novel materials with tailored properties faster and
more efficiently than traditional approaches. Although ML
methods can efficiently screen materials,17,18,27,28 their effec-
tiveness depends on the availability of large, accurate and
diverse datasets to train the ML models, which allow to learn
patterns and subsequently make reliable predictions. However,
for ion transport in NASICONs, the scarcity of high-quality,
diverse training data that cover broad chemical compositions
and material symmetries currently poses a grand challenge,29

limiting ML’s ability to generalize and accurately predict novel
superionic conductors. For instance, the state-of-the-art uni-
versal machine learning potentials (MLPs) cannot be straight-
forwardly deployed for quickly screening fast ionic transport
materials. This is understandable considering that the majority
of the training data used for training such MLPs are near
equilibrium, while ion migration in superionic conductors
usually involves out-of-equilibrium movement and thus cannot
be easily captured very well by the existing models. Therefore,
searching for more efficient material descriptors that have a
strong correlation with superionic transport behavior is urgent

for the disruptive development and design of novel superionic
conductors, either through high-throughput DFT calculations
or by machine learning model screening.

In principle, superionic conductors are solid materials in
which a subset of the guest atoms (Na+ cations herein) can flow
as though they are in a ‘‘liquid’’ formed by the host material
(such as the anions). From a physical point of view, there is a
strong correlation between ionic transport properties and the
lattice dynamics (phonons) features of the host materials.
Phonons are defined as collective excitations in condensed
matter that quantize vibration modes in lattices, which are
believed to play a critical role in ensuring structural dynamic
stability and enabling the cation transport within the anion
framework, but unfortunately, such a role has not been fully
understood yet. Based on this premise, using a dataset of
B3903 Na-containing structures, we propose lattice dynamics
features as a new route and design principle for sodium super-
ionic conductors. We demonstrate evidence of strong correla-
tion between the diffusion coefficient of Na+ ions and lattice
dynamics features, such as lattice softness, low migration
energy barrier or activation energy, low acoustic cutoff phonon
frequencies, and medium to low central frequency in partial
density of states (PDOS) of phonons associated with mobile
ions, all of which can be quantitatively characterized by the
phonon language in physics, in terms of interatomic force
constants (IFCs), mean squared displacements (MSDs), and
eigenvectors of vibrational modes of Na+ ions at elevated
temperatures. A comprehensive understanding of the lattice
dynamics of NASICONs can give us insights into how thermal
vibrations and structural stability influence ionic transport and
provide principles for designing new superionic conductors.
Adding lattice dynamics into the previous ML framework is
expected to significantly enhance ML model capabilities and
accelerate the discovery of next-generation sodium-based solid
electrolytes.

2 Computational methodologies

In Fig. 1, we present the schematic of the workflow outlining
the key processes of this work. First, 3903 Na-containing
structures are filtered out from the Open Quantum Materials
Database (OQMD)30 and the Inorganic Crystal Structure
Database31 (ICSD). The structures are then re-optimized by
our own DFT calculations. 293 structures are selected for
evaluating universal machine learning potentials, and the
EquiformerV2 fine-tuned model on the Open Materials Data-
base (OMAT) and Material Project trajectories (MPtraj)32

model is finally chosen for producing all lattice dynamics
properties and MD simulations presented in this work. After
screening 921 structures with dynamic stability by the Equi-
formerV2 fine-tuned model on the OMAT and MPtraj model,
i.e., free of imaginary frequencies in the Brillouin zone, MD
simulations are performed by the same model, and in paral-
lel, their lattice dynamics features are calculated. Finally, the
correlation between ion transport properties and lattice
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dynamics features is extracted and the insights are further
analyzed.

2.1 Initial structure screening

We screened the OQMD and ICSD and filtered out the sodium-
containing structures with a non-zero energy band gap and
negative formation energy. Using these criteria, we obtained
3903 sodium-containing inorganic crystal structures. Since the
electronic structure and total energy predictions are important
for ensuring physically meaningful structural parameters and
stable ground-state configurations, density functional theory
(DFT) was chosen for structural optimization because of its
high accuracy and predictive power. Therefore, we re-optimized
all 3903 structures by DFT calculations with our own computa-
tional parameters, which are generally stricter than those of
the OQMD and ICSD. The computational details of the DFT
calculations can be found elsewhere.33–37 Furthermore, to
ensure that these structures are dynamically stable, we used
the EquiformerV2 fine-tuned on the OMAT and MPtraj MLP
model to calculate the IFCs of the reoptimized structures (see
details below on how the MLP is selected) and then screened
the phonon dispersions. Upon screening, we found 1363 struc-
tures to be dynamically stable with positive dispersions,
i.e., absent from negative frequencies in the Brillouin zone.
The statistical analysis of the elemental distributions of the
1363 Na-containing structures across the periodic table after
this screening is presented in Fig. S1 in the SI. The space group
number comparison before and after screening for positive
dispersions is shown in Fig. S2. Our data are represented by a total
of 61 elements spanning the periodic table and all 230 space
groups, classified into triclinic, monoclinic, orthorhombic,

tetragonal, trigonal, hexagonal, and cubic systems (Fig. S1).
We found that monoclinic, orthorhombic, tetragonal, and
trigonal space groups constitute the majority of our dataset
after the initial screening of positive dispersions.

2.2 Evaluating machine learning potentials

The accuracy of an MLP directly determines the quality of an
MD simulation that relies on it. Therefore, a prerequisite step
for high-throughput MD simulations and subsequent lattice
dynamics analysis is to evaluate the performance of MLP
models and then select the best model in terms of accurately
predicting atomic forces and potential wells in complex energy
landscapes. In this study, we systematically evaluated the
performance of various ML models in predicting atomic forces
on a dataset comprising 293 Na-containing structures taken
from the OQMD. The evaluated MLP models include the
EquiformerV2 pre-trained model,38 the EquiformerV2 fine-
tuned model trained on OMAT and MPtraj,32 the EquiformerV2
fine-tuned model trained solely on OMAT,32 the MatterSim39

pre-trained model, the MACE40 pre-trained model, and the
CHGNET41 pre-trained model. After structure re-optimization,
supercells were created by expanding the optimized primitive
cells with a different supercell size suitable for the structure.
The supercell size is generally determined by fulfilling the
following requirements: (1) the lattice parameter of the super-
cell in different crystallographic directions is similar and (2) the
total number of atoms in supercells must be at least 80; indeed,
most of the finalized supercells contain atoms with total
numbers in the range of 80 to 300. The atoms in the supercells
are then displaced randomly in different directions by a con-
stant displacement of 0.03 Å using the PHONOPY42 package.

Fig. 1 Schematic workflow outlining the key processes in this study. An initial set of 3903 Na-containing structures was extracted from the OQMD and
ICSD databases and re-optimized by DFT. From these, 293 structures were selected for evaluating MLPs, with the EquiformerV2 fine-tuned model (OMAT
and MPTraj) ultimately chosen for lattice dynamics calculations and MD simulations. 921 dynamically stable structures were subsequently identified and
used to compute lattice dynamics features and perform MD simulations. Finally, correlations between Na+ ion transport properties and lattice dynamics
descriptors were analyzed to extract key insights.
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By doing so, 30 different displaced supercells are generated
for each structure, and the atomic forces in the supercells are
calculated using high-accuracy self-consistent DFT. All 293
structures have 30 displaced supercells each, making a total
of 8790 datasets, which are used to evaluate the different MLP
models. The predicted atomic forces obtained from these MLP
models were benchmarked against forces computed directly by
DFT. Root mean square error (RMSE) values between the MLP
predicted forces and the DFT calculated forces were computed
to quantitatively assess the performance of each MLP model.
Our results indicated that the EquiformerV2 fine-tuned model
trained jointly on OMAT and MPtraj exhibited one of the lowest
RMSE values (57.7 meV Å�1) when compared to DFT forces,
though not the absolute lowest among the total of 6 MLPs.
However, as discussed below, we chose the EquiformerV2 fine-
tuned model in our subsequent analysis based on additional
factors such as its superior performance for predicting the
interatomic force constants (IFCs) and phonon stability.

While the quality of atomic force prediction is very impor-
tant for an MD simulation, the derivatives of interatomic forces,
in particular the 2nd order, are crucial for our insight analysis,
such as the focus of MSD in this study. To this end, we also
compared the 2nd and 3rd order interatomic force constants
(IFCs) derived from each ML model against their corresponding
IFCs calculated by DFT to further validate and strengthen our
model selection. When it comes to accurately capturing anhar-
monic effects and lattice dynamics, the IFCs derived from DFT
computations serve as an essential benchmark because of their
higher predictive power and physical rigor. Consistently, we
find that the EquiformerV2 fine-tuned model on OMAT and
MPTraj32 demonstrated the lowest RMSE values (367.8 meV Å�2

and 8163 meV Å�3) when compared against DFT for both 2nd
and 3rd order terms (Fig. S3 and S4). Furthermore, phonon
dispersion analysis revealed that all 293 Na-containing struc-
tures exhibited positive dispersions by DFT. Upon evaluating
the MLP-derived dispersions, the EquiformerV2 fine-tuned
model on OMAT and MPtraj yielded positive dispersion for
258 structures, i.e., a success rate of 88%, surpassing all other
ML models in terms of dynamic stability prediction accuracy.
In light of the EquiformerV2 fine-tuned model’s exceptional
capacity to precisely reproduce atomic forces and IFCs as
benchmarked against DFT calculations, as well as providing
the most reliable phonon stability predictions, we finally
selected this model for further MD simulations and lattice
dynamics analysis throughout this study. The demonstrated
accuracy and robustness of the EquiformerV2 fine-tuned ML
model make it particularly suitable for investigating lattice
dynamics and related transport properties in complex materi-
als. Additionally, after screening all promising Na-superionic
conductors, we re-examined the performance of the top 3 MLP
models, i.e., EquiformerV2 fine-tuned on OMAT and MPtraj,
EquiformerV2 fine-tuned on OMAT only, and the MatterSim
pre-trained model, by randomly sampling 200 atomic config-
urations from each AIMD run of 31 Na-superionic conductors
and compared the force evaluation performance in Fig. S5
in the SI. The results indicate that the EquiformerV2 model

fine-tuned on MPtraj and OMAT achieved the best performance
with an RMSE of 11.6 meV Å�1 as compared to AIMD forces.
This further underscores our decision to employ this model for
the remainder of this work.

We also would like to point out that the field of universal
machine learning potential, in particular for materials science,
has developed very fast in recent years. Lots of new MLPs come
out just every few months. When we initiated this work, the
EquiformerV2 model was in the very top position of the MLP
list available in the Matbench list, which is the major reason
why we include it in our ML model test. We acknowledge that
currently Matlantis43 is probably one of the most accurate MLPs
in materials science. However, as the MLP algorithms and
methodologies iterate very fast, and the high-quality DFT data
used for training such models are also growing very fast, one
cannot always catch up with the latest model trained on the
newest data and deploy it in their study. Systematically evaluat-
ing very large numbers of MLPs including the newest develop-
ment of MLPs for ionic transport purposes would be a topic of
future studies.44

Regarding ML model’s generalization problem, for our
diffusion coefficient calculations by MD simulations, the qual-
ity of atomic forces is extremely important, instead of energy
prediction, as the atomic forces directly determine how the
atoms/ions are moving (trajectories) in the lattice according to
Newton’s second law of motion, from which the diffusion
coefficient is determined by the Einstein relation. Moreover,
our idea of quantifying and correlating superionic behavior
with lattice dynamics requires accurate prediction of the 2nd
order force constants, which are directly related to the quality
of atomic forces, since physically speaking the 2nd order force
constants are the 2nd derivative of potential energy with respect
to atomic displacement and therefore can be regarded as the
1st derivative of atomic forces with respect to atomic displace-
ment as well.

The OMAT24 dataset, in which the EquiformerV2 is fine-
tuned, contains over 110 million diverse, far-from-equilibrium
DFT structures, thus providing a wide range of chemical space,
while the MPtraj dataset, obtained from the materials project
relaxation trajectories, improves the models’ accuracy on equi-
librium structures.32 This combination enables the Equifor-
merV2 fine-tuned model to achieve accuracy in atomic forces,
positioning it well-suited for this study. Therefore, we believe
that the EquiformerV2 model fine-tuned on the MPtraj and
OMAT dataset provides great generalization ability for predict-
ing decent quality of atomic forces in various atomic environ-
ments, such as those Na-structures studied herein. This is
reflected by the low RMSE values of predicted forces as com-
pared with AIMD calculations, as evidenced in Fig. S5.

2.3 MD simulation with EquiformerV2 fine-tuned machine
learning potential

For each primitive cell of the 1363 structures, we created a
supercell with the same size as the previous dynamic stability
screening using the PHONOPY42 package. The supercells were
then used for performing classical MD simulations with the
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EquiformerV2 fine-tuned MLP.32 The MD simulations were run
with a constant volume and constant temperature (NVT)
ensemble at T = 800 K with a Langevin thermostat. Notice that
elevated temperatures will facilitate the movement of Na-ions
within the supercells while preserving the original crystalline
structures, though excessively high temperatures might melt or
destroy the structures. The MD simulation for each structure
consists of two stages: (1) the first 10 000 steps are for structure
relaxation and (2) the subsequent 40 000 steps are for a produc-
tion run with trajectory output every 4 MD steps for post-
processing of the diffusion coefficient. A timestep of 1.5 fs is
used throughout.

2.4 Post-processing MD data

Mean-squared displacement (MSD) data are retrieved from the
trajectories of the EquiformerV2 fine-tuned MD run. The MSDs
of each constituent element in a specific structure are com-
puted based on the time-dependent atomic positions in all
directions (x, y, z), which can be expressed as

MSD tð Þ ¼ 1

N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
i¼1

ri tð Þ � ri 0ð Þ
�� ��2

vuut ; (1)

where N is the number of all atoms belonging to that element
in the system, ri(t) is the position of atom i at time t, and ri(0) is
the initial position of atom i. Calculating the MSDs provides
insights into the diffusive behavior of the atoms in the simulated
system. The diffusion coefficients (DCs) of each constituent
element in the structure were calculated by

DC ¼ 1

2n

dMSD tð Þ
dt

; (2)

where n is the dimensionality of the system (herein, n = 3 for
average DC, while n = 1 for maximum DC). When calculating
the diffusion coefficients, the slope of the MSD data is fitted by
a linear function with a zero intercept, which is reasonable
since there is no diffusion at the beginning (t = 0). It is worth
pointing out that we need to filter out melted or destroyed
structures during the MD run where the selected MLP may
poorly represent those materials, or the materials are not stable
at the temperature T = 800 K. To this end, the diffusion
coefficients obtained were used in filtering out structures in
which the non-Na atoms exhibit high diffusion coefficients on
the order of 10�2 Å2 ps�1 or above in all three spatial directions.
In addition, we implemented a method of calculating the
average of the MSD data for the last 20% period of the MD
production run. Using this additional criterion, structures
containing non-Na atoms with a high average MSD greater
than 1 Å2 in any of the three spatial directions are duly filtered
out. This method ensures that all the unstable structures are
filtered out, bringing our total structures from 1363 down to
921, from which all the reported results herein are calculated.
Our approach is an effective means to identify and eliminate
unstable structures with high ionic mobility of non-Na atoms
across all spatial directions (x, y, and z).

2.5 Phonon calculations using the EquiformerV2 fine-tuned
model

For the phonon calculations, following structure re-optimization
by DFT, we used the PHONOPY42 package to generate randomly
displaced supercells, each with an atomic displacement magni-
tude of approximately 0.03 Å. This approach is advantageous as it
systematically probes the local energy landscape, allowing for
accurate determination of interatomic force constants (IFCs),
which characterize the local potential wells and energy barriers
between neighboring potential wells. Subsequently, we evaluated
the atomic forces on the displaced supercells using the selected
EquiformerV2 fine-tuned MLP model. These forces serve as the
input to fit both the harmonic (2nd order) and anharmonic (3rd
order) IFCs by the compressive sensing lattice dynamics (CSLD)
method.45–47 The forces and displacement configurations are
used to construct the sensing matrix A and the force vector F.
The IFCs are determined by solving the following optimization
problem:

FCS ¼ argmin F Fk k1þ
m
2

F � AFk k22 (3)

where A is the sensing matrix constructed from atomic displace-
ments. The second term is the standard Euclidean c2 norm, which
measures the force-fitting error over the training data. The first
term, the c1 norm, promotes sparsity by driving a small number of
nonzero IFCs. m is the weight adjustment term for c1 and c2 terms,
controlling the trade-off between sparsity and fitting accuracy.
By promoting sparsity and accuracy, this approach efficiently
captures relevant lattice interactions, making CSLD highly suita-
ble for modelling strongly anharmonic systems with minimal
computational cost. We used the Pheasy package, which imple-
ments the CLSD algorithm to do the IFC fitting.48 The second-
order force constant is given by42

Fab i; jð Þ ¼ @2V

@ra ið Þ@rb jð Þ; (4)

where V is the potential energy, ra(i) is the displacement of the ith
atom in the direction a and rb( j) is the displacement of the jth
atom in direction b. The IFCs determine the bond strength in the
lattice and have a direct impact on the thermal properties and
ionic transport of the material, as we will see later.

We then used 2nd-order IFCs to calculate the MSD using the
PHONOPY42 package. The MSD calculated based on IFCs
is crucial for understanding thermal vibrations and atomic
diffusions, which provides deep insight into how the atoms
move away from their equilibrium position over a specific time
interval due to thermal effects. The MSD is calculated as
follows:42

ua jl; tð Þj j2
D E

¼ �h

2Nmj

X
q;v

ov qð Þ�1 1þ 2nv q;Tð Þð Þ eav j; qð Þ
�� ��2;

(5)

where j and l are the labels for the jth atomic position in the lth
unit cell, t is the time, a is the Cartesian axis, �h is the reduced
Planck constant, N is the number of unit cells, m is the atomic
mass, q is the wave vector, v is the phonon mode index, e is the

Materials Horizons Communication

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

7 
Se

pt
em

be
r 

20
25

. D
ow

nl
oa

de
d 

on
 1

/2
9/

20
26

 5
:1

3:
36

 P
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5mh01176k


This journal is © The Royal Society of Chemistry 2025 Mater. Horiz., 2025, 12, 10864–10879 |  10869

polarization vector of the atom ( j,l) and the phonon band q,
and nv(q,T) is the phonon population given by

nv q;Tð Þ ¼ 1

e�hovðqÞ=kBT � 1
; (6)

where kB is the Boltzmann constant and T is the absolute
temperature.

To examine the contribution of the various phonon modes
to Na+ ion displacement, we computed the MSD band by band
by decomposing the general MSD equation [eqn (5)] for each
phonon mode at every q-point sampled in the Brillouin zone.
We used the mode frequency and the amplitudes of the
eigenvectors projected onto the Na+ ions with the harmonic
approximation as implemented by PHONOPY.42 For each pho-
non mode, the MSD was computed by summing the compo-
nents of the squared eigenvectors over the three Cartesian
directions and weighting with the Bose–Einstein occupation
factor and inverse frequency. This decomposition allows one to
identify phonon mode level contributions to the large displace-
ment of Na+ ions and demonstrates the lattice dynamics origin
of ionic mobility, such as some low-frequency phonon modes
that are accountable for the large vibrational amplitudes of
Na+ ions.

We calculated the center of the vibrational density of states
(VDOS) for Na+ ions from the MD trajectory through fast Four-
ier transformation of the autocorrelation function of velocities.
The VDOS center, which represents the first moment of the
Na-specific vibrational spectrum, is defined as the average
frequency weighted by the VDOS49,50

VDOS center ¼

P
i

oig oið ÞP
i

g oið Þ
(7)

where oi is the ith vibrational frequency, and g(oi) is the
corresponding VDOS value at that frequency. A lower VDOS
center suggests that the lattice is soft, with low-frequency vibra-
tion, which facilitates ion mobility. In comparison, a higher VDOS
center suggests a stiffer, more rigid lattice, which potentially
restricts ion mobility.

Furthermore, we computed the phonon participation ratio
(Pl) for each mode to assess the degree of mode localization.
The participation ratio for a specific phonon mode l is
expressed as51

Pl
�1 ¼ N

X
i

X
a

e�ia;leia;l

 !2

(8)

where N is the number of atoms in the primitive cell, eia,l is the
eigenvector along the a direction (x, y, and z) of the ith atom in
the primitive cell for each vibrational mode at q and band index
v and * is the complex conjugate operation. A high participation
ratio value (close to 1) shows that the phonon mode is deloca-
lized over many atoms, meaning almost all atoms in the
primitive cell participate in the vibration of the mode, while a
low participation ratio value (close to 0) denotes phonon

localization where only a small portion of atoms and even a
single atom participate in the vibration of the mode.51

To quantify the correlated vibration between mobile Na+

ions and the surrounding host sublattice, we define a phonon
mode resolved Na-host coupling factor for each phonon mode
(o, n):

Coupling factor ¼

P
a
~eNaþ;a �~ehost;a

~eNaþj j~ehostj j (9)

where -
eNa+,a and -

ehost,a are the phonon eigenvector components
along the Cartesian direction (a = x, y, z) of mobile Na+ ions
and the host sublattice, respectively. Coupling factors close
to +1 (�1) indicate strongly correlated in-phase (out-of-phase)
motion between Na+ ions and host sublattices, while coupling
factors close to 0 indicate uncorrelated motion.

2.6 AIMD simulations and phonon calculations by DFT

While the EquiformerV2 fine-tuned model jointly trained on
the OMAT and MPtraj datasets is efficient in providing fast
evaluation of interatomic forces, its accuracy is limited by the
quality and range of data it was trained on. Therefore, some
uncertainty may arise when configurations fall outside its
training dataset, which will affect both the phonon bands
through the random displacement technique and the diffusion
coefficient results through MD trajectories. To ensure the reli-
ability of our results, in particular the trend of the dependence
of Na+ ion diffusion on the phonon features, we employed
AIMD simulations for selected structures to validate the diffu-
sion coefficient results from the EquiformerV2 fine-tuned
model. G-Point is used for electrons in all AIMD simulations
with a cutoff energy of 520 eV and an energy convergence
criterion of 10�6 eV. The total simulation time ranges from
30 to 90 ps or even longer with a timestep of 1.5 fs. All AIMD
simulations were run with the NVT ensemble at 800 K and with
the Nose–Hoover thermostat. The time-dependent MSD curves
for four selected structures with predicted high DC by AIMD are
provided in Fig. S6 in the SI, with fitted diffusion coefficients
labeled. In addition, we directly compared the time-dependent
MSD curves obtained from AIMD and the EquiformerV2 fine-
tuned MLP for the four selected structures in Fig. S7. Our
results of the MSD curves indicate a good agreement between
our preferred MLP model and AIMD. Furthermore, the phonon
band structures of the four representative materials are further
compared between the EquiformerV2 fine-tuned model and
DFT. As presented in Fig. S8, the phonon dispersions by the
two methods are essentially the same, again confirming the
reliability of the EquiformerV2 fine-tuned model.

3 Results and discussion
3.1 MSD results by supercell calculation

Although our primary analysis is based on the MSD derived
from the primitive cell for our calculations due to computa-
tional efficiency and ease of screening numerous structures,
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it is essential to note the inherent limitations of this method.
Primitive cells capture the dynamics based solely on the glob-
ally minimized energy configurations at 0 K, potentially under-
estimating realistic ionic transport behaviors at elevated
temperatures. To illustrate the significance of employing the
supercells, Fig. S9a and b show the results of the average and
maximum MSD, respectively, of a representative structure,
Na4TeSe (OQMD ID 1554824), calculated by the supercell
sampling at different random snapshots from the AIMD trajec-
tory. First, it is worth pointing out that supercells are necessary
for calculating the realistic MSDs of the superionic conductors
with moving ions inside. This is because primitive cell calcula-
tions only use a single atomic configuration (most likely global
minima of the structure obtained by DFT at 0 K) and thus only
yield a specific MSD value for a given structure. Such a single
potential energy minimized scenario cannot fully represent the
realistic dynamically changing configurations of ionic systems
at elevated temperatures, in particular when the partial ions
become movable and migrate far away from the original global
minima positions. As a result, primitive cell calculation often
underestimates the MSD values since the globally minimized
configurations usually correspond to deep potential wells and
thus the local bonding strength is much stronger than the
‘‘randomized’’ local minima with a prevalent loosely bonded
atomic environment (see details below). In Fig. S9a, the small
deviation across the different time snapshots suggests that
when the MSD is averaged over all Na+ ions in all three
directions, the structure exhibits consistent phonon dynamics
features governing the ionic movement. This implies that
the overall thermal motion of Na+ ions is balanced and stable,
indicating uniformity in its ionic bulk properties, and the
underlying dynamics of the system are stable across the different
snapshots. However, this does not mean the lattice vibrations or
local atomic environments of Na+ ions residing on different sites
are the same. In contrast, some Na+ ions at some snapshots
show distinctly different levels of ionic motions. The large
deviation across the different time snapshots shown in Fig. S9b
is indicative of exceptionally large thermal displacements
experienced by some individual Na+ ions in different spatial
directions. These individual Na+ ions with high MSD play a
significant role in contributing to the overall ionic conductivity
of the structure. It is also important to note that there are
usually only a small portion of Na+ ions possessing high MSD at
a certain snapshot, as shown in Fig. S9c. Among all 72 Na+ ions
in this structure, only 5 ions have high MSD well above the
average level. This can be explained in terms of those ions
having a more favorable environment, for example having fewer
neighbors or loosely bonded with anion neighbors, thereby
exhibiting much higher MSD values. The dynamic change of all
MSD results in Fig. S9 provides strong evidence of the impor-
tance of using supercells with randomized configurations of
moving ions extracted from MD trajectories, as this approach
captures realistic dynamics in superionic conductors. However,
due to computational constraints, our present study employs
the use of the primitive cell, recognizing that while the primi-
tive cell might underestimate the true MSD value compared to

the supercell, using primitive cells still provides valuable
insights for efficiently identifying correlations between the
MSD and diffusion coefficients across a large set of structures.

3.2 Lattice dynamics features for sodium ion transport

Fig. 2(a) and (b) demonstrates the average and maximum
diffusion coefficients of the 921 structures against their MSD,
respectively, i.e., our proposed lattice dynamics features. Note
that all diffusion coefficient values are obtained by post-
processing MD trajectories of supercells by the EquiformerV2
fine-tuned model, unless explicitly specified from AIMD runs
otherwise. The MSD of the structures in Fig. 2 is obtained from
the primitive cell calculation. We observe a positive correlation
between the MSD and the diffusion coefficients. This trend
implies that structures with high MSD, which is indicative of
large random displacements, tend also to exhibit high diffusion
coefficients. This is in line with the Einstein relation given by
D p hu2i and with well-established theories that high vibra-
tional amplitudes are frequently associated with enhanced ion
mobility in superionic conductors.50,52 However, it can be
observed that some structures deviate from this trend, with
relatively high DC and low MSD and vice versa. This can be
attributed to several factors. Certain materials show high MSD
due to localized rattling of ions within small cages instead of
the actual long-range migration. This is common in soft or
disordered frameworks, such as argyrodites and thiopho-
sphates, where local vibrational motion predominates but
makes a negligible contribution to new diffusion.49 Long-
range ion transport can be impeded by large energy barriers
between sites or insufficient connections between diffusion
channels, even in cases where ions are highly mobile and show
active vibrations. Despite considerable local motion, this
results in low or modest diffusion coefficients. To further vali-
date our results using the MLP method, we selected a subset of
our data with 36 representative structures comprising both low
and high diffusion coefficients and then ran AIMD to obtain
diffusion coefficients with MSD values calculated by DFT (red
color in Fig. 2) based on 2nd order IFCs using the same primitive
cell. As established earlier, DFT accurately captures the IFCs
and phonon spectra, which directly influence thermal displace-
ment amplitudes. Comparison between DFT and MLP shows
strong consistency, thereby confirming the accuracy of the
EquiformerV232 model in capturing vibrational features relevant
to ionic transport. While EquiformerV2 fine-tuned model
equipped MD is computationally efficient for calculating the
diffusion coefficients of considerably large number of supercells
with diverse material symmetry and compositions (a typical
200-atom supercell MD run of total 50 000 steps only takes about
3 hours on one GPU node with the EquiformerV2 fine-tuned
model), the accuracy of the diffusion coefficients can be limited
by uncertainties in the predicted atomic forces. In contrast,
AIMD offers greater accuracy in capturing the true atomic forces,
leading to more accurate diffusion coefficients.

In Fig. 2(a) and (b), we see a clear trend that both the average
and maximum diffusion coefficients increase with their corres-
ponding MSD. This strong correlation or lattice dynamics
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signature of ion diffusivity can be explained by the underlying
link between both the Na+ ions’ thermal motion behavior and
migration with their local potential well or energy landscape.
Statistically speaking, most of the time, the Na+ ions stay in the
local potential well and simply do random thermal motion
there. However, they have some chances to escape the local
potential well at some point and then migrate or jump to the
neighboring local potential well. Such probability is governed
by two major factors: (1) how far the Na+ ions vibrate from their
equilibrium positions with given thermal energy, which

roughly scales with
3

2
kBT , where T is the system temperature

and (2) how high the energy barrier between two neighboring
potential wells is. Actually, both can be reflected by the MSD.
On one hand, a higher MSD suggests that the potential wells in
which the Na+ ions reside are very flat, such that the Na+ ions
can move far away from equilibrium positions at a given
temperature and thus they have higher chances to migrate to
the neighboring sites. On the other hand, a higher MSD
corresponds to a softer lattice52–54 or loose bonding, so the
energy barrier between two neighboring sites with a certain
distance would be much lower (see schematic in the inset of
Fig. 2(b) for comparison between high and low MSD cases).
This phonon feature of high MSD can therefore be used for fast
screening structures exhibiting high Na+ ion mobility for
sodium all-solid-state battery applications.

Following our analysis of the correlation between the DC
and MSD, we further investigated the activation energy barrier
of Na+ migration for the four representative structures with
high DC predicted by our MLP model and validated by AIMD
simulations as exhibiting superionic behavior for a tempera-
ture range of 300 to 800 K. The activation energy is obtained
from the temperature-dependent diffusion coefficient from MD
simulations with the EquiformerV2 fine-tuned MLP by fitting

the Arrhenius relation D ¼ D0e
� Ea
kBT , where D is the diffusion

coefficient, D0 is the pre-exponential factor, Ea is the activation
energy, kB is the Boltzmann constant, and T is the absolute
temperature. The Ea values for the representative structures,
ranging from 133 to 198 meV and reflecting the depth of the
potential wells that govern Na+ migration, are presented in
Table 1. These results fall within the range of reported Na-
superionic conductors, such as g-Na3PS4 (161 � 13 meV),55

c-Na3PSe4 (280 meV),56 Na10SnP2S12 (350 meV),13 and Na3SbSe4

(193 meV),57 with two candidates (Na3YBr6, OQMD #1750683
and Na3ScBr6, ICSD #401335) exhibiting barriers comparable to
or even lower than g-Na3PS4. This underscores the effectiveness
of the descriptors employed in our screening approach in
capturing low-energy barriers as fast ion transport character-
istics. These results also underscore the capability of the
EquiformerV2 fine-tuned model to accurately predict super-
ionic behavior, thus enabling the efficient identification of
promising Na-superionic conductors.

3.3 Correlation between other phonon features and diffusion
coefficients

We have established the general trend and relationship
between diffusion coefficients and MSD, one of the most
important phonon features of the lattice. It is noteworthy to
explore whether other phonon features correlate with the

Fig. 2 (a) Average and (b) maximum diffusion coefficients of Na+ ions
against the corresponding mean squared displacement (MSD) of 921 Na-
structures with MSD calculated using primitive cells and EquiformerV2
fine-tuned model on OMAT and MPTraj (blue circles), 36 Na-structures
with diffusion coefficients by AIMD and MSD validated by DFT (red
squares), and 7 previously reported structures54,69–71 (magenta stars).
All results are calculated at 800 K. The formulas of four representative
structures are indicated by arrows. (Inset) Schematic of the comparison of
different migration energy barriers between small and large MSDs. The
orange arrow indicates the softer lattice when the MSD becomes larger.

Table 1 Activation energy of the four representative structures calculated
using the EquiformerV2 fine-tuned model

Database Material ID Formula Energy barrier (meV)

OQMD 1391859 Na4TeS 198.2
OQMD 1554824 NaVPdS4 192.3
OQMD 1750683 Na3YBr6 151.5
ICSD 401335 Na3ScBr6 133.1
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dynamics of Na+ ions, together with the traditionally widely
used simple structural descriptors. In Fig. S10a, we show the
Pearson correlation between the material descriptors and the
maximum and average diffusion coefficients. A correlation of 1
indicates a perfect positive relationship, which means as one
variable increases, so does the other, while a correlation of �1
indicates a perfect negative relationship, which indicates that
as one variable increases, the other decreases.58 The traditional
structural descriptors shown in Fig. S10a offer insight into how
the atomic arrangement of a material affects ion mobility.
These descriptors can directly influence diffusion pathways of
Na+ ions by their interaction with their local environments. The
negative correlation between the average number of nearest
neighbors for Na+ ions and the maximum and average diffusion
coefficients (�0.46 and �0.41, respectively) indicates that a
higher coordination number (neighboring atoms surrounding
Na+) restricts Na+ diffusion; thus, fewer neighboring atoms
surrounding Na+ provide more room for Na+ diffusion. The
negative correlation with the number density (�0.58 and�0.52)
and packing fraction (�0.30 and �0.29) supports this idea,
because a higher number density implies a more tightly packed
structure, which restricts ionic movement by reducing the
volume for Na+ to diffuse. To this note, the volume shows
a positive correlation of 0.38 with the diffusion coefficient,
indicating that a larger volume is beneficial for fast Na+ ion
diffusion, which is very intuitive. The negative correlation with
Pauli electronegativity (�0.41 and �0.36) indicates that an
increase in the overall electronegativity of the surrounding
atoms creates a stronger electrostatic interaction that traps
the Na+ ions, thereby limiting the movement of Na+ ions and
making it difficult to escape its local atomic environment. The
diffusion coefficient has a slight positive correlation with the
average electron count (0.26 and 0.23), which indicates that
materials with a higher electron density allow efficient Na+ ion
diffusion through favorable interactions with the electronic
structure of the material. The average bond length of all atoms
within a radius of 3.5 Å shows a moderate correlation (0.43 and
0.39) with the diffusion of Na+, which indicates that longer
bond lengths within this cut-off radius favor Na+ ion mobility.
These correlations emphasize the influence of the material’s
structural properties on the diffusion of Na+ in the material.

As evidenced in Fig. 2, the vibrational dynamics of the
materials have a significant impact on the diffusion behavior
of Na+ ions, since the ion mobility is influenced by thermal
vibrations and lattice dynamics of both movable Na+ ions and
immobile anion frameworks. In Fig. S10b, we present the
Pearson correlation of other major phonon features with the
maximum and average diffusion coefficients of the materials
analyzed on our 921 data. The partial phonon density of state
(PDOS) of Na+ ions describes the vibrational frequency only
contributed by the Na+ ions in the material and accounts for
specific energies or frequency ranges. The total phonon density
of states represents the contributions of all ions in the material.
The center PDOS feature is the average phonon frequency
weighted by the DOS at which the Na+ ions predominantly
contribute to the vibrational states of the material. The skew

and kurtosis describe the shape of the PDOS and total DOS
distribution. Skewness is a measure of how asymmetric the
PDOS and total DOS are, while kurtosis describes whether
the distribution is more peaked or flat when compared to the
normal distribution. The width of the PDOS and total DOS is
the range of frequencies in which the Na+ ions and all ions
contribute to the vibrational modes, respectively. A wider
(smaller) width of PDOS indicates that the Na+ ions participate
in a broad (narrow) frequency range. We first noticed the
strongest positive correlation (0.87 and above) between pre-
viously calculated MSDs and diffusion coefficients, which is
consistent with the results presented in Fig. 2. We then found a
strong negative correlation between the PDOS center of Na+

ions and the maximum and average diffusion coefficients
(�0.68 and�0.75, respectively), indicating that the lower center
of PDOS of Na+ ions corresponds to lower frequency vibrations,
which facilitates ionic diffusion. This implies that the Na+ ions
diffuse within the materials through participating in low-
frequency phonon modes with lower energies. Higher fre-
quency modes indicate strong interatomic bonding and a
stiffer lattice, which limits Na+ ion mobility. In contrast, the
correlation between the center of the total DOS and the max-
imum and average diffusion coefficients (�0.48 and �0.54,
respectively) becomes weaker when all ions in the material
are considered, which shows the impact of non-diffusing ions
on limiting the mobility of Na+ ions. At this moment, it is hard
to distinguish the positive or negative impact of non-diffusing
ions in a specific material on the diffusivity of mobile Na+ ions,
which deserves further study on the detailed ‘‘entanglement’’
or coupling between the movable ions and the immobile
sublattices. The negative correlation with skew (�0.31 and
�0.35) indicates that more symmetrical PDOS distribution
favors high Na+ ion diffusion. Symmetrical PDOS means that
Na+ ions participate equally in both low and high-frequency
phonon modes. The negative correlation with kurtosis (�0.33
and �0.30) indicates that a sharper and more peaked distribu-
tion (corresponding to lower kurtosis) of PDOS supports Na+

ion diffusion.
The acoustic cutoff phonon frequency, which is defined as

the maximum vibrational frequency among the three acoustic
phonon branches (two transverse and one longitudinal)
obtained from phonon dispersion calculations, also shows a
negative correlation (�0.56 and �0.52) with the diffusion
coefficient. This correlation demonstrates that a lower acoustic
cutoff frequency is associated with high Na+ ion mobility, which
is consistent with the idea that a softer lattice allows the free
movement of ions.2,59 The detailed inverse correlation is
demonstrated in Fig. S11a and b. A lower acoustic cutoff
frequency indicates that the lattice is soft and that the Na+

ions can vibrate with large amplitude at lower energy. This
implies that the soft lattice environment creates favorable
conditions in which the Na+ ions experience less resistance as
they diffuse through the lattice, thus facilitating fast Na+ ion
diffusion.11 The significance of this is the creation of a rattling
effect in the lattice of the material, with the Na+ ions having
enough room to rattle about their equilibrium positions, since
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the lattice does not restrict them tightly. Hence, the increased
mobility of the Na+ ions allows them to easily overcome the
energy barrier, providing a conducive environment for fast Na+

ion diffusion, thus contributing to higher diffusion coefficients
and ionic conductivity. In contrast, materials with a higher
acoustic cutoff frequency exhibit a lower diffusion coefficient
due to their lattice being stiffer, which restricts the free move-
ment of Na+ ions in the materials, thus resulting in a lower
diffusion coefficient of the materials.

Fig. 3(a) and (b) show a stronger inverse correlation between
the VDOS center of Na+ ions and both the average and maxi-
mum diffusion coefficients, compared to the correlation
observed with acoustic cutoff frequency in Fig. S11a and b.
The steeper slope in Fig. 3(a) and (b) indicates that structures
with a lower VDOS center of Na+ ions exhibit significantly
higher ionic mobility. This suggests that when vibrational
modes associated with Na+ ions are concentrated at the lower
frequencies, diffusion is enhanced,60 a trend consistent with
that observed at lower acoustic cutoff frequencies but more
pronounced. The color bar in Fig. 3(a) and (b) is the ratio of the
VDOS center for Na+ to the acoustic cutoff frequency of that
material. Regarding purple symbols, the central phonon fre-
quency of Na+ ions is medium to high but is still comparable to
or even less than the acoustic cutoff frequency. Although this
indicates that the dominant phonon modes the Na+ ions
participate in are acoustic, their diffusion coefficients are
generally not high because of the relatively high acoustic cutoff
frequency, as explained in Fig. S11a and b. The green and blue
symbols indicate that the VDOS center of Na+ ions in those
materials is just above the acoustic cutoff frequency. These
materials have some chances to achieve high diffusion coeffi-
cients, if they happen to fulfill the conditions of both low
acoustic cutoff frequency (around 1 to 2 THz) and low central
frequency in VDOS of Na+ ions (around 2.5 to 4 THz). This
finding seems to be consistent with the previous general
thought that low-frequency collective vibrations of the lattice

play a critical role in fast ionic transport.49,50 It should be noted
that, since the central frequency of Na+ ions is already higher
than the acoustic cutoff frequency of the material, this means
that the majority of phonon modes the Na+ ions participate in
are not acoustic, but optic. Another important effect of the
central frequency of Na+ ions higher than the acoustic cutoff
frequency is the higher chance for more matched VDOS in the
low frequency region which results in more correlated motion
(see more details below). For the magenta symbols and beyond
in Fig. 3(a) and (b), where the central frequency of Na+ ions is
far greater than the acoustic cutoff frequency, these materials
generally have mild diffusion coefficients, meaning that the Na+

ions do not have a high chance to couple with low-frequency
phonon modes in the lattice. Overall, Fig. 3 together with
Fig. S11 demonstrates that a low acoustic cutoff frequency
and a low central frequency of Na+ ions, slightly higher than
the acoustic cutoff frequency, are desirable for achieving a high
diffusion coefficient in the material.

3.4 Deep insight into phonon mode level lattice dynamics and
correlated ionic transport mechanisms

In Fig. 4(a)–(l), we show the phonon dispersion (a, d, g, and j),
frequency dependent participation ratio (b, e, h, and k), with
both colored by the phonon mode resolved MSD contribution
to the Na+ atoms, and Na+ ion transport channel (c, f, i, l) in the
material. Four representative structures with high diffusion
coefficients confirmed by AIMD simulation and large MSD
are presented: (a–c) Na4TeS OQMD ID 1554824 (average and
maximum diffusion coefficients 1.24 � 10�1 and 1.64 �
10�1 Å2 ps�1, respectively), (d–f) NaVPdS4 (OQMD ID 1391859)
(average and maximum diffusion coefficients 1.96 and 6.53 �
10�1 Å2 ps�1, respectively), (g–i) Na3YBr6 (OQMD ID 1750683)
(average and maximum diffusion coefficients 1.00 � 10�1 and
1.26 � 10�1 Å2 ps�1, respectively), and (j–l) Na3ScBr6 (ICSD ID
401335) (average and maximum diffusion coefficients 8.03 �
10�2 and 7.18 � 10�2 Å2 ps�1, respectively). All phonon

Fig. 3 The correlation of (a) average and (b) maximum diffusion coefficients at 800 K with the center of partial vibrational density of states (VDOS) of Na+

ions of the 921 dynamically stable Na-structures. The color bar indicates the relative ratio of the center frequency of the partial vibrational density of
states of Na+ ions to the corresponding acoustic cutoff frequency of that material. Lower center frequency of Na+ ions but slightly higher than the
acoustic cutoff frequency promotes superionic transport.
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dispersions and participation ratios shown in Fig. 4 were
computed by DFT in order to accurately explore the micro-
scopic lattice dynamics features underlying ionic mobility.
We analyze these structures using phonon dispersion relations
and their corresponding phonon participation ratio, with the
decomposed MSD of Na+ ion projected as a color map across
each band. As observed in the phonon dispersion (left panel

in Fig. 4), the low-frequency phonon mode, typically below
B1.5 THz, contributes dominantly to the MSD of Na+ ions as
indicated by the red color. Those phonon modes belong to
acoustic and low-lying low-energy optical branches. The dom-
inance of the acoustic and low-lying optical phonon mode
highlights their role in facilitating the mobility of Na+ ions
in the lattice. These low-frequency vibrations with large MSD

Fig. 4 (left panel) Phonon dispersions along high symmetry paths, (middle panel) frequency dependent phonon participation ratio, and (right panel) Na+

ion transport channel represented in red for the four representative structures with high diffusion coefficient materials: (a)–(c) Na4TeS (OQMD ID
1554824), (d)–(f) NaVPdS4 (OQMD ID 1391859), (g)–(i) Na3YBr6 (OQMD ID 1750683), and (j)–(l) Na3ScBr6 (ICSD ID 401335). The dispersions and
participation ratio are colored by the magnitude of the mean squared displacements of Na+ ions contributed by each individual phonon mode.
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contribution correspond to lattice softening, in which the
atoms experience shallow potential wells (see schematic in
the inset of Fig. 2) and undergo large thermal displacements
from their equilibrium position and consequently induce a
lower migration energy barrier and easier hopping of Na+

ions,61 thus resulting in the high ionic conductivity of these

materials. In contrast, the majority of phonon modes contri-
bute negligibly to the MSDs of Na+ ions, meaning that the Na+

ions participating in those phonon modes just do random
thermal motion and hardly migrate. This behavior is in line
with previous studies in which low phonon frequencies
have been associated with superionic conductivity.53,54,61–63

Fig. 5 (left panel) Phonon dispersions colored by a Na+–sublattice coupling factor for each phonon mode. (right panel) Partial vibrational density of
states (VDOS) with acoustic cutoff frequency of the structure and VDOS center of Na+ ions represented by black and magenta dashed lines, respectively.
The host sublattice is denoted as ‘‘Non-Na+’’. (a) and (b) Na4TeS (OQMD ID 1554824), (c) and (d) NaVPdS4 (OQMD ID 1391859), (e) and (f) Na3YBr6 (OQMD
ID 1750683), and (g) and (h) Na3ScBr6 (ICSD ID 401335). Coupling factor values close to +1 (�1) indicate strongly correlated in-phase (out-of-phase)
vibration between Na+ ions and host sublattices, while values close to 0 indicate uncorrelated vibration.
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The corresponding participation ratio plots (middle panel in
Fig. 4) further support our observation of the dominance of the
low-frequency phonon modes in contributing to the Na+ ion
mobility in the lattice. High participation ratio values near the
low-frequency phonon branches indicate that the movement of
the Na+ ions is delocalized in those bands, which means that
those vibrations are collective motions of many atoms, includ-
ing Na+ ions and their neighbors (host sublattice), an easy way
for ions to migrate, as the local energy landscape will change
significantly when many atoms participate in the vibration.
On the other hand, high-frequency phonon modes with low
participation ratios suggest that the vibrations of Na+ ions are
localized. Such localized vibrations generally correspond to
small random displacements of Na+ ions (left panel in Fig. 4)
and thus do not facilitate ion migration.

Furthermore, the Na+ ion transport channels within the four
representative structures are illustrated in the right panel of
Fig. 4 (red isosurfaces), showing 3D diffusion in Fig. 4(c),
(i), and (l), and 1D diffusion in Fig. 4(f). The red region is
calculated based on the probability density of Na+ ion positions
along the diffusion pathways obtained from AIMD trajectory
data. These isosurfaces indicate the spatial regions with high
Na+ ion occupancy, outlining the preferred migration pathways
through the crystal lattice. The host structure framework
composed of S and Te (yellow and blue, respectively) in
Fig. 4(c), S, Pd, and V (yellow, blue, and orange, respectively)
in Fig. 4(f), Y and Br (yellow and blue, respectively) in Fig. 4(i),
and Sc and Br (yellow and blue, respectively) in Fig. 4(l) remains
relatively static compared to the mobile Na+ ions and defines
the bottlenecks and percolation geometry that govern the ion
transport dynamics.61 The interconnectivity and continuity of
the red isosurfaces reflect the dimensional characteristics of
the Na+ ion conduction. In structures exhibiting 3D diffusion
(Fig. 4(c), (i) and (l)), the isosurfaces form a well-connected and
spatially extended network, with Na+ ion migrations along
multiple crystallographic directions in those materials. In contrast,
in 1D diffusion (Fig. 4(f)), the isosurfaces align along a single axis,
which indicates highly anisotropic transport behavior. These trans-
port channels highlight the influence of structural geometry on Na+

ion migration.
In the left panel of Fig. 5, we present the coupling factor

between Na+ ions and the host sublattice for the four repre-
sentative structures. The red region (coupling factor close to 1)
indicates in-phase coupling, and the violet region indicates out-
of-phase coupling. Most of these couplings occur at the low-
frequency phonon bands up to B1.5 THz, which suggests
vibrational coherence of Na+ ions with the surrounding lattice,

facilitating framework-assisted ionic diffusion52 through col-
lective lattice dynamics participation. The green and cyan
regions (coupling factor close to 0) represent uncorrelated
vibrations between Na+ ions and the host sublattice. In the
right panel of Fig. 5, we show the partial VDOS of mobile Na+

ions and the host sublattice. All four structures exhibit large
matched VDOS between Na+ ions and the sublattice in the
broad frequency range. Such a feature is desirable for fast ionic
transport. An interesting case is the material Na4TeS (OQMD ID
1554824), where strong coupling between Na+ ions and the host
sublattice can occur up to B2.5 THz and is also found in high
frequency regions (above 3 THz). This can be understood from
the partial VDOS shown in Fig. 5(b), where the VDOS between
Na+ ions and the sublattice is matched over the entire fre-
quency range. In particular, the center frequency of the partial
VDOS of Na+ ions (B3 THz) is about 2 times that of the host
sublattice (B1.4 THz). All 4 materials shown in Fig. 5 possess a
high ratio of VDOS center frequency of Na+ ions to the acoustic
cutoff frequency of the host sublattice, which is favorable for
ionic transport as found earlier in Fig. 3.

Before closing, we further calculated the elastic constants of
the four representative materials by DFT, and their mechanical
properties are presented in Table 2. The mechanical properties
of the four superionic conductors, such as bulk modulus, shear
modulus, Young’s modulus, and hardness, are much lower
than typical inorganic materials such as semiconductors and
insulators64–67 which again proves the soft lattice therein.
We also observe that similar conclusions about the importance
of lattice dynamics descriptors were reached for a larger class of
solid-state electrolytes by López et al.,68 who also highlighted a
positive correlation between diffusion and vibrational descrip-
tors, particularly those that explicitly incorporate anharmonic
effects. This fact strongly vouches for the generality of the
conclusions of the present study. While the present study
focuses on validating the proposed lattice dynamics descriptors
through high-throughput DFT- and AIMD-based benchmark-
ing, a natural next step will be extending this framework toward
screening of large-scale hypothetical structures to accelerate the
discovery of new Na-superionic conductors.

4 Conclusions

In summary, we establish a quantitative and strong correlation
between the lattice dynamics and the diffusion coefficients
based on universal machine learning potential equipped MD
simulations and phonon calculations of 921 sodium structures,

Table 2 Mechanical properties of the four representative structures evaluated using DFT

Database Material ID Formula
Bulk modulus
(GPa)

Shear modulus
(GPa)

Young’s modulus
(GPa)

Poisson’s
ratio

Hardness
(GPa)

OQMD 1554824 Na4TeS 22.93 13.92 34.74 0.25 3.37
OQMD 1391859 NaVPdS4 19.11 7.86 20.74 0.32 1.44
OQMD 1750683 Na3YBr6 14.32 5.89 15.55 0.32 1.18
ICSD 401335 Na3ScBr6 15.23 6.47 17.00 0.31 1.30
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with some selected materials confirmed by direct DFT calcula-
tions and AIMD simulations. Large mean squared displace-
ments of the material support faster Na+ ion transport, which is
desirable for solid-state electrolytes in sodium all-solid-state
battery applications. Additionally, we presented the signifi-
cance of other phonon features, such as the acoustic cutoff
frequency and the center phonon partial density of state of Na+

ions, in impacting the Na+ ion diffusion process. Lower acous-
tic cutoff frequency and lower center PDOS of Na+ ions just
above the acoustic cutoff frequency correlate with high Na+ ion
diffusion, which indicates that the lattice is softer and better
matched vibrations between moving Na+ ions and the hosting
sublattice in the low frequency range facilitate free motion of
Na+ ions within the lattice, reinforcing the link between lattice
dynamics and ionic mobility. We finally conducted phonon
mode level analysis of the contribution to MSDs of Na+ ions and
defined a coupling factor to quantitatively characterize corre-
lated in-phase and out-of-phase vibrations between Na+ ions
and host sublattices. Only extremely low frequency acoustic
phonon modes and a limited number of low-lying low-energy
optic phonon modes with strong Na+–sublattice coupling are
primarily responsible for the large MSDs of Na+ ions, while the
majority of phonon modes have little contribution. These
insights from a lattice dynamics point of view highlight impor-
tant features that can aid the design and accelerate the dis-
covery of novel sodium superionic conductors with enhanced
ionic conductivity, such as implementing the lattice dynamics
features into machine learning-assisted material screening and
inverse material design.
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40 I. Batatia, D. P. Kovács, G. N. C. Simm, C. Ortner and
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