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Deep learning-enhanced development of
innovative antioxidant liposomal drug delivery
systems from natural herbs†

Xiaohe Zhang,‡a Zhihang Zheng,‡a Lina Xie,b Minghao Yang,a Jing Wang,c

Weiwei Wang,c Shuyan Han,*d Zhen Zhang*b and Jun Wu *ae

Free radical-mediated oxidative damage to biological macromole-

cules, such as DNA and proteins, significantly contributes to cellular

ageing. Antioxidants play a crucial role in mitigating this process by

neutralizing reactive oxygen species (ROS) and reducing DNA

damage. Traditional herbal medicines are of strong interest as

potential sources of antioxidants due to their rich diversity of

bioactive components. In this study, we developed a two-stage

BERT-based framework trained on 587 experimentally confirmed

antioxidants and 983 inactive compounds. The optimized model

effectively screened a broad range of potential antioxidant com-

pounds from a library of 2882 natural herbal compounds, achieving

an accuracy improvement of approximately 20% over traditional

machine learning models. Molecular docking simulations and

in vitro experiments consistently validated the antioxidant capacity

of the selected compounds. Additionally, incorporating three repre-

sentative compounds into a liposomal delivery system not only

enhanced in vivo bioavailability, but also mitigated oxidative stress

injury after kidney acute ischemia/reperfusion. This was achieved by

up-regulating antioxidant-related genes in target organs as well as

ROS scavenging. Our findings highlight the potential of integrating

deep learning-based compound screening with an engineered lipo-

somal delivery platform in the research of oxidative stress and aging.

1. Introduction

Oxidative stress is one of the core pathological mechanisms of
many chronic diseases (such as cancer, neurodegenerative and

cardiovascular diseases) and the ageing process.1–3 Its essence
is biomolecular damage caused by an imbalance between
production and scavenging of free radicals in the body. Natural
herbs, an important carrier of traditional medicine, are rich in
antioxidant active ingredients (such as polyphenols, flavonoids,
terpenes and alkaloids).4 They have the unique advantages of
multi-target regulation of redox balance, low toxicity and side
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New concepts
This study constructs two stage framework architecture based on a pre-
trained BERT model. The t-SNE analysis revealed that the model can
spontaneously capture the clustering characteristics of chemical func-
tional groups through extensive unsupervised pre-training, indicating
that it has basic chemical semantic understanding capabilities. After
fine-tuning the dataset provided by this study, the results show that its
five-fold cross-validation average AUC value reaches 0.9832 and the
accuracy rate reaches 0.9363, which is significantly better than traditional
models (random forest, SVM) and CNN models. Through the analysis of
the attention mechanism, the association between key molecular sub-
structures such as the adjacent dihydroxy structure and biological activity
was successfully identified, providing a structure-guided mechanistic
explanation for drug design. The compounds screened from 2882 natural
herbs based on the model were efficiently delivered by liposome mod-
ification technology, and the antioxidant properties of the virtual drug
screening were verified in multiple dimensions in in vitro and in vivo

experiments. This work provides a new paradigm for large-scale drug
screening and design by fusing virtual screening with efficient delivery
technology, while expanding the application scenarios of virtual drug
screening in the fields of oxidative stress regulation, materials science
and biomedicine.
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effects, and a wide range of sources. However, the main process
for the discovery of active ingredients in traditional herbal is
empirical screening and isolation, followed by purification and
validation at cellular and animal levels. This process has
problems such as low efficiency, high cost, high failure rate
and difficulties in analyzing the synergistic effects of complex
ingredients, which limits the process of modernizing their
development.5

In recent years, the paradigm of natural product research and
development has been transformed by breakthroughs in artificial
intelligence (AI) technology, particularly deep learning algorithms.
The drug discovery cycle has been significantly shortened by
integrating multiple machine learning models and neural net-
work architectures to discover new compounds.6–9 Specifically,
convolutional neural networks (CNNs), graph convolutional net-
works (GCNs), etc., analyze the combination of high-order features
between molecular connections to predict the properties of
corresponding molecules. The transfer learning framework and
active learning strategies can then efficiently analyze massive drug
or compound databases to predict the biofunctionality of novel
unknown compounds and their targets to power downstream
drug development. The universality and convenience of such
methods have been reported, for example, Stokes et al. used deep
neural network (DNN) to predict a new antibiotic, halicin, and
identified eight antibacterial compounds with large structural
differences from known antibiotics from a database of more than
107 million molecules, greatly improving the efficiency of anti-
biotic library expansion.10

However, natural antioxidant ingredients generally have
bottlenecks such as poor water solubility, low bioavailability
and insufficient stability in the body, which limit their clinical
application. As a novel drug delivery system, liposomes can
simultaneously encapsulate hydrophilic and hydrophobic

active molecules due to their amphiphilic phospholipid bilayer
structure and achieve long-lasting circulation, tissue-specific
delivery and enhanced transmembrane penetration through
surface modification (such as PEGylation and targeted ligands).
In addition, liposomes can protect active ingredients from
enzymatic or pH degradation and prolong the antioxidant effect
through a sustained release mechanism.11–14 For example, Liao
et al. were inspired by traditional Chinese medicine com-
pounds and developed bergamot liposomes for the treatment
of acute respiratory distress syndrome (ARDS). Compared to
free drug, the bioavailability was increased by almost 10-fold
and there was significant targeting to the site of inflammation
in the lung, significantly enhancing the efficacy of bergamot
and reducing its systemic toxicity.15

In this study, we developed a BERT-based molecular anti-
oxidant property prediction model and applied it to identify
potential candidate compounds from natural herbs with about
20% higher accuracy compared to conventional machine learning
models (RF and SVM). Specifically, this method uses a transfor-
mer architecture to successfully capture the underlying features of
the SMILES structure of antioxidant compounds and autono-
mously learns to screen for novel compounds with potential
antioxidant properties in a natural herbal compound library.
Finally, the physicochemical properties of the newly discovered
compounds are used to construct functional liposomes to verify
their efficient antioxidant properties in vitro and in vivo
(Scheme 1). Our research pioneering integrates deep learning
and liposome technology to successfully construct an integrated
platform of ‘‘intelligent prediction and efficient delivery’’, provid-
ing a new paradigm for breaking through the barriers of natural
ingredient delivery and developing safe and effective antioxidant
treatment strategies. This cross-integration strategy not only
promotes the modern use of natural herbal resources but also

Scheme 1 Illustration of BERT-based antioxidant molecular discovery model and antioxidant liposome construction and in vitro and in vivo validation.
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opens new ideas for precision medicine in antioxidant protection
and personalized disease treatment, while also opening innova-
tive approaches for the development of other functional
liposomes.

2. Results and discussion
2.1 Training and optimization results for the antioxidation-
related model

To elucidate the learned representations of the pre-trained BERT
model for molecular structures, we implemented a pipeline
focusing on token embedding distributions. 500 molecules were
randomly sampled from the dataset, and embeddings were
extracted for all constituent tokens. To focus on statistically
significant patterns and improve visual clarity, frequency-based
filtering was applied for the t-SNE (t-distributed stochastic
neighbor embedding) visualization. Fig. 1a presents the t-SNE
visualization for tokens with Z500 occurrences, with compre-
hensive visualizations across multiple frequency thresholds pro-
vided in Fig. S1a–d (ESI†). As shown in Fig. 1a, there is a
pronounced clustering phenomena where chemically equivalent
functional groups consistently aggregated in the latent space
despite originating from diverse molecular environments. This
result demonstrates that after pre-training on large scale data,
the model has acquired fundamental chemical understanding
without explicit incorporation of molecular theory.

To identify compounds with antioxidant activity, we fine-tuned
the pre-trained BERT model on our dataset containing 584
compounds with antioxidant activity and 983 with oxidizing

activity. The classification performance of model was evaluated
using five-fold cross-validation. Fig. 1b presents the receiver
operating characteristic (ROC) curves and area under the curve
(AUC) values for each fold, along with the mean values. The mean
AUC of 0.9832 demonstrates the fine-tuned model’s strong ability
to distinguish between antioxidants and oxidizers. We also com-
pare the BERT model against three baseline approaches: random
forest (RF), support vector machine (SVM), and convolutional
neural network (CNN). The RF classifier leverages Morgan finger-
prints with a radius of 2 and 2048 bits to capture circular
substructures around each atom. The SVM model employs a
comprehensive set of 25 physicochemical descriptors including
molecular weight, hydrogen bond features, and topological prop-
erties. The CNN architecture encodes SMILES strings into 42-
dimensional feature vectors—21 dimensions representing atomic
properties and 21 dimensions employing one-hot encoding for
chemical symbols—which are processed through multiple con-
volutional and pooling layers to generate SMILES Convolutional
Fingerprints (SCFPs) for molecular classification.16 Fig. 1c shows
the five-fold cross-validation accuracy results across all models.

The BERT model outperforms others, which achieves the
highest values for mean accuracy (0.9363). The CNN model,
with a mean accuracy of 0.8962, is slightly worse than the BERT
model. Compared with traditional machine learning models
(RF and SVM), both deep learning models show obvious
performance improvement with around 20% increasement in
accuracy. In short, the BERT model’s superior performance
stems from its ability to capture contextual relationships within
SMILES representations. The result underscores the potential
of transformer-based architectures in molecular property

Fig. 1 Performance evaluation of the BERT model. (a) t-SNE visualization of representative molecular embeddings generated by the pre-trained BERT
model, illustrating the correspondence between SMILES tokens, their embedding positions, and associated molecular atoms with consistent color
coding. (b) ROC curves displaying the 5-fold cross-validation results, where the black line represents the mean performance with an average AUC of
0.9832 � 0.0068. (c) Performance comparison between the BERT-based approach and benchmark models.
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prediction, where the extensive parameterization and self-
attention mechanisms effectively learn the complex structure–
property relationships of antioxidant/oxidizer.

The BERT model used here leverages attention mechanisms
to integrate information from SMILES tokens into task-specific
molecular representations. Therefore, we examine the interpre-
tation of molecular structure–property relationships using
BERT attention mechanisms. This method addresses the need
for interpretable molecular modeling by establishing direct
correlations between structural elements and predicted proper-
ties. By analyzing attention patterns across SMILES tokens,
salient molecular substructures contributing to predictions
are identified, providing insights into structure–activity rela-
tionships that inform rational molecular design.

To validate the biological relevance of these attention
assignments, we examine molecules from the natural herb
set. Here, the attention scores from BERT tokens are mapped
to corresponding characters in SMILES strings, with normal-
ization applied to emphasize relative importance across mole-
cular substructures. These character-level attention values are
then projected onto 2D molecular representations using color
gradient, where deeper indicates higher attention weights. Four
bioactive molecules are selected for attention visualization
analysis of their chemical structures and SMILES representa-
tions: two are free of antioxidant properties (Ascaridole and
Artesunate) and two with confirmed antioxidant activities
(Butein and Protocatechuic acid).17,18 In Fig. 2a, it is shown
that regions with higher attention (dark red) often represent
aromatic ring conjugated system and ortho-dihydroxy structure.
The aromatic rings provide stable electron conjugation sys-
tems, which stabilize the free radical intermediates formed
after capturing free radicals, improving antioxidant efficiency.

While for the other two molecules in Fig. 2b, we can notice
more attention being assigned to peroxide bridge, which are
significant for oxidant ability. These findings demonstrate that
BERT effectively assigns property-specific attention weights,
offering medicinal chemists’ valuable tools to explore connec-
tions between molecular substructures and their associated
properties.

2.2 Molecular docking to verify antioxidant properties

To further verify whether the compounds screened by the model
have antioxidant effect, we molecularly docked the key protein
targets of antioxidant multiple pathways with them (Nrf2, SOD,
and HO-1), to preliminarily evaluate the intensity of their endo-
genous antioxidant capacity. The above protein targets coordinate
Nrf2/ARE, FOXO, SIRT1 etc. signaling pathways to construct the
endogenous antioxidant network of the organism, which reduces
the damage of DNA, proteins and lipids by oxidative stress, and
delay related diseases process. Among them, related studies
showed that fisetin and honokiol can activate the Nrf2 signaling
pathway and promote the expression of antioxidant enzymes,
which further backed up the accuracy of our machine
model.19,20 Molecular docking results showed that 5,7-diacetoxy-
8-methoxyflavone, fisetin and honokiol can all stably bind to the
active pocket of Nrf2. Visualization results show that 5,7-diacetoxy-
8-methoxyflavone stably binds to Nrf2 through a hydrogen bond
with a specific residue Arg-326 (distance: 2.4 Å) and a hydrophobic
interaction with Gly-371 (distance: 1.8 Å). In addition, fisetin
forms hydrogen bonds with the Nrf2 residues Asp-479, His-436
and three hydrogen bonds with Gly-480. Honokiol and Nrf2
residues Val-606 and Val-467 form two hydrogen bonds
(Fig. 3a–c). Fig. 3d–f demonstrate that the flavonoid derivatives
5,7-diacetoxy-8-methoxyflavone, fisetin, and honokiol exhibit

Fig. 2 Attention heat map of molecules with (a) antioxidant activity and (b) molecules with oxidant activity. BERT’s attention scores are allocated to both
SMILES tokens and structural representation. Darker colors indicate higher attention scores.
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stable molecular interactions within the catalytic pocket of heme
oxygenase-1 (HO-1), as evidenced by computational docking
analyses. Molecular docking results evaluating the interaction

between the screened compounds and superoxide dismutase
(SOD) are provided in Fig. S2a–c (ESI†). The above results show
the potential binding of 5,7-diacetoxy-8-methoxyflavone, fisetin

Fig. 3 Molecular docking results of antioxidant-related proteins NRF2 and HO-1 with model screening compounds. Predicted binding mode of 5,7-
diacetoxy-8-methoxyflavone, fisetin and honokiol docked with the (a)–(c) NRF2 and (d)–(f) HO-1, respectively. (Bonding residues as yellow bars, critical
hydrogen bonds as yellow dashed lines).

Fig. 4 In vitro antioxidant assessment of model screening compounds. (a)–(c) Cell viability after HUVECs incubating with 5 mM 5,7-diacetoxy-8-
methoxyflavone, fisetin and honokiol for 24 h, respectively. TBHP-stimulated HUVECs after 24 h of treatment with candidate compounds (d)
fluorescence images of ROS, (e) flow cytometry signal changes.
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and honokiol to antioxidant target molecules. The antioxidant
properties of the compounds screened for specific models still
need to be systematically evaluated in biological experiments
(Fig. 3).

2.3 Verification of antioxidant properties in vitro

Considering candidate compounds potential value for in vivo
antioxidant therapy, we first evaluated the cytotoxicity to
HUVECs using the CCK-8 method and screened for suitable
concentrations of action. The results showed that 5,7-diacetoxy-
8-methoxyflavone and honokiol had no significant effect on cell
proliferation (P 4 0.05) in the concentration range of 5–100 mM,
whereas 10 mM fisetin significantly inhibited HUVECs prolifera-
tion (P o 0.001) (Fig. 4a–c). In view of this result, and to ensure
consistency in the treatment concentrations of the three com-
pounds, 5 mM was finally adopted for subsequent experiments.
To verify the antioxidant effect, we used the ROS fluorescent
probe combined with flow cytometry to detect the oxidative
stress model of HUVEC induced by 0.2 mM TBHP. Compared
with the positive control group, the intensity of green fluores-
cence in the cells was significantly reduced after 24 hours of
treatment with 5 mM 5,7-diacetoxy-8-methoxyflavone, fisetin and

honokiol (Fig. 4d), and this trend was further confirmed by
quantitative analysis using flow cytometry (Fig. 4e). The above
results show that the candidate compounds have significant
antioxidant activity in vitro.

2.4 Therapeutic effect of antioxidant liposome delivery
platform in vivo

Based on the solubility differences of the three candidate com-
pounds as well as their off-target and rapid scavenging effects
in vivo, we further constructed functional liposomal drug plat-
forms to improve their in vivo bioavailability and systematically
evaluated their in vivo antioxidant effects (Fig. 5a). Transmission
electron microscopy (TEM) results showed that the lipo@5,7-
diacetoxy-8-methoxyflavone, lipo@fisetin, and lipo@honokiol
group all showed typical phospholipid bilayer structure with an
average diameter of about 80 nm (Fig. 5b). Tissue organ damage
after acute ischemia-reperfusion is mainly caused by ROS excess,
so we constructed a mouse kidney ischemia-reperfusion model to
evaluate the in vivo antioxidant activity of antioxidant liposomes.21

H&E staining results displayed that the liposome group showed
histological features typical of renal tubular damage, with obvious
dilated renal tubules, extensive cell debris and tubular casts, and

Fig. 5 In vivo antioxidant assessment of model screening compounds. (a) Schematic diagram of the in vivo experimental process. (b) Observation of
liposome-loaded compounds under a transmission electron microscope. Scale bar = 100 mm. (c) Kidney H&E staining of mice with different treatments.
Scale bar = 50 mm. (d) DHE staining in mice with different treatments. Scale bar = 50 mm. (e) Immunohistochemical staining with NRF2 in mice with
different treatments. Scale bar = 50 mm.
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atrophied and deformed glomeruli. In contrast, after treatment
with lipo@5,7-diacetoxy-8-methoxyflavone, lipo@fisetin and
lipo@honokiol, renal tubular damage was effectively alleviated
and there was less cellular debris and casts in the lumen. At the
same time, the glomerulus remained relatively intact (Fig. 5c).
Dihydroethidium (DHE) is a widely used redox-sensitive fluores-
cent probe that is specific for ROS such as superoxide and
hydrogen peroxide. After treatment with the three antioxidant
liposomes, the ROS level in the kidney was significantly lower
than that in the empty liposome group (Fig. 5d). Nrf2 is a key
regulator of oxidative stress response. Increased expression of
Nrf2 suggests that drug-loaded liposomes may exert a nephropro-
tective effect by activating endogenous antioxidant defense path-
ways. Immunohistochemical analysis showed that the three drug-
loaded liposome treatment groups significantly upregulated the
expression of Nrf2 in the renal tissue of the acute kidney injury
model compared to the empty liposome control group (Fig. 5e).
The above results indicate that antioxidant liposomes derived
from natural herbs still maintain significant antioxidant effects
in vivo and have improved bioavailability.

3. Conclusion

In this study, we developed a two-step BERT-based framework
model that efficiently screens antioxidant compounds from natural
herbal data through pre-training and fine-tuning. Additionally, we
constructed a versatile antioxidant liposome delivery platform
based on the physicochemical properties of the candidate com-
pounds, achieving effective antioxidant activity both in vitro and
in vivo. This model demonstrates a performance and accuracy
improvement of approximately 20% compared to the traditional
machine learning approaches, significantly accelerating the discov-
ery of antioxidant compounds from natural herbs. Through mole-
cular docking and biological experiments, we successfully validated
the excellent antioxidant effects of the compounds identified by our
model. Furthermore, we integrated functional liposome modifica-
tion technology to effectively encapsulate these candidate com-
pounds, resulting in successful treatment in an animal model of
ischemic acute kidney injury (AKI). Our study confirms the efficacy
of deep learning in expediting the screening of antioxidant com-
pounds and proposes a synergistic strategy that combines compu-
tational screening with a liposomal delivery platform, offering a
novel paradigm for investigating oxidative stress-related diseases
and the development of functional liposomes.

4. Materials and methods
4.1 Dataset curation

Our dataset for fine-tuning consists of 584 compounds with
antioxidant activity and 983 compounds with oxidizing activity,
as previously validated through experimental research. Each
compound in the training set was assigned a binary label—1 for
antioxidant activity and 0 for oxidizing activity, to fine-tune the
pre-trained BERT model for a classification task aimed at
screening potential antioxidants. Additionally, a dataset of

2882 natural herbs have been collected, which will be analyzed
using the fine-tuned model to identify promising antioxidant
candidates. All SMILES representations across training and test
datasets were standardized to canonical form using RDKit.22

4.2 Model architecture and pre-training

In this work, we employed MTL-BERT-MEDIUM23 as the founda-
tion model, augmented with task-specific classification layers.
The architecture comprises 8 Transformer layers with 8 attention
heads and 256 hidden dimensions per layer, following standard
BERT22 pretraining procedures. BERT is a neural network archi-
tecture that learns contextual relationships by processing entire
sequences of tokens simultaneously. Its core mechanism is
multi-head self-attention, which captures long-range dependen-
cies more effectively than traditional recurrent models.24 In the
self-attention operation, each token in the input is transformed
into three vectors—query, key, and value—and combined as:

Z ¼ f
XWQ
� �

XWK
� �Tffiffiffiffiffi
dk
p

 !
XWV

where X is the input feature matrix, f is the softmax function,
WQ, WK and WV are learnable weight matrices, and dk is a scaling
factor. The resulting matrix Z represents the attended output,
which is then processed by feed-forward layers with residual
connections and layer normalization. BERT employs multiple
attention heads in each layer to learn different aspects of the
input sequence.

Here, we employed the MTL-BERT-MEDIUM architecture and
conducted our own pre-training on the ChEMBL_v35 dataset.
According to their pre-training experience settings, the learning
rate was set to 1 � 10�4, and the batch size was set to 512. The
pre-training process was terminated after 40 epochs as addi-
tional training yielded marginal performance enhancements.
Following the MTL-BERT-MEDIUM pre-training strategy, we only
employed the masked language modeling (MLM) task, unlike
the original BERT approach. SMILES strings lack the sequential
narrative structure found in natural language, where sentence
order and relationships are meaningful. Previous research25 has
demonstrated that effective language models can be developed
without relying on inter-sequence relationships. Consequently,
we focused solely on the masked token recovery task.

4.3 Model finetuning and predictions

During the fine-tuning stage, the pre-trained BERT model is
used to screen potential antioxidant compounds. Each com-
pound is represented by a tokenized SMILES string, which
serves as the input to the model. For binary classification, the
representation at the first position of the encoder output is
extracted and mapped to a single logit score using a two-layer
multi-layer perceptron (MLP):

ŷ = W2�LeakyReLU(Dropout(W1Z[p1] + b1)) + b2

Here, Z[p1] represents the encoded representation for classifica-
tion task, which first undergoes a linear projection to an
expanded dimension, parameterized by W1 and bias b1,
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followed by dropout regularization, then a LeakyReLU activa-
tion. The transformed representation is then passed through a
second linear transformation back to a single dimension. The
output ŷ represents the raw logit score.

To optimize the model, the encoder is fine-tuned using
BCEWithLogitsLoss.

4.4 Model interpretability

With the help of self-attention mechanism of BERT, we can
quantify token importance in BERT by analyzing attention
patterns from the classification token in the final transformer
layer. The attention score can reveal which input tokens most
significantly influence the model’s representation when proces-
sing molecular data.

Our method extracts attention scores from BERT’s final
layer, where the model has developed its refined contextual
understanding. Mathematically, if we denote the attention
matrix of the last layer as AL A Rh�n�n, the classification task-
specific [p1] token attention scores are:

ap1 ¼
1

h

Xh
i¼1

AL
i;0;:

Here, AL represents the attention matrix from the last (L-th)
transformer layer, with dimensions corresponding to the number
of attention heads (h) and sequence length (n). Each element Ai,j,k

L

quantifies how much the i-th attention head at position j attends
to position k in the sequence.

For molecular applications, we render molecules from
SMILES notation using RDKit and overlay normalized attention
values as color gradients, with deeper red indicating higher
model attention.

4.5 Experiment setup

To ensure a rigorous evaluation, five-fold cross-validation is
employed. Given the inherent class imbalance in our dataset,
we evaluated multiple strategies to address this challenge,
including no adjustment, focal loss, up-sampling, and down-
sampling (detailed comparison in Table S1, ESI†). Based on
empirical performance, we implemented up-sampling of the
minority class within each training fold. In each fold, the
dataset is split that 80% of the data is used for training with
up-sampling applied to balance the classes, while the remaining
20% was reserved for validation. This process is repeated across
all five folds, ensuring that each sample was used for validation
exactly once. Model training is conducted for 80 epochs per fold
using the Adam optimizer. The learning rate is set to 1 � 10�5,
and the batch size is fixed at 64 to optimize computational
efficiency and predictive performance. Performance evaluation is
conducted using the area under the receiver operating charac-
teristic curve (ROC-AUC) and accuracy.

After training, the five independently trained models are
applied to a natural herb dataset to predict antioxidant prob-
ability scores. The final probability for each compound is
obtained by averaging the outputs from all five models. Based
on these aggregated probabilities, compounds are ranked to

facilitate the identification of those with the highest predicted
antioxidant potential. All experiments here is conducted in
Python 3.8 and Pytorch.26

4.6 Molecular docking

Molecular docking was performed to test the ability of the com-
pounds screened by the model to bind to antioxidant molecules.
Nrf2, SOD, and HO-1 were selected as receptors and the com-
pounds screened by the model were selected as ligands. The
molecular structures of the receptors were downloaded from the
protein database (https://www.rcsb.org). Screening criteria: (1) pro-
tein source organism: Homo sapiens; (2) refinement resolution
o2.5 Å; (3) complete protein structure with corresponding ligand.
The molecular structure of the ligand was downloaded from
the PubChem database (https://pubchem.ncbi.nlm.nih.gov/). The
receptor protein was standardized using PyMOL software to remove
water molecules and impurities, and then the original ligand was
separated to obtain a standardized receptor. The ligand and
receptor were then imported into the AutoDockTools software.
Polar hydrogen atoms and Gasteiger charges were added to the
receptor. The grid box was then manually adjusted using the grid
tool until the receptor was fully enveloped. Finally, molecular
docking was performed using the AutoDock Vina software, and
the docking results were visualized and hydrogen bond formation
evaluated using the PyMOL software.
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