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High thermoelectric power factor in Ni–Fe alloy
for active cooling applications†
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Metallic thermoelectric materials are promising candidates for

active cooling applications, where high thermal conductivity and

a high thermoelectric power factor are essential to maximize

effective thermal conductivity. While metals inherently possess

high thermal and electrical conductivities, they typically exhibit

low Seebeck coefficients. In this work, we create a database of

the Seebeck coefficient of binary metallic alloys and apply machine

learning techniques to identify alloys with large Seebeck coeffi-

cients. Specifically, we identify Ni–Fe as a promising candidate for

active cooling around room temperature. We then fabricate Ni–Fe

ingots and demonstrate thermoelectric power factor values as high

as 120 lW cm�1 K�2 at 200 K for these stable alloys, which are

composed of cost-effective and abundant elements. Furthermore,

we demonstrate that the effective thermal conductivity of these

alloys, under small temperature differences, can exceed that of

pure copper within the 250–400 K temperature range.

1. Introduction

With the increasing density of transistors and operating frequencies
in integrated circuits (ICs), driven by rapid advancements in
semiconductor technologies, efficient heat dissipation has
become an increasingly critical challenge. Inadequate heat
management impairs the performance of these densely packed
circuits and jeopardizes their reliability. Conventional cooling
techniques, such as passive heat sinks and fluid-based cooling

systems, often struggle to meet the efficiency, size, and design
requirements of ICs. In response, novel approaches—such as
active cooling based on the thermoelectric (TE) effect—have
emerged as promising solutions for thermal management.

TE materials, known for their ability to convert thermal
gradients into electrical energy and vice versa, offer versatile
applications through both the Seebeck and Peltier effects.
These materials have long been studied for power generation
and refrigeration, with the performance of TE devices governed

by the dimensionless figure of merit, zT ¼ sa2

k
T ; where s is the

electrical conductivity, a is the Seebeck coefficient, T is the
temperature, and k is thermal conductivity. We note that k is
the passive thermal conductivity in the absence of electric
current. Improvement of zT requires strategies to increase the
TE power factor (PF = sa2) and/or to decrease the k.1–5 However,
recent advances have expanded the role of TE materials to
include active cooling modes,6–9 where the Peltier current can
actively enhance the passive heat transfer. Under optimum
current conditions, and when a TE module with a length L
is placed between a hot object characterized by TH and a cold
heat sink at TC, Peltier cooling (flux) can be expressed as

Jpeltier ¼
sa2TH

2

2L
. One can therefore combine passive and active

heat flux, where this unique mode of operation is characterized
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New concepts
We present a comprehensive database of binary metallic alloys and employ
machine-learning techniques to identify Ni–Fe alloys as a potential candi-
date for electronic cooling applications. The material was synthesized via

arc melting, and its thermoelectric properties were systematically charac-
terized. Our findings demonstrate that the Ni–Fe alloy achieves a notable
thermoelectric power factor of 120 mW cm�1 K�2 at 200 K. Among materials
exhibiting power factors exceeding 100 mW cm�1 K�2 at this temperature,
Ni–Fe is distinguished by its high stability, abundant availability, and low
cost. Furthermore, the alloy exhibits effective thermal conductivity superior
to that of pure copper, suggesting its potential for enhanced heat manage-
ment in electronic devices.
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by the concept of effective thermal conductivity

keff ¼ kþ sa2TH
2

2DT

� �
, combines the passive (k) and active

(Peltier) components to maximize the heat flux, opening new
opportunities for TE application in thermal management. In
our prior work, we have demonstrated active Peltier cooling
devices and showed that their performance is an increasing
function of keff.

6

Traditional TE materials with low k are not suitable for
active cooling. In contrast, metallic TE materials are promising
due to their inherently high electrical and thermal conductivities,
originating from the high concentration of free electrons, n. The
main disadvantage of metals is their generally lower Seebeck
coefficient compared to semiconductors. This trend can be
explained by the Mott Formula.

S ¼ �p
2kB

2T

3qsðmÞ
dsðEÞ
dE

����
E¼m

(1)

where kB is the Boltzmann constant, T is the temperature, q is the
charge of the electron, E is energy, m is the chemical potential, s is
differential conductivity or transport function and can be

expressed as sðEÞ ¼ q2

3
DOSðEÞv2ðEÞtðEÞ, DOS is the density of

states, t represents the relaxation time, and v is the group velocity.
A high DOS at the Fermi level leads to an increased carrier density,
which in turn enhances both electrical and thermal conductivity.
However, according to the Mott formula (eqn (1)), a large DOS is
associated with a reduced Seebeck coefficient, hence the lower
Seebeck coefficient of the metals.

In this work, we lay out a search for binary metallic alloys for
active cooling applications. Since metallic alloys inherently
have a large electrical and thermal conductivity, we focus on
finding alloys with large Seebeck coefficients. Historically,
materials optimization has relied on traditional trial-and-
error methods, guided by physical and chemical insights.
However, these approaches are often time-consuming, ineffi-
cient, and costly.10

Recently, machine learning (ML) techniques have been
utilized to screen TE materials, i.e., to maximize their perfor-
mance while minimizing the time and budget constraints. For
instance, support vector regression (SVR) was applied to predict
zT values of Bi2Te3-based materials, and the predictions closely
matched the experimental results.11 ML was also used to
predict the zT values for undoped and doped BiCuSeO materi-
als and guided the choice of dopants.12 An active learning
approach was utilized to predict the p-type power factors of
diamond-like TE materials.13 In another example work, the
random forest technique was employed to predict Seebeck
coefficients across a temperature range of 300 to 1000 K based
on stoichiometry.14 However, these ML approaches have not
been applied to metallic systems, which typically exhibit very
low Seebeck coefficients. To the best of our knowledge, there
have been no prior efforts aimed at maximizing the thermo-
electric performance of metallic systems using such methods.
By utilizing a data-driven model, our method efficiently explores

a broad range of metallic alloys, focusing on different atomic
concentrations, temperatures, and predicted Seebeck coefficients.
In what follows, we present the material database that we built
based on binary solid-solution metallic alloys. Using this data-
base, we selected and optimized three alloys and finally, validated
the results experimentally for the Ni–Fe alloy system.

2. Results and discussion
2.1. Material selection using machine learning

Near room temperature, a large list of pure metals, including
Ag, Al, Au, Cd, Cs, Cu, Dy, In, Ir, Mg, Nb, Pb, Rh, Sn, Sr, and Ru,
show absolute Seebeck coefficient values below 5 mV K�1.15,16

A few elemental metals, e.g., Co,6,17 Fe,18 and Ni19 have larger
Seebeck coefficient values (|S| B 20 mV K�1).15 In the case of Ni,
the large Seebeck coefficient can be attributed to the sharp
slope of the DOS at the Fermi energy due to the partially filled
d-orbital,20 which leads to a high Seebeck (eqn (1)). Due to the
inherent magnetization of these elements (Ni, Co, and Fe), part
of their Seebeck coefficient has been attributed to the magnon-
drag effect wherein the magnon heat flux drags along the
electronic charge carriers. Watzman et al.21 discussed two
magnon-drag contributions to the Seebeck coefficient: the
hydrodynamic contribution and the spin-motive force contri-
bution. They demonstrated that magnon-drag is the dominant
component of the Seebeck coefficient of Fe and Co.

Binary alloys of transition metals are shown to be good
candidates to further increase the TE power factor of metallic
systems. Examples include Cu–Ni,8,22 Au–Ni,20 Fe–Ni,23,24

Cr–Mn,25 Pd–Ag,26 and Cr–Fe.27 We formed a database of
experimentally reported Seebeck coefficients of binary metallic
alloys, the majority of which are derived from the Landolt-
Bornstein database.28 A part of this database for temperatures
up to 400 K is shown in Fig. 1. In several cases, the Seebeck
coefficient and the power factor of the alloy are larger than both
parent elements, which can be attributed to either changes in
the density of states or modifications of the scattering rates.
Here we highlight three of the studied solid-solution alloys with
large Seebeck coefficient values, Pd–Ag, Cu–Ni, and Au–Ni.
In all three cases, the alloy demonstrates a higher Seebeck
coefficient compared to both the host (or solvent) and solute.
The Pd–Ag alloy exhibits a peak Seebeck coefficient of approxi-
mately 40 mV K�1 at 300 K, reaching B80 mV K�1 at 1300 K with
55% Pd.26 These values are larger than pure Pd, which has a
negative Seebeck coefficient in the 300 K to 1300 K range, and
pure Ag with positive values smaller than 10 mV K�1. However,
the limited availability of Pd and the cost of the elements
restrict its widespread use. Constantan (Cu–Ni) alloy is
composed of abundant and low-cost elements, and is easy to
synthesize.29 Constantan is reported to have a TE power factor
of 40 mW cm�1 K�2 at 300 K and 102 mW cm�1 K�2 at 873 K.22

Constantan is also studied in the context of active cooling and
using additive manufacturing for industrial applications.8 The
Au–Ni alloy, in contrast, is expensive and metastable. However,
due to its large TE power factor, it has drawn interest within the
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field. Garmroundi et al.20 reported a Seebeck coefficient of
94 mV K�1 for a quenched, metastable single face-centered
cubic (FCC) Ni–Au alloy at 1000 K, resulting in an ultra-high

peak power factor of 340 mW cm�1 K�2 in Ni0.1Au0.9 sample at
560 K. This large power factor is hypothesized to arise from the
selective scattering of s-electrons into localized d-states, which

Fig. 1 Visual representation of part of our database. Seebeck values of less than a few microvolts per Kelvin are eliminated and the rest are represented
here. Each subplot represents the host-solvent binary alloy labelled in the plot. For example, Cu–Ni means Cu is the host, Ni is the solvent. Each subplot
has an x-axis scale of 0 to 1 representing the molar fraction of the solvent. The y-axis is the measurement temperature from 0–400 K for all subplots. The
colour represents the absolute value of the Seebeck coefficient. Promising yet less-explored candidates are highlighted with red rectangular boxes.

Fig. 2 (a) Distribution of Seebeck coefficient in the database, (b) frequency of the elements in the dataset, for example, Ni and Pd are the most frequently
used metals, and (c) temperature dependent Seebeck coefficients of Fe–Ni system up to 1200 K with respect to different atomic % of Ni, (d) highlighting
low temperature region from 50 K to 300 K.
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induces strong energy-dependent scattering rates t(E) and
enhances the slope of s(E) near the Fermi-level, thereby increas-
ing the Seebeck coefficient (see eqn (1)).

The Ni–Fe alloys have also been studied due to their sig-
nificance in geology, meteoritics, and material science.30–38

There are old and scattered studies reporting the Seebeck coeffi-
cient data of Ni–Fe alloys as a function of composition and
temperature,23,24,39 showing the peak Seebeck of Ni–Fe alloys can
reach �50 mV K�1 with 53.8 at% at 300 K23 and �46 mV K�1 with
40 at%24 of Ni concentration at 200 K. Fig. 2(c and d) highlights
that while the Fe–Ni system has been extensively studied between
300 and 1200 K, only a limited number of compositions have been
investigated below 300 K. Similarly, Cr–Mn and Cr–Fe alloys were
also examined but within a specific compositional range, as
depicted in Fig. S2(a) and (b) (ESI†), respectively. This research
gap drives our focus on these three binary systems, aiming to
enhance their performance below room temperature through
further composition optimization for active cooling applications.

To predict the Seebeck coefficient, we used the database
with selected features (see methods) to train several ML

models. We employed three distinct types of ML models: a
linear model based on least absolute shrinkage and selection
operator (LASSO)40 regression, two tree-based models (extreme
gradient boosting (XGBoost)41 and random forest (RF)42), and a
kernel-based model, support vector regression (SVR).43 Based
on the accuracy-interpretability trade-off44 linear models offer
higher interpretability, while kernel-based models provide
greater accuracy at the cost of interpretability. Tree-based
models fall between these two extremes, balancing accuracy
and interpretability.

Fig. 3 presents a comparative analysis of the predicted vs.
actual Seebeck coefficients across different models. The low R2

and high MSE values in both the training and test sets for
LASSO indicate that the linear model failed to capture the
complex relationships between the input features and Seebeck
coefficients. In contrast, XGB, RF, and SVR demonstrated a
strong predictive performance, achieving an R2 of 0.99 on both
training and independent test sets, highlighting their ability to
model the non-linear dependencies. After successfully evaluating
the prediction performance of the models on the test data, we

Fig. 3 Predicted vs. actual Seebeck coefficients from XGB, SVR, RF and Lasso. Tree and Kernel-based models outperformed the linear model.
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applied the optimized models (XGB, RF, and SVR) to predict the
Seebeck coefficients of many binary alloys and identified Ni–Fe,
Cr–Mn, and Cr–Fe alloys as our focus across the entire composi-
tional range and from 50 to 305 K. The final Seebeck coefficient
values were determined by averaging the predictions from all
three models, with detailed predictions provided in Table S3
(ESI†). Based on these averaged results, the Ni–Fe system exhib-
ited the highest Seebeck coefficient of 42.3 mV K�1 at 59 at% Ni
and 305 K. Similarly, the Cr–Mn system reached a peak Seebeck
coefficient of 34.6 mV K�1 at 10 at% Mn and 305 K, while the Cr–
Fe system achieved 36.4 mV K�1 at 2 at% Fe and 155 K. Heat maps
illustrating the Seebeck coefficients of the Cr–Mn and Cr–Fe
systems are shown in Fig. S5 (ESI†). Among these three systems,
Ni–Fe presents the highest Seebeck coefficient. In addition,
experimental validation of Cr-based systems presents challenges
due to chromium’s high reactivity with steel milling jars, which
can alter the sample composition and degrade the performance.45

Therefore, in this study, we focus on the Ni–Fe binary alloy
system, given its high Seebeck coefficient near room temperature
as predicted by the ML models. Additionally, this system is
notable for its low cost, scalability for industrial applications,
ease of synthesis, and exceptional mechanical durability.46,47

These characteristics make Ni–Fe alloys highly suitable for prac-
tical TE device applications. According to the heat map of the
predicted Seebeck coefficients (Fig. 4), while the peak composition
is Ni59Fe41, the alloy retains a Seebeck coefficient above�40 mV K�1

within the 48–62 atomic % Ni range around from 250 K to room
temperature. This indicates a compositional window where the
material could exhibit high TE performance. By identifying the
peak Seebeck coefficient and compositional range, the ML model
provides a focused direction for experimental exploration, mini-
mizing the need for testing across all possible compositions.

2.2. Experimental validation

Next, we present our experimental approach to the power factor
and effective thermal conductivity characterization of the Ni–Fe

alloys in the 50–400 K temperature range inspired by the ML
predictions. Further, we present the microstructure of the as-
arc-melted sample and the homogeneity of the solid-solution
alloy at microscales for active cooling applications.

NixFe1�x samples with x atomic percentage ranging from 30–
70 were prepared using arc-melting, see methods. According
to the phase diagram, Ni–Fe alloys form an FCC Ni–Fe solid
solution within the probed composition range at elevated
temperatures. Due to slow diffusion,33–36,48 decomposition of
g to a + FeNi3 is unlikely under our experimental conditions,
resulting in g phase solid-solution.

The X-ray diffraction (XRD) data of all Ni–Fe alloy samples
are shown in Fig. 5. The bulk XRD measurements are per-
formed on the vertical cross-section of the as-arc-melted ingots.
Going from bottom to top, Ni concentration in the samples
increases.

All samples exhibit a consistent series of diffraction peaks,
corresponding to the (111), (200), (220), and (311) crystallo-
graphic planes of the FCC structure. The variation of intensities
of peaks among samples can be attributed to non-random
distributions of grain orientations at the section surface, which
is confirmed by the SEM results. The orange and black lines at
the bottom indicate the reference peak positions for pure Ni
and Fe in the FCC structure. The peaks of the alloys are
positioned between the reference peaks for pure Ni and Fe,
indicative of solution formation. As the Ni concentration
increases, the peaks shift to higher 2y values, indicating
smaller lattice parameters.49 The XRD results confirmed that
the prepared Ni–Fe samples are single-phase polycrystalline.

Fig. 6 presents the backscattered electron image of the
vertical cross-section of the as-arc-melted Ni55Fe45 sample.
The different greyscale regions represent the varying crystal
orientations of the grains, demonstrating the polycrystalline

Fig. 4 Heat map of Ni–Fe alloy averaging over all predictions from all
optimized models.

Fig. 5 XRD results of arc-melted Ni–Fe samples. The black and orange
straight lines on the bottom are FCC iron and nickel reference peaks.
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nature of the sample. At the top of the sample, a prominent
needle-shaped bubble is observed, likely formed from the
degassing of the powders during the melting process. Several
smaller bubbles can also be seen in the upper section of the
cross-section. To avoid these bubbles, subsequent transport
measurements were performed on samples cut from the center
of the lower portion, where grains are more uniform.

The SEM image clearly illustrates the distribution of grain
size and shape across the sample. The bottom of the sample,
which was in contact with the water-cooled copper plate of the
arc-melter, experienced a higher cooling rate, resulting in
smaller grains (B100 mm). In contrast, the upper section con-
tains large, elongated grains measuring up to several milli-
meters in length. Further EDS mapping of the highlighted area
was conducted to characterize the composition of different
grains. The black dots visible in the enlarged image are colloidal
silica residues from the sample polishing process. The atomic
composition data in Fig. 6b’s summary table confirms the
homogeneous composition across the grains, consistent with
the stoichiometric ratio of the starting powders. As shown in
Fig. 6c, the line scan reveals that the composition remains
uniform both within and across grains. Additional SEM/EDS
characterizations (ESI†) performed on different samples and in
different areas and orientations support that the samples are
homogeneous and consistent with the measured composition.
Due to anisotropic alignment of the grains, for the TE measure-
ments, we only used the central-bottom part of the arc-melted
sample, which is visually isotropic. However, due to the large
grain sizes, we expect a minimal grain boundary effect on
transport properties.

Fig. 7 summarizes the TE measurements performed on the
arc-melted Ni–Fe alloy samples.

Alloys with a composition range of 45 to 70 atomic % Ni
have an absolute value of the Seebeck coefficient which is up to
2.5 times greater than that of pure Ni or Fe.16,50 The peak

Seebeck coefficient varies with composition, with the highest values
observed in Ni55Fe45 and Ni45Fe55, both reaching �52 mV K�1.
This is consistent with the ML prediction presented earlier,
where 48–62% Ni was identified as the composition with the
highest Seebeck value. The Seebeck coefficient’s dependence on
composition changes with temperature: at lower temperatures
(o200 K), the absolute value of the Seebeck coefficient decreases
with increasing Ni content. However, this trend does not hold at
intermediate temperatures (200 K to 400 K).

A previous work23 observed a similar concentration depen-
dence of the Seebeck coefficient. They attributed the trend at
the higher temperatures to the concentration fluctuation
within their samples, which is not supported by the SEM/EDS
results in this paper.

While ML predictions are consistent with experimental data,
the current formulation does not adequately explain the physical
origin of the observed large Seebeck coefficient. To understand
this, we have computed the band structure using the first-
principles methods. The details of DOS calculations for one unit
cell of Ni50Fe50 are shown in the ESI,† wherein we have shown
that the slope of the DOS at the Fermi level (application of the
Mott formula) does not correctly predict the sign of the Seebeck
coefficient. We have further expanded our calculations to the
full-potential Korringa–Kohn–Rostoker method combined with
the coherent potential approximation (KKR-CPA),51,52 ensuring
the correct description of alloy band structure, magnetism,
and the disorder-induced scattering in the system. The DOS
and Bloch spectral density functions, which describe the electro-
nic dispersion relations smeared due to electron scattering, are
shown and discussed in the ESI.† Further on, the transport
properties were determined by computing the energy-dependent
conductivity function s(E) from the Kubo–Greenwood
formalism.53–55 As experimentally determined56 this alloy is
ferromagnetic with a high Curie temperature of 789 K, thus,
calculations were done in a ferromagnetic state. Based on the

Fig. 6 SEM backscattered electron image on the cross-section of the arc-melted Ni55Fe45 sample (a), the yellow square marked area is the chosen EDS
mapping area. This area is enlarged in (b) where the EDS mapping locations on different grains are reported and summarized in the table. (c) EDS line scan
across the grains over the line scan 1 shown in (b).
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computed s(E) function, the thermopower was calculated (see
ESI† for further details). What is important to underline here is
that this method has successfully predicted the Seebeck coeffi-
cient of other metallic alloys, including Ni–Au,57 Ni–Cu,58,59

and Pd–Ag,60 where resonant scattering effects are important.
However, as shown in Fig. 7c, in the case of Ni50Fe50 alloy, while
the KKR-CPA method predicts the Seebeck coefficient sign cor-
rectly for magnetic calculations, the absolute value is much
smaller than the experimentally measured values. Hence, the sole
electronic structure and electron scattering on the atomic poten-
tials do not explain the large thermopower values, and other
energy-dependent scattering rates are needed (e.g. magnon-drag
contributions) to fully understand the Seebeck values of this alloy
system. The fact that additional scattering mechanisms (beyond
electron–phonon) are present in this system is also confirmed by
the difference in calculated and experimental residual resistivities.
The calculated value at zero Kelvin is equal to about 3.3 mO cm,
whereas the experimental value extrapolated to zero Kelvin is
larger, being about 11.9 mO cm for Ni50Fe50.

The resistivity increases with higher Fe content. The resis-
tivities of the Ni–Fe alloys range from 5.60 mO cm to 70 mO cm,
highlighting the highly metallic nature of these alloys. Combining
high Seebeck coefficients for these alloys with their low resistivity,
the peak power factor reaches 120 mW cm�1 K�2 for both Ni60Fe40

and Ni55Fe45. This is larger than both Ni and Fe parent metals17

and is 20% higher than the peak values reported at 750 K in
previous studies on Cu–Ni alloys.8,22 In Fig. 7, we also compare the
power factor to other binary metals with large power factors

including PdAg and PdAu alloys.15,26,60,61 In temperature ranges
slightly below room temperature (i.e. 200 K to 300 K), there are not
many candidates with extremely large TE power factors (i.e., above
100 mW cm�1 K�2). Commonly used TE materials in this tem-
perature range include bismuth–tellurium–antimony–selenium-
based materials, which generally, have power factor values well
below 100 mW cm�1 K�2, with a recent work highlighting a record
high value of 63 mW cm�1 K�2 in this class of materials.62 Au–Ni is
reported to have a power factor slightly below 300 mW cm�1 K�2.20

However, its cost and instability are not favorable. Single-crystal
YbAl3 has a power factor slightly below 200 mW cm�1 K�2 at room
temperature.63,64 Other examples include low-dimensional mate-
rials such as nm thin FeSe65 and 1D Ta4SiTe4 samples.66

At 200 K, the power factors of Ni60Fe40 and Ni55Fe45 are
larger than those of the hot-pressed YbAl3 sample63 and are
much larger than that of the Cu–Ni alloy.22 However, the power
factor values decrease rapidly with increasing Fe due to the
increase in resistivity and with Ni concentration due to the
reduction in the Seebeck coefficient. Since the TE power factor is
our primary focus, the Ni–Fe composition range is restricted to
45% to 70% atomic Ni. In this range, the thermal conductivity
generally increases with Ni content.

The effective thermal conductivity (keff) of the Ni60Fe40

sample exhibits the best balance between power factor and
thermal conductivity. As shown in Fig. 7e keff of the Ni–Fe
samples under a 1 K temperature gradient is 2 to 3 times higher
than the keff of pure Fe or Ni15,67 in the above 200 K range.
Above room temperatures, keff of the Ni60Fe40 alloy is still

Fig. 7 (a) Electrical resistivity, (b) thermal conductivity, (c) Seebeck coefficient, (d) power factor, (e) effective thermal conductivity of Ni–Fe samples. The
lower Legend in the bottom right corner is shared for (a)–(d). Ni and Fe reference data in (c) are taken from ref. 16 The calculated Seebeck coefficient for
50% Ni–Fe (KKR-CPA) is also shown; the non-magnetic calculations fail to predict the correct sign of the Seebeck coefficient. The magnetic calculations
predict the sign correctly, however, the absolute values are much smaller. The difference is contributed by additional scattering processes, most likely
associated with the magnon-drag. The power factor of Ni, Fe,17 CuNi,22 PdAg and PdAu26,61 are compared with that of NiFe alloy in (d). Effective thermal
conductivity of Ni–Fe alloys compared with pure Cu, pure Fe, and pure Ni,50 and Cu–Ni alloys (labeled as ref. 1 and 2).8,22
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higher than that of pure copper, and previous studies of high
power factor Cu–Ni alloys,8,22 reaching 600 W m�1 K�1 for both
Ni60Fe40 and Ni70Fe30 alloys.

As indicated by SEM, in the arc-melted samples, grains are
significantly larger than the typical electron and phonon mean
free paths in metals,68–70 eliminating the possibility of grain
size influencing TE properties, especially the Seebeck coeffi-
cient. However, given the limited studies on Ni–Fe alloys as TE
materials, further investigations with improved parameter con-
trol are essential to elucidate the role of microstructure in the
thermoelectric performance of these alloys.

3. Conclusion

In summary, we built a database of binary metallic alloys and
identified Ni–Fe as a potential candidate for active cooling
applications. We used ML algorithms to identify the best molar
fraction corresponding to the largest Seebeck values in the 45–
55% Ni range. We then proceeded with experimental validation of
this prediction. The highest Seebeck values were observed in
Ni55Fe45 and Ni45Fe55 samples, consistent with ML prediction.
The power factor and effective thermal conductivity of arc-melted
Ni–Fe alloys with 45 to 70 atomic percent nickel were investigated
over the 50 K to 400 K temperature range. Notably, the Ni55Fe45

and Ni60Fe40 alloys demonstrated a large peak power factor of 120
mW cm�1 K�2 at 200 K. This metallic binary alloy is stable and is
composed of cost-effective and abundant elements. The power
factor value reported is one of the largest values reported in this
temperature range. The effective thermal conductivity, keff, at a
1 K temperature difference was also calculated using the mea-
sured values of passive thermal conductivity and TE power factor.
The largest keff values exceeding 600 W K�1 m�1 at 400 K were
observed for Ni60Fe40 and Ni70Fe30 alloys, outperforming pure
copper, Ni, Fe, and state-of-the-art Cu–Ni alloys under the same
conditions. The microstructure of the arc-melted Ni–Fe ingots was
characterized using SEM and EDS, providing insights into grain
size and elemental distribution. The abnormal composition
dependence of the absolute Seebeck coefficient at intermediate
temperatures (200–400 K) was also noted. A hypothesis suggesting
that local concentration fluctuations account for this anomaly was
tested using EDS analysis, which invalidated this explanation.
Further research is needed to assess the effects of grain size,
magnetic domains, and defects on the thermoelectric perfor-
mance of Ni–Fe alloys. This study reveals the overlooked potential
of Ni–Fe alloys for high-power factor applications, highlights the
promise of magnetic transition metal alloys in the search for high-
power factor metallic materials, and encourages further research
into metallic thermoelectric materials for active cooling.

4. Methods
4.1. Selection and optimization details of machine learning:
Dataset

Our initial dataset was obtained from the Landolt-Börnstein
database15 and a recent publication on Au–Ni alloys.20 It

comprises experimental Seebeck coefficient values for various
binary metallic systems, recorded in wide temperature and
atomic concentration ranges. The data was extracted and
digitized manually using the GRABIT MATLAB tool, resulting
in a total of 12 332 data points with 3103 unique solid solutions.
The Seebeck coefficient values span from 40 to �85 mV K�1,
covering a temperature range of 0 to 1500 K as depicted in Fig. 2
and Fig. S1(a) (ESI†), respectively.

Fig. 2(a) demonstrates the distribution of the Seebeck coeffi-
cient in this dataset, revealing that most metals have small
Seebeck values (a few mV K�1), which is one of the main reasons
for the TE community to focus on semiconductors instead.
Fig. S1(b) (ESI†) provides an overview of the metals included in
the dataset, showing that Ni is the most frequently used
material. It is followed by Pd, Cr, Pt, and Cu. This information
is presented in an alternative format in Fig. 2b.

4.2. Feature selection

To build generalizable data-driven models, it is important to
include features that not only capture the trend of Seebeck
coefficients across different metallic alloys but also uniquely
represent them. In this regard, a composition-based feature
vector (CBFV)71 technique was used to derive features from the
chemical formula, utilizing the materials agnostic platform for
informatics and exploration (Magpie).72 Furthermore, tempera-
ture and crystallinity information (Single-crystal/Polycrystal-
line) by level encoding (1/0) are also added to the feature list,
which results in a total of 156 input features, and the Seebeck
coefficient as the target value. A detailed table summarizing the
input features is provided in Table S1 (ESI†). These features are
commonly used in the field of materials informatics of TE.73–77

The correlation analysis, as shown in Fig. S3 (ESI†), indicates
that many features exhibit strong statistical correlation. In
most cases, it is advisable to remove one of two highly corre-
lated features since they convey redundant information. Such
correlations can hinder model convergence, degrade predictive
performance, and affect interpretability.

The dimensionality of the input features was reduced by
applying a correlation coefficient threshold of 0.5.78,79 This
means that only those features with an absolute correlation
coefficient less than 0.5 with other features were kept for ML
model building.

This process reduced the number of input features to 19,
which were used to predict the Seebeck values.

4.3. Training and testing of the models

To avoid any perceived bias during training, we employed a
data-driven approach for splitting the dataset. We performed
K-means80 clustering analysis (using Euclidean distance as the
similarity metric) on the dataset, and the Silhouette score, as
shown in Fig. S4 (ESI†), suggests that the dataset contains two
distinct clusters. Each cluster represents a different group of
data points that share common characteristics. Cluster 1 con-
sists of 8743 data points, while cluster 2 contains 3589 data
points. To ensure that the models learn from both types of data
distributions, we randomly selected 70% of the data from each
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cluster to form the training set (8632 data points), with the
remaining 30% used as the testing set (3700 data points). This
approach ensures a more balanced representation of samples
from both clusters in the training and testing sets.

4.4. Hyperparameter tuning

Hyperparameter tuning helps improve model performance
and prevents overfitting. To optimize the hyperparameters,
we used BayesSearchCV from the scikit-optimize library81 in
Python. BayesSearchCV employs a Gaussian Process Regression
as a surrogate model for hyperparameter optimization.
An acquisition function is used to determine which hyperpara-
meter combinations to evaluate next, with expected improve-
ment (EI) as the default acquisition function. The EI function
estimates the expected improvement over the current best
result.82 During optimization, 10-fold cross-validation from
the scikit-learn library83 was applied, which partitioned the
training set into ten subsets. Each model is trained in nine
subsets and validated on the remaining subset. The testing
set remained unseen by the models during cross-validation.
The lower and upper boundaries for the hyperparameters are
provided in Table S2 (ESI†). The number of iterations for the
optimization process was set to 50. The optimized hyperpara-
meters for each model in each case of splitting are shown in
Table S2 (ESI†). The performance of these models was evalu-
ated by comparing two key metrics, namely the coefficient of
determination (R2) and mean squared error (MSE).

4.5. Experimental methods

Iron powder with 99.5% purity and nickel powder with 99.996%
purity were weighed to 5 grams per sample and mixed in an
argon-filled glovebox. The powder mixtures were then hot-
pressed into solid bulk samples at 800 1C under 56 MPa pressure
for 300 seconds using an OTF-1700X-RHP4 hot-press setup from
MTI Corporation. The solid bulk samples were later arc-melted
in an Ar-protected home-built chamber to form a Ni–Fe solid
solution with an estimated melting current of no more than 100
Amps and a maximum cooling rate of 100 1C s�1. Each sample
was melted and flipped twice for homogeneity. Then, it was
melted without flipping, allowing bubbles and voids to diffuse to
the top of th e sample, which was then cut out. The central-
bottom part of the arc-melted samples was then sectioned into
approximately 2 mm � 2 mm � 10 mm bar shape. Transport
properties were measured using the thermal transport option of
quantum design PPMS Versalab. A heater was attached to one
side of the sample to create a 3% rise in temperature. The other
side was connected to a heat sink. The resulting voltage and
temperature differences under steady state were measured along
the length of the sample to extract the Seebeck coefficient and
the thermal conductivity. The heater and the heat sink contact
(copper coated with gold) were then used to send current along
the sample. The voltage was measured using side probes,
enabling 4-probe electrical conductivity measurements. The
XRD characterization is performed using an Empyrean X-ray
diffractometer from Malvern-Panalytical on the sectioned as-arc-

melted ingots. SEM/EDS is performed on an FEI Quanta 650
scanning electron microscope (SEM).
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27 K. Schröder, M. J. Yessik and N. P. Baum, J. Appl. Phys.,
1966, 37, 1019–1021.

28 O. Madelung, Landolt-Bornstein Group III: Condensed Matter,
Springer-Verlag, 1983.

29 K. V. Selvan and M. S. M. Ali, IEEE Trans. Electron Devices,
2018, 65, 3394–3400.

30 C.-W. Yang, D. B. Williams and J. I. Goldstein, J. Phase
Equilib., 1996, 17, 522–531.

31 W. Xiong, H. Zhang, L. Vitos and M. Selleby, Acta Mater.,
2011, 59, 521–530.

32 R. A. Howald, Metall. Mater. Trans. A, 2003, 34, 1759–1769.
33 T. Komabayashi, K. Hirose and Y. Ohishi, Phys. Chem.

Miner., 2012, 39, 329–338.
34 C.-H. Xia, Y. Wang, J.-J. Wang, X.-G. Lu and L. Zhang,

J. Alloys Compd., 2021, 853, 157165.
35 K. Li, C.-C. Fu, M. Nastar and F. Soisson, Phys. Rev. B, 2023,

107, 094103.
36 G. Cacciamani, J. De Keyzer, R. Ferro, U. E. Klotz, J. Lacaze

and P. Wollants, Intermetallics, 2006, 14, 1312–1325.
37 D. Ma, Z. Wang, H. Zhao, J. Chen and F. Ke, Ferroelectrics,

2021, 571, 175–182.
38 P. Bag, Y.-C. Su, Y.-K. Kuo, Y.-C. Lai and S.-K. Wu, Phys. Rev.

Mater., 2021, 5, 085003.
39 T. Farrell and D. Greig, J. Phys. C-Solid State Phys., 1970,

3, 138.
40 R. Tibshirani, J. R. Stat. Soc. Ser. B, 1996, 58, 267–288.
41 T. Chen and C. Guestrin, in Proceedings of the 22nd acm

sigkdd international conference on knowledge discovery and
data mining, 2016, pp. 785–794.

42 L. Breiman, Mach. Learn., 2001, 45, 5–32.
43 J. Cervantes, F. Garcia-Lamont, L. Rodrı́guez-Mazahua and

A. Lopez, Neurocomputing, 2020, 408, 189–215.
44 A. Holzinger, P. Kieseberg, A. M. Tjoa and E. Weippl,

Machine Learning and Knowledge Extraction, Springer Nat-
ure, 2019, vol. 11713.

45 C. J. Hickson and S. J. Juras, Can. Mineral., 1986, 24,
585–589.

46 A. Seijas Da Silva, A. Hartert, V. Oestreicher, J. Romero,
E. Coronado, V. Lloret Segura and G. Abellán, in Electro-
chemical Society Meeting Abstracts 243, The Electrochemical
Society, Inc., 2023, p. 2266.

47 C. Liang, W. Pan, P. Zou, P. Liu, K. Liu, G. Zhao, H. J. Fan
and C. Yang, Small, 2022, 18, 2203663.

48 H. P. J. Wijn, in Magnetic Properties of Metals: d-Elements,
Alloys and Compounds, ed. H. P. J. Wijn, Springer Berlin
Heidelberg, Berlin, Heidelberg, 1991, pp. 68–94.

49 M. Hayase, M. Shiga and Y. Nakamura, J. Phys. Soc. Jpn.,
1973, 34, 925–933.

50 G. K. White, Thermal Conductivity of Pure Metals and Alloys,
Springer-Verlag, 1991, vol. 15c.

51 H. Ebert, D. Koedderitzsch and J. Minar, Rep. Prog. Phys.,
2011, 74, 096501.

52 H. Ebert, LMU, 2022, preprint, LMU:8.6.
53 R. Kubo, J. Phys. Soc. Jpn., 1957, 12, 570–586.
54 D. A. Greenwood, Proc. Phys. Soc., 1958, 71, 585.
55 W. H. Butler, Phys. Rev. B: Condens. Matter Mater. Phys.,

1985, 31, 3260.
56 Q. Wei, S. A. Gilder and B. Maier, Phys. Rev. B: Condens.

Matter Mater. Phys., 2014, 90, 144425.
57 K. Pryga and B. Wiendlocha, arXiv, 2025, preprint,

2505.19064, https://arxiv.org/abs/2505.19064.
58 B. Wiendlocha, Phys. Rev. B, 2018, 97, 205203.
59 A. Vernes, H. Ebert and J. Banhart, Phys. Rev. B: Condens.

Matter Mater. Phys., 2003, 68, 134404.
60 J. Banhart and H. Ebert, Solid State Commun., 1995, 94,

445–449.

Communication Materials Horizons

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

8 
Ju

ne
 2

02
5.

 D
ow

nl
oa

de
d 

on
 1

0/
16

/2
02

5 
2:

57
:2

2 
A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online

https://arxiv.org/abs/2505.19064
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5mh00524h


6966 |  Mater. Horiz., 2025, 12, 6956–6966 This journal is © The Royal Society of Chemistry 2025

61 C. Y. Ho, M. W. Ackerman, K. Y. Wu, T. N. Havill, R. H.
Bogaard, R. A. Matula, S. G. Oh and H. M. James, J. Phys.
Chem. Ref. Data, 1983, 12, 183–322.

62 C. Chen, T. Wang, Z. Yu, Y. Hutabalian, R. K. Vankayala,
C. Chen, W. Hsieh, H. Jeng, D. Wei and Y. Chen, Adv. Sci.,
2022, 9, 2201353.

63 X. Zhang, H. Wang, W. Cui, X. Xie, P. Zhai, D. He and
W. Zhao, Mater. Today Phys., 2023, 32, 101008.

64 D. M. Rowe, G. Min and L. Kuznestsov, Philos. Mag. Lett.,
1998, 77, 105–108.

65 S. Shimizu, J. Shiogai, N. Takemori, S. Sakai, H. Ikeda,
R. Arita, T. Nojima, A. Tsukazaki and Y. Iwasa, Nat. Com-
mun., 2019, 10, 825.

66 T. Inohara, Y. Okamoto, Y. Yamakawa, A. Yamakage and
K. Takenaka, Appl. Phys. Lett., 2017, 110, 183901.

67 O. Madelung, P. G. Klemens, G. Neuer, G. K. White,
B. Sundqvist and C. Uher, Thermal Conductivity of Pure
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