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Organic structure-directing agents (OSDAs) play a vital role in the structural arrangement and
compositional diversity of zeolites. The synthesis procedure and properties of zeolites can be improved
through the “dual-OSDA" approach, which involves cooperation and/or competition of different OSDAs
in the synthesis media. Two OSDAs achieving results that neither of the OSDAs can deliver on its own is
referred to as the “cooperative OSDA" approach. In this manner, one can enhance zeolite properties by
stabilizing different parts of the framework and altering the synthesis outcome, such as acidity and/or Al
distribution. However, cooperation can easily be disrupted, and one of the challenges in dual-OSDA
zeolite synthesis is determining the conditions under which OSDA molecules can function in harmony
to affect zeolite properties and control phase selection. On the other hand, competition does not
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always result in negative outcomes (e.g., intergrowth materials). In this review, we discussed the
importance of cooperative dual-OSDA synthesis in certain cases, explained the outcomes of this
approach, and described the different behaviors key to cooperative systems.
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Wider impact

“Cooperative-competitive” behavior of organic structure-directing agents in zeolite synthesis was addressed and studied thoroughly in dual-OSDA systems.
This work will be of interest to researchers in the field of zeolite science and, more broadly to specialists in (micro)porous material synthesis and will provide
insights into certain ambiguous aspects of in/organic interactions in the field of material design. The concept of “‘cooperation and competition” has not been
previously addressed, and this study will provide answers to some critical questions. We investigated “real cooperation” cases to understand the empirical
question: why do two OSDAs sometimes not work together? In the end, we presented challenges related to the field, some guidelines on how to assess
cooperation, and an outlook for future research in this field.
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Introduction

Zeolites are crystalline microporous materials, composed of
TO, (T = Si, Al) tetrahedral units, with a wide range of industrial
applications in catalysis, adsorption, and separation.’? Organic
structure-directing agent (OSDA) molecules play a vital role in
zeolite science. They function as an internal skeleton (although
flexible, often charged, and thus not only space-filling in
nature), on top of which, by the interaction of inorganic
precursors, a different topology can be synthesized via a hydro-
thermal method.>* It is well known that the size, shape,
flexibility, hydrophilicity, and charge of the employed OSDAs
not only direct the framework topology of the produced zeolite
but also alter zeolite crystallization kinetics.”™® Besides acting
as templates (space filling with a tight fit), OSDAs also function
as more loose space fillers and charge balancers within zeolite
structures, making them multi-functional and unique in zeolite
science.”'® The use of organics in zeolite synthesis can sometimes
be considered an environmental burden (in combustion calcina-
tion with treatment of the gases or in their production), and so
OSDA-free synthesis has also been extensively considered."* ™3
However, such approaches — which often need a large dose of seed
crystals — are often limited in their phase selectivity or in terms of
the final product’s composition."* OSDAs are still trending signifi-
cantly due to their efficiency and better control over the zeolite
synthesis outcome in terms of zeolite structure, acid site density,
and crystal morphology.

Besides the conventional method using a single OSDA,
combinations of OSDAs have also been employed in zeolite
synthesis. The “dual-OSDA” systems are very compelling to
study due to the cooperative or competitive behavior of OSDAs.
Cooperation of OSDAs could lead to a certain topology (which
otherwise is not achievable'®), reduce the synthesis cost,"
fasten the synthesis,"” or alter the Al distribution/siting,” while
the competition of OSDAs may cause phase selectivity issues or
intergrowth of different structures.'® The charge density mis-
match (CDM) approach is a practical example of the cooperation
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of OSDAs, where they act as charge balancers and make use of a
temporary mismatch in the synthesis media, which leads to a
particular structure that could not be obtained with a single-
OSDA system."® On the other hand, novel intergrowth zeolites,
which have shown superior catalytic activity, could be obtained
by controlling the competition of OSDAs in synthesis media.>

There have been several review articles on the organic and
inorganic SDAs and their effect on the characterization and
catalytic performance of zeolites."®?'>* In this concise review,
we focus on dual-OSDA systems to address the “cooperative-
competitive” role of OSDAs in zeolite synthesis. Here, we also
investigate “‘real cooperation” cases attempting to answer an
empirical question: why do two OSDAs sometimes not work
together harmoniously? In the end, we discuss challenges
related to controlling the cooperation of OSDAs and offer an
outlook for future research in this field.

Dual-OSDA approach: cooperation
What is the definition of the “dual-OSDA” approach?

When it comes to zeolite synthesis, it’s crucial to distinguish
between ‘“dual-OSDA” and other (more broadly definable)
“dual-organic” approaches. In the former, both organic com-
pounds play a role in directing the synthesis towards a parti-
cular phase or structure with a specific feature. Conversely, the
latter approach can involve using a mesopore director or
morphology modifier (e.g., surfactants) to achieve a hierarchi-
cal or mesoporous structure.>*">° This kind of dual-organic
synthesis isn’t discussed here, as one of the organic com-
pounds doesn’t contribute to the direction of synthesis towards
a specific phase or alter the aluminum location within a phase.

Various zeolite structures (such as CHA, FER, LTA, MOR,
and UFI) have been synthesized using the dual-OSDA approach.
The main idea behind this approach is the collaboration of
organics to generate different types of secondary building units
(SBUs) in a zeolite structure.’® However, this is not the only
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explanation. After reviewing the literature (Table 1), it can be
concluded that there are four main motivations for using
dual OSDAs. These motivations (i to iv) are systematically
coming back in Table 1 while select examples are explaining
the principle here:

i. Novel structure: achieving specific zeolite topologies or
particular structural arrangements may not be possible using
only one OSDA. To address this challenge, two different OSDAs
could be used together to facilitate structure formation. There
are different behaviors when these OSDAs cooperate. BEA, BPH,
LTA, and UFI topologies could be obtained through the coop-
eration of tetraethylammonium (TEA") and tetramethylammo-
nium (TMA") via the CDM approach.'®?**337 The CDM
concept was introduced to foster cooperation between OSDAs
by researchers at UOP.*® Fig. 1 depicts the primary steps
involved in the CDM approach. Initially, a low Si/Al mixture
of silica and alumina source is prepared along with a low-
charge density OSDA (e.g. TEA"), known as the CDM mixture @.
This OSDA cannot efficiently balance the high charge on the
potential aluminosilicate framework (calculated from the pre-
cursor ratios). In other words, the formation of crystalline
material is hindered by an electrostatic barrier (CDM barrier)
@. Subsequently, a mixture of a higher-charge density OSDA
(e.g. TMA") called the crystallization mixture, is added ®. It’s
worth noting that the CDM barrier is so robust that no solid
phase (not just zeolite crystals) will form without adding a
crystallization OSDA.?® Finally, the barrier can be eliminated by
providing charge balance and sufficient heat to achieve zeolite
crystallization ®@. Interestingly, temperature could direct the
synthesis toward different structures in the CDM procedure.
LTA and UFI topologies could be obtained from the same
mixture gel at 100 and 150 °C, respectively.'3"33

The FER topology is a great example of how different OSDAs
can work together in the structure formation process. In this
case, TMA" is responsible for forming the FER cavities, which are
then assembled around a bulkier OSDA like benzyl methyl
pyrrolidinium (bmp). As shown in Fig. 2, bmp is too large to
fit inside the FER cavities (7 A along the a-direction and
approximately 3.5 A in the b-direction). Instead, it accommo-
dates the 10-membered ring channels of the structure, making it
an interesting medium-pore material for catalytic reactions. It
should be noted that both OSDAs are required to be present in
the synthesis medium to allow FER formation. In the absence of
the TMA, a mixture of phases is obtained, while the absence of
bmp yields a crystalline product different from ferrierite.*®

ii. Altering aluminum distribution: the ‘“dual-OSDA”
approach is a promising method to exert effective control over
aluminum distribution, Si/Al ratio, and acidity of zeolites. The
cooperative role of OSDAs in Al distribution in FER and FAU
topologies has been thoroughly discussed elsewhere.” It has
been revealed that the combination of OSDAs could change Al
siting, manipulate the density of acid sites located at the 10-
membered ring channels of FER topology, and subsequently
improve catalytic performance.**™*>

Achieving MOR zeolites with high Si/Al ratios (more than 20)
through conventional routes is challenging due to the lack of
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thermal stability during post-treatments, as well as the hazar-
dous use of fluoride source.’”*’*® Nevertheless, high silica
MOR (Si/Al: 37) could be achieved through a fluoride-free route
via the cooperation of TEA" and heterocycle compounds like
hexamethyleneimine (HMI). TEA" plays the dominant role in
this system, and no MOR can be obtained in its absence (e.g
when replaced with TMA* and TPA").*>*' Both TEA" and HMI
molecules were present within the pores of the as-made MOR
zeolite, and both molecules likely contributed to the process of
crystallization. Additionally, the morphology of the MOR zeo-
lites was altered through a dual-OSDA approach, resulting in
smaller crystal sizes compared to synthesis using fluoride
media.*"*’

iii. Cost-effective synthesis: interesting structures have been
developed in zeolite science by introducing homemade and
complicated OSDAs.***°° However, the higher cost of these
OSDAs has put a restriction on the industrial usage of the new
zeolites. Thus, developing methods to overcome this obstacle is
highly desirable and critical. This can be done by replacing
part of the costly OSDA with less expensive compounds.®® The
dual-OSDA approach could be a cost-effective solution for
those zeolites synthesized using an expensive OSDA. In this
approach, small amounts of an expensive OSDA can initiate
nucleation, while adding more portions of inexpensive OSDA
enables the full crystallization process and reduces zeolite
synthesis costs. For instance, the high cost of TMAdaOH can
limit the use of CHA zeolites for certain commercial processes;
however, it is possible to significantly reduce the consumption
of this costly OSDA without compromising textural properties
or catalytic performance.”™® While a small quantity of
TMAdaOH (TMAdaOH/SiO,: 0.05) is needed to achieve CHA
topology in a cooperative route, most OSDA consumption is
replaced with inexpensive tetraethylammonium hydroxide
(TEAOH). As another example, LTA topology could be obtained
through a dual-OSDA approach (CDM) using commercial
TEAOH and TMAOH organics rather than applying complex
homemade-OSDA®*®* in an HF-aided system. Using cost-
effective and commercially available OSDAs would enhance
the synthesis economy, simplify the system, and eliminate
the hazards of HF. The limits of the CDM LTA are however a
lower Si/Al

iv. Fast synthesis: the dual-OSDA approach could speed up
the crystallization of MWW and MTT topologies (as mentioned
in Table 1).>*° ITQ-1 zeolite with MWW structure comprises two
different 10-membered ring channels and a large 12-membered
ring supercage. However, the size of TMAda" prevents it from
fitting into the sinusoidal 10-membered ring channels. The
conventional synthesis process is lengthy and challenging to
reproduce because crystallization would be facilitated only
through “accidentally present” organics of suitable size to fill
the sinusoidal 10-membered ring. These organic fragments
come from partial decomposition of the TMAda® during heating
or residual contaminants on PTFE liners.> It is possible to use
HMI along with TMAdaOH in a cooperative approach to stabilize
the void spaces. HMI stabilizes the 10-membered ring channel,
while TMAdaOH stabilizes the 12-membered ring supercage.

This journal is © The Royal Society of Chemistry 2025
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Fig. 1 Cartoon scheme of charge density mismatch (CDM) procedure: ® the CDM mixture consists of a low-charge density OSDA (OSDA1), @ OSDA1
cannot overcome the CDM barrier, ® the crystallization mixture consists of a higher-charge density OSDA (OSDA?2) is added to the system, and @ the

barrier can be eliminated.

This approach not only significantly shortens the crystallization
time (from 14-17 to just 3 days) but also greatly improves the
reproducibility of the synthesis process. In a similar approach, the
MWW topology could be achieved after 10 days in the presence of
another adamantyl component (N,N,N-trimethyl-2-adamantammo-
nium hydroxide) but cooperation with a second OSDA, such as
piperidine or isobutylamine, reduces synthesis time to 5 days.>*

How do OSDAs cooperate in the “dual-OSDA” approach?

In “real cooperation”, both distinct organic compounds actively
participate in zeolite formation, exhibiting different behaviors in
structure formation:

I. Co-construction: in this type of cooperation, each OSDA
seems responsible for constructing a specific structural compo-
nent. The combination of OSDAs results in a synergistic effect
where each OSDA stabilizes different features of the framework
to achieve the most favorable interaction energy. For instance, in
the dual-OSDA synthesis of FAU zeotype (SAPO-37), TPA" forms
the supercage while the smaller TMA® fits into sod cages.'®®
Another well-elaborated example of co-construction could be the
synthesis of high silica FAU (Si/Al: 6) using choline ion (Ch") and

Tetramethylammonium
(TMA)

Fig. 2 Location of TMA and bmp OSDAs inside the framework in the
cooperative strategy of FER synthesis, as determined by molecular
mechanics calculations and corroborated by NMR, which was reported
by the authors in ref. 38.

Benzyl methyl pyrrolidinium
(bmp)

This journal is © The Royal Society of Chemistry 2025

15-crown-5 (CE) OSDAs.*® This [charged OSDA]/[neutral OSDA]
system clearly demonstrates a co-construction behavior, where
the trans Ch" conformer was captured in the sod cage, while the
gauche Ch* conformer and mainly the CE complex formed the
supercage. That means Ch" plays a key role in zeolite formation,
occluding its different isomers into the structure. However, the
presence of CE is essential since no trans Ch" was found without
CE, and the fraction of trans Ch" is closely related to the Si/Al
ratio of FAU. This kind of cooperation where structural isomer
forms of one OSDA are seemingly influenced by the other OSDA
is quite unique.

II. Charge balancing: the cooperation happens due to bal-
ancing the mismatch between charges of the OSDAs and
aluminosilicate solution in the synthesis media. In this case,
both OSDAs are responsible for compensating the negative
charge of the aluminosilicate solution. A classic example is
CDM, where solid formation is motivated by the coulombic
stabilization enabled by the crystallization OSDA. The crystal-
lization OSDA dominates during the nucleation stage, while the
CDM OSDA plays a more significant role in crystal growth.**
Both OSDAs can be incorporated into the framework, other-
wise, CDM OSDA can force the crystallization OSDA to incor-
porate into the structure in a “forced cooperative templating”
(i.e., only one of the OSDAs is incorporated).**® For example,
LTA topology could be obtained through a TMA'-TEA" dual
OSDA approach. Charge balancing process leads initially to the
formation of LTA cages, primarily involving TMA". This process
then transitions into a construction behavior, in which both
OSDAs are integrated into the structure. It’s slightly different
from co-construction since both OSDAs are simultaneously
responsible for forming structural units, such as sod cages.

III. Promoting nucleation: it has been observed that both
OSDAs can initiate nucleation together through a synergistic effect,
and only one of them gets incorporated into the structure. In the
case of synthesizing CHA using a dual-OSDA approach, TEA" does
not get occluded in the framework and only helps to promote
nucleation, while TMAda" gets incorporated into the framework
structure.” Sometimes the nucleation process begins with the first
OSDA, while the second OSDA helps facilitate particle—particle
aggregation. In the TMAda'~TMA" system, the nucleation starts
with the construction of the cha cage, which involves the incor-
poration of the TMAda®, and the primary particles form by
subsequent cha cages connection. Simultaneously, TMA" is said
to play a role in bridging neighboring particles through electro-
static interactions, which promotes crystal formation.>>
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Competition of OSDAs: phase
selectivity
How does cooperation turn into competition?

One crucial problem in a dual-OSDA system is rather a funda-
mental question: how to achieve cooperation between OSDAs,
while preventing them from directing the synthesis toward multi-
ple (or even amorphous) phases. The cooperation depends on
various parameters, but the synthesis temperature, OSDAs relative
ratio, alkalinity, and inorganic cations are the main parameters
underlined in the literature.**>* 1t is essential to carefully
consider the synthesis temperature and molar ratios of OSDAs
to control the cooperation and phase selectivity in the CDM
synthesis (examples in Table 1). Specifically, different structures
can be obtained by varying the synthesis temperature in the fixed
OSDASs ratio (TEA/TMA:8/1),** while the cooperation takes place at
100 and 150 °C, leading to the formation of LTA and UFI
structures, respectively. However, increasing the temperature to
175 °C results in amorphous material due to the decomposition of
TEA".* The relative amount of OSDAs is also very important in
initiating synergy between them, since cooperation could be
turned into competition by manipulating this ratio. In the FAU
synthesis using the CE-Ch" system, control experiments were
performed while varying the Ch'/CE ratio or synthesis tempera-
ture and keeping other variables constant. Fig. 3A shows some of
these results where cooperation could be spoiled in the presence
of inadequate conditions. It was observed that sod units with trans
Ch" conformer occlusion preferentially aggregated into the SOD
phase rather than cooperated with CE to form pure FAU zeolite.

As another example, CHA zeolite could be obtained through
a wide range of TMAdaOH/TMAOH in a cooperative manner,
while too low TMAOH concentration leads to an amorphous
product, and excessive TMAOH concentration results in a
denser SOD phase (mixed with CHA).>> In a cost-effective
approach, the amount of costly TMAdaOH was kept low, and
the amount of inexpensive counterpart varied, as shown in
Fig. 3B. A very low amount of TMAdaOH, the well-established
OSDA for synthesizing CHA, could not direct the synthesis
towards pure CHA, thus a synergy between OSDAs is needed
for this purpose. On the other hand, sole use of TMAOH would
yield a mixture of amorphous and SOD phases.

In addition to the relative ratio of OSDAs, alkalinity and
inorganic cations could enhance or disrupt the cooperation. A
dual-OSDA approach has been implemented to obtain high silica
MOR (Si/Al > 30), as mentioned earlier in Table 1: cooperative
behavior was easily spoiled by the high alkalinity ratio (OH/Si >
0.5). In the presence of inorganic cations, organic species are
more difficult to incorporate in zeolite formation and result in a
framework with a relatively low Si/Al ratio.*° In addition to the Si/
Al ratio, inorganic cations significantly influenced the formation
of the pure MOR phase, where a slight increase in the Na'/Si
ratio resulted in the formation of quartz impurity in strongly
basic media.* It was found that a certain amount of alkalinity is
needed for the synthesis of high silica pure MOR zeolites.

Timed addition, or intermediate addition, can be an uncon-
ventional way to control cooperation/competition among

4504 | Mater. Horiz., 2025, 12, 4496-4509
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OSDAs. N,N,N-trimethyl-(—)-cis-myrtanylammonium hydroxide
(TMMAOH) is the primary OSDA used for the formation of CON
zeolite.*® However, TMMAOH is relatively expensive, which led to
the addition of TEAOH as an alternative OSDA to develop a more
cost-effective approach. Interestingly, the timing of TEAOH addi-
tion is crucial in achieving cooperation towards the pure CON
phase. Introducing TEAOH in the early stages of synthesis can
create competition between OSDAs, and the strong structure-
directing effect of TEAOH can direct the synthesis toward other
phases, like MFI, rather than achieving CON topology. On the
other hand, adding TEAOH in later stages results in cooperation
and promotes the formation of CON zeolites. "H NMR, *C MAS
NMR, and CHN analyses indicate the presence of TEA" and
suggest that even a small amount of TEA" occluded in the frame-
work enables the crystallization of CON zeolite.

Is competition always undesirable?

As discussed earlier, the competition of OSDAs may result in phase
selectivity issues and lead to obtaining either amorphous or
crystalline materials with mixed topology. However, this competi-
tion can also result in some intergrowth zeolites, which have shown
remarkable catalytic activity.'®>>°°®® An interesting example is the
synthesis of the AEI/CHA intergrowth using TMAda® and N,N-
diethyl-2,6-dimethylpiperidinium (DEDMP), which are two well-
known OSDAs for synthesizing pure CHA and AEI topologies,
respectively, along with its performance in the methanol to olefin
reaction (MTO) and the selective catalytic reduction of NOx
(SCR)."®**”° The silicoaluminophosphate form of this intergrowth
is a competitive catalyst compared to SAPO-34 (pure CHA) for
converting methanol or dimethyl ether (DME) into olefins due to
weaker acid sites and a longer catalyst lifetime.®®”"”> However, it is
necessary and simultaneously challenging to fine-tune their synth-
esis conditions to avoid the crystallization of independent zeolite
phases.’® For more detailed information, we would like to refer the
reader to the recent review focused on the synthesis and catalysis
aspects of these materials.”

Among the OSDAs frequently used in zeolite synthesis, tetra-
ethylammonium (TEA', .t and tgtg forms) and (2-hydroxy-
ethyl)trimethylammonium (choline, gauche and trans forms) are
known to exist as mixtures of isomers.”*”* The structure-directing
effect through cooperation (or competition) of these isomers has
been clearly demonstrated by leading to the synthesis of several
frameworks. However, the competitive formation of two or more
framework structures can also be influenced by geometrically
different isomers of the organic compounds used as OSDAs.
Fig. 4 shows representative isomeric OSDAs used in zeolite synth-
esis. Remarkable changes in phase selectivity can be seen in a pair
of isomers of N,N-diethyldecahydroquinolinium™ (Fig. 4a). For
example, the use of cis isomer of this compound led the formation
of four different framework structures: SSZ-26 (CON), SSZ-31 (inter-
growth SSZ-31), SSZ-35 (STF), and SSZ-48 (SFE). However, the trans
isomer yielded cage-based zeolites: SSZ-13 (CHA) and SSZ-36 (inter-
growth RTH-ITE). As expected, when using bulkier bicyclic OSDAs,
such as N N-diethyl-2-methyldecahydroquinolinium and 3-ethyl-
1,3,8,8-tetramethyl-3-azoniabicyclo-3.2.1]octane cations, the two iso-
mers of each OSDA exhibited completely different phase selectivities

This journal is © The Royal Society of Chemistry 2025
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Fig. 3 Effect of OSDAs relative ratio on the cooperative behavior of (A) Ch*—CE system toward the synthesis of pure FAU (Si/Al ratio is 7 and total OSDA/
Si ratio varies between 0.4-0.7 in synthesis mixture) and (B) TMA*-TMAda™ system toward the synthesis of CHA (Si/Al ratio is 10 and total OSDA/Si ratio
varies between 0.06-0.25 in the synthesis mixture). Based on data in ref. 48 for FAU and ref. 52 for CHA.

(Fig. 4b and c).””””° The competition between the formation of
channel-based CIT-9 (GME) and caged-based SSZ-39 (AEI) zeo-
lites was also observed in the cis and trans isomers of monocyclic
N,N-dimethyl-3,5-dimethylpiperidinium cation with relatively
minor difference in OSDA shape compared to bicyclic com-
pounds (Fig. 4d).*°

It should be noted here that, unlike the above cases, organic
isomers can compete with each other for the structure-direction of
the identical zeolite building unit. This can lead to differences in
the crystallization kinetics as well as the material properties.
Dusselier and co-workers examined the effect of diastereo- and
structural isomers of dimethylpiperidinium-based OSDAs, which

(a) H o
4 SSZ-26 (CON) \'
V- SSZ-31 (SSZ-31%) SSZ-13 (CHA)
" T $5235(STF) \ N& T S$52-36 (RTH-ITE?)
/ SSZ-48 (SFE) ﬁ \\
(b) y (
/ Cristobalite
N7 —> Layered mul/ —> SSZ-56 (SFS)
) Amorphous >
()
J—> SSZ-73 (SAS) —> RTH
N* N+/
\ \/
(d) ", - /""""[j/
CIT-9 (GME) O
— d ., —> S$S5Z-39 (AEI
- $SZ-39 (AEI) - WO (AEI)

Fig. 4 Representative effect of geometric isomers on phase selectivity. The cis (left) and trans (right) isomers of (a) N,N-diethyldecahydroquinolinium, (b)
N,N-diethyl-2-methyldecahydroquinolinium, and (c) 3-ethyl-1,3,8,8-tetramethyl-3-azoniabicyclo-[3.2.1]octane cations. (d) The effect of diastereo- and
structural isomers of dimethylpiperidinium-based OSDAs: N,N-dimethyl-cis-3,5- (left), N,N-dimethyl-trans-3,5- (middle), and N,N-dimethyl-cis-2,6-
dimethylpiperidinium (right). Asterisk (*) indicates the disordered framework structure (i.e., intergrowth family).

This journal is © The Royal Society of Chemistry 2025
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include N,N-dimethyl-cis-3,5- (cis-3,5), N,N-dimethyl-trans-3,5-
(¢trans-3,5), and N,N-dimethyl-cis-2,6-dimethylpiperidinium (cis-
2,6), on the crystallization of SSZ-39 (Fig. 4d).®' The authors
reported optimum synthesis conditions where pure SSZ-39 can
be synthesized with the cis-3,5, trans-3,5, or cis-2,6 isomers and
mixtures thereof. All as-synthesized SSZ-39 solids were calcu-
lated to have 4 organic molecules per unit cell, i.e., 1 OSDA per
cage, regardless of the cis-3,5/trans-3,5/cis-2,6 isomer ratio in
the initial gel. When isomers were in competition in the
synthesis media, there were remarkable isomer-dependent
trends in the relative crystallization rate (trans-3,5 > cis-3,5
> cis-2,6), as well as in the organic to be occluded preferentially
(trans-3,5 > cis-3,5 and cis-2,6 > cis-3,5). The same phenom-
enon, ie., faster crystallization kinetics induced by ¢rans iso-
mer, can be also confirmed in the similar study by the Shantz’s
group.®” In addition, they found that the presence of trans
isomer in Si-rich (Si/Alge: 45 vs. 15, 30) gels affects the Si/Al
ratio and local structure (Al zoning) of SSZ-39, resulting in the
different deNOx activity after Cu-exchange.’*®

Similarly, the competitive structure direction of dual OSDAs
for the same framework structure can occur in organics with
similar geometric shape but different charge distributions.
For example, phosphonium-based SDAs have higher positive
charge concentration on P than N-based counterparts. Alonso
and Blasco investigated the structure-directing properties of
TEA, tetraethylphosphonium (TEP), and mixtures of them with
different ratios in the formation of pure-silica ZSM-5 (MFI).**
All ZSM-5 products contained ca. 4 organic molecules per unit
cell. When both organics were present simultaneously in the
initial gel (i.e., [TEP/(TEP + TEA)]s; = 0.12 and 0.25), TEA and
TEP competed with each other to preferentially occupy the 4
channel intersections (i.e., [TEP/(TEP + TEA)|so1ia = 0.26 and
0.42). The favourable incorporation of TEP over TEA resulted in
the increase in the crystallization rate as rising the [TEP/(TEP +
TEA)]ge ratio. Additionally, the presence of P-containing OSDA
led to control of the crystal size and local structural disorder
(SiO™ or SiOH defects). However, it is difficult to control the
removal of P species because most of the P remains inside the
zeolite as extra-framework oxidized phosphorous species upon
calcination.

On the other hand, several studies have demonstrated
that the location of Al atoms in ZSM-5 (ie., straight and/
or sinusoidal channels or channel intersections) can be con-
trolled using various branched/straight-chain alcohols as non-
charged, pore-filling agents together with Na* ions.*>™®
This suggests that the synthetic concept using competition
between organics with similar geometric shapes can be
extended to competition between positively charged organics
(e.g., tetrapropylammonium for ZSM-5) and neutral alcohols
with similar shapes for the synthesis of fine-tuned aluminosi-
licate zeolites. To apply this competitive strategy widely, a
further understanding of their multiple chemical interactions
in complex media is still required. The timed additional synth-
esis method via a (semi)continuous reactor system may provide
clues to control the competitive directing effect of dual
OSDAs.*%%
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Conclusion

Improved zeolite synthesis can be achieved through a dual-OSDA
approach, which involves cooperation and/or competition of dif-
ferent OSDAs in the synthesis media. When OSDA cooperation
seems to occur, this is noticed from co-inclusion in the resulting
zeolite, (e.g: by stabilizing different parts of the framework) and/or
altering the synthesis outcome, such as acidity, Al distribution, and/
or the synthesis kinetics. This approach can sometimes be regarded
as more cost-effective (less consumption of expensive organics) and
time-efficient (faster kinetics) than conventional syntheses using a
single OSDA. However, cooperation can easily be disrupted, and
one of the challenges in dual-OSDA zeolite synthesis is determining
the conditions under which OSDA species can function in harmony
to affect zeolite properties and control phase selection. In this
featured article, we discussed the importance of cooperative dual-
OSDA synthesis in certain cases, explained the outcomes of this
approach, and described the different behaviors of cooperative
systems. As illustrated in Fig. 5, it reveals that the cooperation can
be feasible by (I) controlling the molar ratio of OSDAs, (II) having a
suitable synthesis temperature, and (II) providing a sufficient
alkalinity in the system. The timing of the addition of OSDAs could
also be considered as an unconventional strategy to achieve
cooperation toward our desired phase. When cooperation is over-
whelmed by the competition of OSDAs, amorphous or mixed
crystalline phases can be obtained. Still, an intergrowth of zeolites

OSDA competition

selectivity
issues

Cost-effective ‘.

production D
%"

Altering
synthesis
outcome

Sufficient
alkalinity

Fig. 5 Schematic representation of cooperative and competitive syn-
thetic strategies with their outcomes. OSDA molar ratio, synthesis tem-
perature, and alkalinity are the most effective parameters to control
cooperation in the dual-OSDA approach.

This journal is © The Royal Society of Chemistry 2025
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can also be formed in a targeted way, gaining a lot of momentum
recently."®”*° It is clear that the proper selection and combination
of the OSDAs with the conditions mentioned above will promote
cooperation toward zeolites with well-tailored properties. However,
this selection procedure remains a tedious task that involves
trial and error methods. Thus, computational and data-driven
approaches are needed to develop an efficient roadmap.

Perspective and outlook

e Intergrowths are zeolite-type materials that (in some cases)
possess remarkable catalytic activity. Instead of combining two
OSDAs and creating a competition that requires monitoring and
control, researchers have developed “bi-selective OSDAs”.%%*!
These compounds can form different topologies in a facile and
efficient one-pot synthesis. These multifunctional OSDAs were
designed through computational modeling, data mining, and
data-driven screening. Although these materials are not yet
industrialized, achieving cost-effective and bi-selective OSDAs
that reduce the usage of expensive OSDAs will be a big challenge.

e Industrial zeolite catalysts require a large amount of
expensive OSDAs during their manufacturing process. Not only
their synthesis is costly, but also the calcination step (burning
the organic) often requires considerable and careful environ-
mental consideration (e.g. dealing with off-gases). Although
there have been efforts to recycle OSDAs in zeolite synthesis,
this approach has not yet been commercialized. Therefore, it is
necessary to significantly reduce the usage of these expensive
OSDAs in the industry, which is counter to promoting the
addition of two such organics. Yet, a cooperative dual-OSDA
approach could be a good solution when a significant portion
of more expensive or burdensome OSDAs is substituted by a
cheaper and more benign one. Unconventional methods such
as intermediate addition (or timed addition) of OSDAs, e.g., via
the use of fed-batch reactors, could have significant potential to
reduce the needed amount of a specific OSDA (and even
perhaps in single OSDA systems) and lower the synthesis cost.

o It has been shown that cooperation between OSDAs could
speed up the crystallization and reduce the synthesis time for
specific structures. This suggests the possibility of using some
OSDAs as ‘“accelerators” in zeolite production, potentially
impacting both production time and cost, especially when
scaling up the synthesis.

e Many studies lack proper control experiments and a clear
mechanistic understanding. Researchers could gain insights
into the individual roles of OSDAs in cooperative strategies by
conducting more control experiments. For one, the ratios of
OSDAs should be varied in both directions (above and below 1)
while for single OSDA experiments, multiple controls are
needed. For example the synthesis medium either needs to
be carefully adjusted to have a control at the same OH/Si level,
or, at the same inorganic content. Additionally, identifying the
main drivers of cooperation (e.g., according to one or more of
the modes i-iv) as well as addressing the nature of cooperative
behavior (e.g. co-construction or promoting nucleation) would

This journal is © The Royal Society of Chemistry 2025
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help ongoing research in this area. Ultimately, most solutions
for dual-OSDAs arise from amine chemistry, but there is
potential to explore beyond that limitation.

e Intermediate additions of OSDAs or changing OSDA ratios
midway have mitigated undesired interactions and enabled
“cost-effective”” synthesis by replacing costly OSDAs with com-
mercially available ones.*>*?> Developing reactor designs to
facilitate these midway changes without interrupting the opera-
tional parameters (e.g., temperature and pressure) could be an
intriguing option for studying the cooperation behavior and
controlling the “cooperation-competition” in zeolite science.

e Machine learning and data-driven approaches are revolu-
tionizing science in many fields today, including the world of
zeolites. Traditional trial and error methods for finding suita-
ble OSDA candidates for the cooperative formation of zeolites
may not be always the way to go in the near future. Recent
studies have explored the potential of using data-driven meth-
ods to identify optimal OSDAs for cooperation.®*'#%% Their
approaches involve computational modeling based on the
binding energy of OSDAs. These new techniques® allow for
the design of more efficient and commercially viable syntheses
to produce finely tuned zeolite and zeotype materials. Some
hurdles here might be the modeling of interaction of charges of
OSDA and framework and its impact on zeolite synthesis
kinetics.
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