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We demonstrate ultra-low-power spiking neural network (SNN) infer-
ence on an RRAM crossbar array by applying network lightweight
techniques, and predict average power consumption using a highly
accurate array-level model. A 24 x 24 crossbar array was fabricated
using non-filamentary HT-RRAM, and quantized and pruned weights
were transferred to the array. The compact model of HT-RRAM was
used as a synaptic device to simulate a crossbar array model of the
same scales the fabricated array, and the same network lightweight
techniques were applied in the simulation. Both the crossbar array and
the array model successfully transferred over 94% of the weights within
an error margin of 2 nS, and the SNN inference results over 25 time
steps showed highly consistent output currents. With this reliable array
model, power consumption during MNIST inference was estimated for
arrays with lightweight techniques applied. Based on our experimental
results, the power consumption of image inference operations is
predicted to be 243 nW with weight quantization only and 222 nW
with weight quantization and pruning, across 10 classes. These findings
suggest that ultra-low-power operation can be achieved in the RRAM
array through the application of lightweight network techniques.

1. Introduction

Due to rapid growth of artificial intelligence (Al), its applica-
tions have expanded into various domains such as character
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In this study, we aimed to predict the power consumption during spiking
neural network inference in a crossbar array, employing network light-
weight techniques for ultra-low power operation, using a highly accurate
model. A 24 X 24 crossbar array was fabricated using non-filamentary
resistive random access memory based HT-RRAM, and weights with
quantization and pruning applied were transferred to the array. Based
on our highly accurate and reliable array circuit model, the power con-
sumption was obtained for image inference in hardware-based neural
networks employing low-power resistive memories and network light-
weight techniques. Based on our experimental results, the power consump-
tion of image inference operations is predicted to be 243 nW with the
weight quantization only and 222 nW with the weight quantization and
pruning, across 10 classes. We believe that our research and discoveries
will serve as a cornerstone for enhancing the performance of ultra-low-
power hardware visual inference systems utilizing next-generation resistive
memory and establishing a framework for predicting power consumption.

recognition, image generation, and autonomous driving.'?
Recently, the growth of large language models (LLMs) has led
to the emergence of Al chatbots capable of human-like inter-
actions and contextual understanding, becoming essential
parts of people’s daily lives.> To achieve high inference
accuracy, these AI models require both huge training and
testing on substantial datasets. Traditionally, AI computations
are carried out on software-based artificial neural networks
(ANNs) running based on the von Neumann architecture, which
relies on sequential data transfers between the central proces-
sing units (CPUs) and memory. This approach often leads to
significant energy consumption and limited efficiency. In an
effort to mitigate such bottlenecks, graphics processing units
(GPUs) or specialized hardware accelerators, such as neural
processing units (NPUs), have been employed to exploit parallel
data processing. However, these solutions also cause high
power costs and require server-grade hardware for large-scale
training and inference tasks. Consequently, there is a growing
emphasis on the development of next-generation computing
architectures that enable low-power, highly parallel operations,
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thereby addressing the ever-increasing
demands of contemporary Al systems.

One of the most promising approaches is to emulate the
biological neuron and synapse structures in the hardware. By
using crossbar array architectures, ANN can rapidly process
data in parallel through vector-matrix multiplication (VMM)
between stored weights and incoming input signals.>® In
particular, the biological brain operates with minimal power
consumption by using spike pulses of uniform amplitude and
width, enabling event-driven operation based on temporal
differences. Therefore, implementing a spiking neural network
(SNN) in hardware-based ANN allows for much higher energy
efficiency compared to conventional deep neural networks
(DNNs) that rely on vector-based input signals.”'® Synaptic
devices responsible for weight storage may utilize conventional
CMOS-based non-volatile memory (NVM).'"'> However, due to
its limitations in speed and scalability, many researchers are
focused on next-generation analog memories such as resistive
RAM (RRAM), ferroelectric RAM (FRAM), and spin-transfer
torque resistive RAM (STT-RAM)."”>'* Among these, RRAM has
gained considerable attention for its suitability for array imple-
mentation due to its high multi-level cell capability and excel-
lent endurance.>™"°

Filamentary RRAM, the most widely studied type among
oxygen-based RRAM devices, offers advantages in terms of long
data retention and high endurance compared to other types.
However, notable current variability with the applied set and
reset voltages can interfere with precise weight transfer, directly
affecting inference accuracy. Additionally, as device scaling is
pursued for high-density integration, the forming voltage tends
to increase, and the conductivity in the low-resistance state
(LRS) after filament formation does not decrease proportionally
relative to that of the high-resistance state (HRS). These char-
acteristics can negatively impact conductivity uniformity across
the array and interfere with accurate weight transfer when
implementing multi-bit functionality.?*>?

Moreover, several challenges arise during the fabrication of
RRAM arrays. Since RRAM performance is highly dependent on
the chemical composition of materials, any inconsistency of
stoichiometry during deposition can result in imprecise resis-
tance changes in response to voltage. Also, if the thin film is not
deposited uniformly over the entire wafer area, inconsistencies
in device characteristics may occur between array elements.
These issues become even more critical in multilayered RRAM
devices. Minor changes in process conditions or incomplete
process control can weaken the uniformity of switching beha-
vior across the array. This makes accurate weight transfer
difficult and necessitates additional time and cost for optimiza-
tion. Therefore, it is essential to establish a high-precision array
model that can predict the variation of operational character-
istics of synaptic devices before array fabrication.

In this study, we used an oxygen vacancy-based non-
filamentary RRAM to minimize issues such as non-uniform
conductivity and scaling limitations encountered in filamen-
tary RRAM. The 24 x 24 RRAM crossbar array was fabricated
using HT-RRAM with HfO, and TiO, as insulating layers,

computational
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employing it as a synaptic device. To enable ultra-low-power
operation, mimicking the efficiency of biological neural networks,
a lightweight network was realized by applying quantization and
pruning to the pre-trained positive and negative weights, which
were then transferred to the array. Subsequently, a 24 x 24
crossbar array was modeled using the PySpice tool, applying the
compact model of HT-RRAM to accurately simulate the character-
istics of the device under various operational conditions. The
weight transfer and MNIST inference results obtained from the
physical array and the array model were compared, demonstrating
that the array model accurately reflects the behavior of the
physical array. A schematic overview of this process is illustrated
in Fig. 1. Finally, the average power consumption for 10 classes
(from 0 to 9) was calculated using the array model, revealing
differences in power consumption when quantization-only and
quantization with pruning were applied.

2. Results and discussion

2.1. RRAM device characteristics

For non-filamentary switching operation in oxygen vacancy-
based RRAM devices, it is crucial to ensure the uniform gen-
eration of oxygen vacancies and oxygen ions across the entire
device area. In typical filamentary RRAM, applying set voltage
induces the formation of conductive filaments in the resistive
switching layer (RSL), connecting the top and bottom electro-
des, which results in a sudden increase in current. An effective
approach to suppress this behavior involves using a metal oxide
with a metal-oxygen bond energy higher than that of the RSL,
serving as a barrier layer to inhibit the formation of conductive
filaments. In this work, we fabricated HT-RRAM devices using
TiO, as the RSL and HfO, as the barrier layer. As shown in Fig.
S1 (ESIT), the graph illustrates the bond energies between
various metals and oxygen.?* According to this data, the Hf-O
bond energy (791 k] mol ') is higher than the Ti-O bond energy
(662 kJ mol™"), suggesting that the HfO, barrier layer can
effectively inhibit the formation of conductive filaments within
the RSL, even when the set voltage is applied.

Fig. 2a illustrates the fabrication process of the HT-RRAM
device. The process was conducted on a 4-inch heavily doped p-
type silicon wafer, with a 300 nm silicon oxide layer formed
through a wet oxidation process. First, the bottom electrode
(BE) was deposited using an electron-beam evaporation system,
where 10 nm of Ti and 50 nm of Pt were deposited. Patterning
was carried out through a lift-off process. Next, TiO, was
deposited to a thickness of 9 nm via oxygen reactive sputtering
which serves as the RSL. To analyze the electrical properties as a
function of the oxygen concentration in the RSL, TiO, was
grown at three oxidation conditions (0.3, 0.7, and 1.1 sccm). In
the third step, a barrier layer of HfO, was deposited to a
thickness of 4.5 nm using atomic layer deposition (ALD). In
the fourth step, the top electrode (TE) was deposited using the
electron-beam evaporation system, with 10 nm of Ti and 50 nm
of Pt. Patterning was carried out through the lift-off process.
Finally, residual oxide was etched to remove the remaining

This journal is © The Royal Society of Chemistry 2025
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Fig. 1 Schematic diagram of the inference system of a biological neural network and hardware-based spiking neural network implemented with RRAM
crossbar array. Low power consumption is achieved by applying lightweight techniques to the crossbar array, which is also implemented as a reliable

simulation model to estimate power consumption.

oxides and to ensure the stable performance of the device.
Additionally, a reference filamentary RRAM device, comprising
a Pt/Ti/HfO,/Pt/Ti stack, was fabricated without the deposition
of TiO,. Fig. 2b presents the high-resolution transmission
electron microscopy (HR-TEM) image and energy dispersive
X-ray spectroscopy (EDS) line scanning of the fabricated HT-
RRAM device. The HR-TEM image confirms that all layers were
stacked as intended, indicating the successful operation of the
fabrication process. For a more detailed analysis, the atomic
percent obtained from EDS line scanning clearly shows the
presence of approximately 4.5 nm of HfO, between Ti and TiO,,
while TiO, was confirmed to have a thickness of around 9 nm.
Additionally, Fig. 2c presents the 3D schematics of both the HT-
RRAM and the reference RRAM. To analyze the non-filamentary
switching behavior of the HT-RRAM, we compared the refer-
ence and HT-RRAM devices after performing a DC sweep. As
shown in Fig. 3a, the reference RRAM device showed an abrupt
set at 1 V and a gradual reset at —1 V after the forming process,
which are characteristic of filamentary RRAM behavior. This
behavior is consistent with that of the TiO,-based RRAM, as
shown in Table S1 (ESIT). For the HT-RRAM devices with oxygen
composition of 0.3, 0.7, and 1.1 sccm, the I-V characteristics
were measured under the same voltage conditions applied to
the top electrode, up to hard breakdown. The corresponding
results are presented in Fig. 3b-d. In contrast to the reference
RRAM device, the HT-RRAM exhibited a gradual increase in
current upon the application of the set voltage under all three
oxygen partial pressure conditions. This behavior confirms that
the HfO, layer effectively suppresses the formation of conduc-
tive filaments within the TiO, layer. While several previously

This journal is © The Royal Society of Chemistry 2025

reported RRAM devices share a similar HfO, and TiO, bilayer
structure, our device uniquely operates without a compliance
current or forming voltage, due to its non-filamentary switching
mechanism. Comparative details are summarized in Table S2
(ESTY).

Moreover, under all three oxygen partial pressure condi-
tions, the set voltage gradually increased in approximately 0.2 V
intervals, ranging from 3 V to just before hard breakdown,
enabling multi-level conductance control. However, hard break-
down occurred at an average 4.4 V and permanently altered the
conductance in the LRS state, making it essential to avoid such
conditions during switching operations. Therefore, the voltage
range for safe multi-level conductance switching is limited to
3Vto4.3V.

To compare the electrical characteristics of HT-RRAM under
three oxygen compositions, each I-V curve obtained with a 4 V
applied voltage was overlaid, as shown in Fig. 3e. At 1V, the 1.1
scem condition exhibited the widest current window, which can
be attributed to its higher maximum current under the same
set voltage. These results indicate that higher oxygen partial
pressure within the RSL increases the probability of oxygen
vacancy generation, resulting in a relatively higher conductivity.
Such characteristics lead to an expanded current window range,
suggesting that oxygen partial pressure directly impacts the size
of the current window in the switching layer.

Lastly, the scalability effects of the HT-RRAM device were
assessed by measuring cells with four distinct sizes: 2.5 pm x
2.5 um, 5 um X 5 um, 10 pm X 10 um, and 20 pm X 20 pm. This
approach allowed for a comparative analysis of the devices
performance across varying cell areas, providing insights into
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Fig. 2 (a) Fabrication process flow of the HT-RRAM. (b) TEM image and
EDS line scan of HT-RRAM. (c) Comparison of stack structure and layer
thickness between the HT-RRAM and reference RRAM.

how scaling impacts the electrical characteristics of non-
filamentary RRAM. All devices were initially set to the HRS state,
and a 4 V bias was applied to the TE to switch them to the LRS
state. Under the same bias conditions, larger cell areas exhibited
higher current levels. Fig. 3f presents box charts showing the
current densities of LRS and HRS states measured from 10 devices
per each cell size. The current density was calculated by dividing

View Article Online
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the current measured at a 1 V read voltage by the respective cell
area. The box charts reveal that current density is nearly unaffected
by cell size, demonstrating a key characteristic of non-filamentary
RRAM devices. Unlike filamentary RRAM devices, where current
flows through highly localized conductive filaments, non-
filamentary devices exhibit uniform current flow across the entire
cell area, resulting in consistent current density. This uniformity
highlights a significant advantage for high-density integration:
even with a reduction in device size, the electrical characteristics
remain consistent, making non-filamentary devices ideal for array
fabrication and miniaturization.

Synaptic devices intended for application in crossbar arrays
benefit from enhanced multi-level functionality when the cur-
rent window is wider within the same switching voltage range.
To meet these requirements, we aimed to implement an array
using the 1.1 sccm HT-RRAM, which demonstrated a larger
current window under these conditions. Initially, the multi-
level characteristics of the 1.1 sccm HT-RRAM were evaluated.
Based on the switching voltages identified in the I-V character-
istics, ISPP (incremental step pulse programming) was applied
within a range that avoids hard breakdown. Set pulses, starting
at 3 V and increasing in 25 mV increments up to 4.3 V, and
reset pulses, starting at —1 V and decreasing in 50 mV
increments down to —2.5 V, were sequentially applied to the
device in its initial state. Between each pulse, a read pulse of
1 V was applied, and the resulting current values were recorded
and presented in Fig. 4a. The width of all pulses was set
to 30 ms.
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10T Gradual reset CC: 200 pA I HT-RRAM I HT-RRAM
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Fig. 3 (a) I-V characteristics of the reference RRAM with a single HfO, layer. (b)—(d) /-V characteristics of HT-RRAM based on the oxygen content in the

TiO, layer. (e) Graph comparison at 4 V set under oxygen composition. As the oxygen composition increases, the current window at 1 V read shows an
increasing trend. (f) Box chart representing current density in LRS and HRS for various cell sizes. Measurements were conducted on 10 devices per

condition, showing consistent current density regardless of cell size.
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Fig. 4 (a) ISPP result of single HT-RRAM over three cycles. (b) Cumulative
distribution of 3-bit target states (G; to Gg) in HT-RRAM. About 94% of
values were tuned within a 2 nS error margin and the remaining values
were tuned within a 4 nS error margin.

The results of three cycles revealed a repeatable current
range of approximately 0 nA to 80 nA, demonstrating the
potential for 3-bit weight tuning (G, to Gg) with 10 nA intervals
at 1 V. In addition, the gradual current increase observed in the
long-term potentiation (LTP) region suggests that it is suitable
for reaching specific target states, whereas the abrupt current
drop in the long-term depression (LTD) region indicates that it
should be used solely for resetting the conductance state. Based
on these findings Fig. 4b presents the cumulative probability of
each tuned state using the incremental step pulse verification
algorithm (ISPVA). Conductance was also measured at a 1 V
read voltage, and the results include data from 50 devices for
each state. Notably, 94% of the total weights were tuned with an
error margin of 2 nS, while the remaining values were tuned
within a 4 nS error margin. These error margins are well within
the acceptable range, given the target weight interval of 10 nS.
This indicates that the device can be quantized and pro-
grammed as a 3-bit weight in a 24 x 24 array configuration.

2.2. RRAM device compact modeling for the array model

Based on the measured characteristics of the actual device, a
compact model was developed. This allows efficient analysis
that would be challenging to perform via measurements, such
as repeated execution of VMM operations, monitoring of indi-
vidual current paths, and systematic evaluation of power

This journal is © The Royal Society of Chemistry 2025
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Fig. 5 (a) Designed compact model of HT-RRAM that was implemented
in PySpice. By connecting multiple voltage-controlled switches in parallel,
gradual set behavior is induced. (b) ISPP simulation result of the compact
model over three cycles.

consumption. Both compact modeling of the device and array
modeling were implemented with PySpice. PySpice enables
circuit design through Python scripts without a graphical user
interface (GUI), making it significantly simpler and faster to
model high-density crossbar arrays with repetitive structures
compared to conventional SPICE tools. The absence of graphic
processing further reduces simulation time. In HT-RRAM, the
HfO, layer serves as a barrier that prevents the formation of
conductive filaments in the TiO, layer between the two electro-
des. This mechanism enables the generation of oxygen ions and
vacancies throughout the insulating region, and the resulting
variation in their concentration leads to changes in conductivity.
As illustrated in Fig. 5a, the compact model of HT-RRAM
employs voltage-controlled switches connected in parallel, allow-
ing the insulating region (switching area) to gradually adjust its
conductivity based on the applied voltage. Each switch modu-
lates its resistance according to the threshold voltage (V1) and
the hysteresis voltage (V4;), and connecting multiple switches in
parallel helps prevent an abrupt set of devices. In the lower part
of the insulator (insulator area) underneath the switching area,
fewer oxygen ions and vacancies are generated and they do not
significantly affect the abrupt resistance changes, so an addi-
tional resistor is placed here. Furthermore, because the current
in RRAM changes exponentially during voltage sweeps, resistors
in both the switching area and the insulator area are given non-
linear characteristics. As both areas are intrinsically insulators,
resistance and capacitance coexist, and capacitance is therefore
included in the model. Finally, to implement the effect of contact

Mater. Horiz., 2025, 12, 8059-8071 | 8063
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Table 1 Circuit element, value, and description of HT-RRAM compact modeling

Element Value Description

R 51 x 10°-exp[—(abs(Varear) — 2.52)/0.35] Q Non-linear switch resistance

R; 87 x 10%-exp[—(abs(Vareaz) — 4.52)/0.485] Q Non-linear insulator resistance
R¢ 100 Q Contact resistance

Cs 0.1 fF Switch Capacitance

C; 0.1 fF Insulator Capacitance

S-Sy, Vr (threshold voltage): 0.85-1.55 V Switch resistances (HRS to LRS)

Vu (hysteresis voltage): 2.4 V

Ron (on resistance): 30 kQ-62 MQ

Rorr (off resistance): 10" Q

resistance, additional resistors are placed at both the top and
bottom of the circuit. However, since these parameters (R, Cs, C;)
are not directly relevant to this study, arbitrary values were
assigned to ensure that they do not affect the experimental results.
Table 1 summarizes the circuit elements, values, and their
descriptions used in the compact model. Finally, to replicate the
variability in current observed in actual devices due to stoichio-
metric differences, Gaussian random values were added via
Python coding to allow conductance to fluctuate within a defined
range. The variables set in the compact model can be customized
at any time to reflect the device’s characteristics and variability.

Results from DC sweep simulation demonstrate that the
compact model exhibited a gradual set behavior during a voltage
sweep from 0 V to 4.2 V, while reset behavior occurred during a
sweep down to —1.6 V. To further evaluate the feasibility of
implementing multi-level capability, an ISPP simulation was
conducted. In this simulation, set pulses were sequentially
applied starting at 3 V and increasing in 25 mV increments up
to 4.2 V. Subsequently, reset pulses were applied, starting at —1V
and decreasing in 50 mV increments down to —1.6 V, effectively
replicating the actual measurement scheme. Fig. 5b presents the
current values read at a 1 V pulse between each programming
pulse. The pulse width was set to 2 ms. Over three cycles, the
current values were observed to consistently range from approxi-
mately 0 nA to 80 nA. This behavior closely matches that of the
actual device, confirming its potential for 3-bit weight tuning (G,
to Gg) with 10 nA intervals at 1 V. These results indicate that the
compact model was designed successfully to operate in a way
closely aligned with the behavior of the actual device.

2.3. 24 x 24 RRAM crossbar array and SNN implementation

Fig. 6 illustrates the overall SNN structure used to infer a specific
digit. This network consists of a two-layer architecture with
dimensions of 784 x 24 x 10, designed to process the modified
national institute of standards and technology database (MNIST)
dataset and output one of ten possible results. Specifically, one
of the 2000 test digit images (from 0 to 9) is fed into the input
layer. The 28 x 28 pixels of the image are converted into spike
rates based on pixel brightness and transmitted as input signals.

The signals and the weights stored in the first layer perform
VMM operations to produce currents, which are integrated and
fired by neurons to generate spikes for the second layer. The
second layer, a fully connected 24 x 10 network, outputs
currents through VMM operations involving the spikes from

8064 | Mater. Horiz., 2025, 12, 8059-8071

the first layer and its stored weights. This layer is implemented
using an HT-RRAM based crossbar array and an array model
using PySpice, as shown in Fig. 6b and c. The array model,
based on the compact model, was designed to incorporate line
resistance. Further details are provided in Fig. S2 (ESIt).

In both cases, the system is designed to accept spike trains
over 25 time steps and perform VMM operations at each timestep
to produce current outputs. To represent both positive (Ig+) and
negative (Ig-) weight values, the network requires differential
pairs of 24 x 10 crossbar arrays. As illustrated in Fig. 6(c), a
single 24 x 24 crossbar array is used, where positive weights range
from I+ (1, 1) to I+ (10, 24), occupying rows 1 to 10 and columns 1
to 24, while negative weights range from Is- (1,1) to Ig- (10,24),
occupying rows 11 to 20 and columns 1 to 24.>* Input spikes are
applied to 24 wordlines (input nodes), and the VMM operations
direct the resulting outputs to 20 bitlines (output nodes). The
outputs for positive and negative weights are subtracted, and the
current sum determines the correct digit based on the output
node with the highest current. The overall classification accuracy
is calculated using the same method. The array model simula-
tions were conducted under identical conditions.

Therefore, we performed software-based pre-training using
Python simulations (ANN with ReLU activation) to ensure that all
layers include both positive and negative weights. This off-chip
learning approach allows only the inference operation to be
executed on the physical array, making it advantageous for low-
power operation in resource-limited edge devices. Two types of
pre-training were performed: 3-bit quantization (QT) and 3-bit
quantization & 40% pruning (QT & PR). Fig. 6d shows the weight
histograms for all layers under FP32 and QT conditions, with QT
presented separately for each layer. Meanwhile, FP32 weights are
distributed across a wide range, and QT restricts weights to
specific discrete values. For QT & PR, a pruning ratio of 40% was
applied to the FP32 weights using a pruning method, and
quantization was performed afterwards.”> " Fig. 6e illustrates
the weight histograms for the second layer after applying QT and
QT & PR. In the case of QT & PR, weights near —0.25 and 0.25
disappear due to pruning. All pre-trained weights were designed
to maintain an accuracy of 90% during ANN inference, as shown
in Fig. 6f, which compares the weight accuracy for each case.

Subsequently, the pre-trained weights were optimized for
HT-RRAM characteristics by mapping them to conductance
values ranging from 10 nS to 80 nS with 10 nS intervals. SNN
simulations were performed to verify that these optimized

This journal is © The Royal Society of Chemistry 2025
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Fig. 6 (a) Schematic of the 784 x 24 x 10 SNN structure. The spikes of a 28 x 28 pixel image, converted via rate encoding, are input into the first layer at
each timestep. The spikes generated through VMM are then transmitted to the second layer. The fully connected 24 x 10 network was implemented
using both hardware and modeling. (b) The 24 x 24 crossbar array fabricated using HT-RRAM, where the weights are stored in the cells of the array.
(c) 24 x 24 crossbar array model with compact modeling of the designed HT-RRAM. To implement both positive and negative weights, the model
has 20 outputs as in the physical array. Each digit from 0 to 9 is identified through current differences. (d) Weight histograms for all layers show 32-bit
floating point weights distributed widely, whereas quantization confines them to discrete values. (e) The weight histograms of the second layer after
quantization and quantization & pruning show that from —0.25 to 0.25 were eliminated through pruning. (f) The pre-trained results extracted weights that
ensured over 90% accuracy even in the quantization & pruning case.

weights maintained their accuracy. Furthermore, the SNN on precise transfer, whereas the array model was designed to
simulation converted the ANN inputs of each layer spike train, minimize simulation time. As shown in Fig. 7a, the RRAM
facilitating the ANN to SNN conversion process. crossbar array used the half-bias method to control the con-

Following the conversion, different methods were employed ductance of individual cells.?® In this method, half of the target
to transfer the optimized weights to the fabricated HT-RRAM  voltage with opposite polarity was applied to the TE and bottom
array and the array model. The fabricated RRAM array focused electrode (BE) using an SMU pulse. A rectangular pulse with a

This journal is © The Royal Society of Chemistry 2025 Mater. Horiz., 2025, 12, 8059-8071 | 8065
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array. The half-bias method was employed using rectangular pulses with a
width of 30 ms. (b) Schematic of the weight transfer method in an RRAM
crossbar array model. The fast weight transfer method was applied using
triangular pulses with a 2 ps width.

20 ms width was used to adjust the conductance, and a 1 V read
pulse was applied to measure the adjusted conductance. If the
measured value exceeded the allowable tolerance from the target
state, set and reset pulses were applied iteratively. The pulse
voltage was adjusted based on measured error to quickly reach
the target state. Furthermore, the voltage applied to half-selected
devices was automatically limited to half of the target voltage,
preventing unintended conductance changes and enabling accu-
rate weight transfer.

Furthermore, Kim et al. proposed a fast weight transfer method
designed for real-time online learning in RRAM-based neuro-
morphic systems, demonstrating significant improvements in
the efficiency of weight update operations.” In this study, the
same method was applied to minimize the simulation time for
weight transfer. Fig. 7b illustrates the fast weight transfer method.
A triangular pulse with a 2 ps width was applied to the selected
wordline at the target voltage, while the bitline was driven with
either ground (GND) or an inhibit voltage (Vi) to control writing
or inhibition. For inhibited wordlines, half of the target voltage
was applied to effectively suppress write disturbances in unse-
lected cells. The key advantage is that devices sharing the same
weight level on a wordline are transferred simultaneously, which
not only ensures reliable data writing but also reduces the weight
transfer simulation time by half compared to the half-bias method.

Using the above methods, we completed the weight transfer
and evaluated the accuracy of the transferred weights. Fig. 8
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Fig. 8 Comparison of conductance changes according to weight levels in
the (a) quantization applied crossbar array and (b) array model. Compar-
ison of conductance changes according to weight levels in the (c)
quantization & pruning applied crossbar array and (d) array model. In both
network lightweight methods, each measurement and simulation shows
that 240 devices are transferred at 10 nS intervals from 10 nS to 80 nS
under a 1V read condition.

illustrates the change in conductance for 240 devices trans-
ferred from the RRAM crossbar array and the array model,
classified by weight levels. In both the measured and simulated
QT and QT & PR cases, the distinction between LRS and HRS is
clearly observed. HRS conductance values are consistently
distributed near 0 nS regardless of the weight level, while LRS
values show conductance changes corresponding to their
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Fig. 9 (a) and (b) Comparison of violin plots for crossbar arrays and array
models implementing both positive and negative weights after quantiza-
tion. (c) and (d) Comparison of violin plots for crossbar arrays and array
models implementing both positive and negative weights after quantiza-
tion & pruning. The measurement and simulation results exhibit a high
degree of similarity.
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(a) and (b) Target weight map applied with quantization and quantization & pruning. (c) and (d) Transferred weight map applied with quantization

and quantization & pruning. (e) and (f) Simulated weight map applied with quantization and quantization & pruning. Both the transferred and simulated

weight maps exhibit values closely aligned with the target weight map.

respective weight levels within the allowable variance. Notably,
in the QT & PR case, the 20 nS weight level is absent due to
pruning. This also indicates that our HT-RRAM operates within
a smaller conductance range compared to RRAM arrays
reported over the past five years, highlighting its advantage in
achieving ultra-low-power operation (see Table S3, ESIt). Fig. 9
presents a violin plot that compares the measured and simu-
lated results for both positive and negative weights. The root
mean square error (RMSE) and mean absolute error (MAE) are
1.1 nS and 0.85 nS for the measured QT results, and 0.57 nS and
0.48 nS for the QT & PR results. This indicates that, despite a
few outliers, most of the weights were transferred with an
allowable error margin. Also, the RMSE and MAE for the

This journal is © The Royal Society of Chemistry 2025

measured QT & PR results are 0.57 nS and 0.48 nS, respectively.
The simulation results also closely matched the measured data,
confirming the strong alignment of the array model.

Fig. 10 illustrates the weight maps of the target, the RRAM
crossbar array, and the array model after weight transfer under
both QT and QT & PR cases. The weight map represents the
calculated values of Ig-Is-, and Fig. S3 (ESIt) displays the
detailed weight maps for I+ and I-. These results confirm that
we conclude that the weights were successfully transferred to
the RRAM crossbar array. Moreover, the results demonstrated
that a reliable array model has been established, closely repli-
cating not only the measurement data, but also its associated
error margins.
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Fig. 11 (a) Comparison of current output results between the RRAM
crossbar array and array model when the same image (number 6) is input.
The current output at each node from the measurements and simulations
is found to be highly similar. Confusion matrix generated from inference
results of 20 samples per class for both (b) quantization and (c) quantiza-
tion & pruning using the array model.

After completion of the weight transfer process, VMM opera-
tions were performed using test image 6. Fig. 11a shows the current
values of the output nodes for the RRAM crossbar array measure-
ment and the array model simulation. In both cases, the highest
current output was observed for digit 6, and the current outputs
from other output nodes exhibited significantly similar trends. This
implies that the array model not only emulates weight transfer with
high fidelity, but also performs SNN inference in a manner aligned
with the physical array. Notably, during inference, all bitlines in
both the simulated array model and the physical array are
grounded, thereby preventing the occurrence of sneak paths. More
details are illustrated in Fig. S7 (ESIt). Additionally, to further
validate the VMM operations of the array model, classification tests
were conducted using 200 random MNIST test images (20 images
per digit) across all digits. The confusion matrix in Fig. 11b and ¢
presents the accuracy of inference for each digit under the condi-
tions QT and QT & PR. QT achieved an average inference accuracy
of 95% in all classes, while QT & PR maintained an average
accuracy of 90% despite pruning. Interestingly, these results are
highly consistent with the pre-training accuracy obtained through
Python simulations, as shown in Fig. 6f. Thus, the array model
implemented in this study can be considered reliable.

As illustrated in Fig. S6 (ESIT), during the inference process,
the current measured on a single wordline in the array is equal
to the sum of the currents flowing out from the 20 connected
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three random images from a single class, demonstrating that QT and QT & PR
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bitlines. Consequently, the power consumed by this wordline
over time can be considered the sum of the power consumed by

the 20 connected RRAM devices, as presented in eqn (1).*%*"

20
Z Pi/(l) (1)
Jj=1

P=VI=V?/R,

As presented in eqn (2), integrating the time-dependent power
consumption of a wordline over the entire inference period and
then dividing by that period calculates the average power con-
sumption (Payg;) of a single wordline. Furthermore, because the
array implemented in this study contains 24 wordlines, the total
sum of the Payg; values of all wordlines calculates the average
power consumption of the array (Pavg.array), @5 shown in eqn (3).

1 T 20
?Jo Zl Pj(1)dt = Pavagi )
=
24
Z PAVG.i = PAVG.array (3)

i=1
The time-dependent power consumption of each individual
wordline in the array can be visualized, as shown in Fig. S4

This journal is © The Royal Society of Chemistry 2025
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(ESIY). The figure also demonstrates that more frequent voltage
application leads to increased power consumption. Using this
method, we finally computed the power consumption during
SNN inference. Fig. 12a shows the total power consumption
over the inference time in the array and the corresponding
PavG.array for the case when the input digit is 0. Fig. 12b
compares the Payg.array Values during inference on three ran-
domly selected MNIST images for each digit (class) under the
QT and QT & PR cases. The total inference time was 25 time-
steps, and all images were correctly classified without errors in
the results. For all images, QT & PR consumed less power than
QT. On average, the Pyyg.array values for QT and QT & PR were
243 nW and 22 nW, respectively, which corresponded to
approximately 8.6% reduction in power consumption with QT
& PR. Although increasing the current pruning ratio beyond
40% could further decrease the power consumption, it may also
lead to a decrease in inference accuracy, as illustrated in Fig. S5
(ESIT), which shows trade-off between the pruning ratio and the
accuracy of inference. Therefore, determining the optimal
pruning ratio for applications that require low power consump-
tion necessitates a careful balance between accuracy and power
consumption.

3. Conclusion

In this study, we fabricated a non-filamentary HT-RRAM using
HfO, as a barrier layer and TiO, as a resistive switching layer to
prevent abrupt current increases and achieve precise multi-
level conductivity. DC measurements of individual devices
demonstrated the elimination of abrupt set behavior while
maintaining uniform current levels, even as the device area
was reduced. Through ISPP and ISPVA, we confirmed that the
device could be tuned into 8 discrete states (3-bit), and that
94% of 400 single devices were tuned within an error margin of
2 nS. Furthermore, the HT-RRAM compact model and crossbar
array were implemented using the PySpice tool. The results of
the ISPP simulation confirmed the potential to represent 3-bit
states, similar to the actual HT-RRAM device.

For ultra-low-power consumption, we applied two types of
lightweight network: QT and QT & PR to pre-trained FP32
weights. The weights were then successfully transferred to the
fabricated 24 x 24 HT-RRAM crossbar array. Through simula-
tions, a successful transfer of the lightweight networks showed
a weight map that was highly similar to that of the physical
crossbar array, including error margins. The SNN inference
results for digit 6 using both the RRAM crossbar array and the
array model revealed that the highest current output occurred
at the same output node, with closely matching current pat-
terns across all nodes. This confirms that we have implemented
a highly reliable array model. Simulation-based verification of
VMM operations demonstrated that QT and QT & PR achieved
average accuracies of 95% and 90%, respectively, on 200 ran-
dom MNIST images. Finally, average power consumption cal-
culated during inference (25 timesteps) showed that the two
types of lightweight networks consumed 243 nW and 222 nW,
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respectively, confirming that QT & PR consumed approximately
8.6% less power than QT.

These results suggest that ultra-low-power SNN inference
can be achieved not only through network quantization but
also by applying pruning techniques. Moreover, the array
model developed in this study demonstrated its ability not only
to predict operational characteristics but also to accurately
estimate error margins when implementing HT-RRAM devices
at the array scale. Additionally, the modeling suggests the
potential to implement various RRAM devices at the array level.

4. Experimental section

4.1. Electrical characterization

The electrical characteristics of the HT-RRAM devices were
evaluated using a Keysight 4156C, a semiconductor parameter
analyzer. DC measurements were performed utilizing a high-
resolution source measurement unit (HRSMU), which was also
employed to generate pulses for pulse testing. To transfer
weights to the array, specific cells within the array were selected
using a low-leakage switching matrix (Keysight E5250A) and a
probe card. For inference, spikes were generated via the
HRSMU, and at each time step, voltages of 1 V or 0 V were
applied to 24 wordlines through the switching matrix, while the
sum of currents was detected at bitlines set to ground. The
overall processes of weight transfer and inference, including
ISPVA, were controlled using a customized C++ program.

4.2. Pre-training simulations and lightweight networks

We first derived FP32-formatted weights trained using a software-
based ANN. Before training, all weights of the network with
dimensions of 784 x 24 x 10 were initialized using the He
initialization method.*®> During training, we used the back-
propagation algorithm, the cross-entropy loss function, and the
stochastic gradient descent (SGD) optimizer. The trained weights
were then quantized to 3-bits to generate quantized weights, and
their accuracy was evaluated using 10 000 test images. In the case
of quantization with pruning, we initially performed pruning at a
rate of 40% before 3-bit quantization. Pruning was conducted in
an unstructured method, and the final weights were also assessed
for accuracy using 10000 test images. To implement both excita-
tory and inhibitory synapses, we utilized differential pairs of
weights by calculating G6-G1 to realize G'5. For SNN inference,
we employed rate coding to convert pixel values into spike counts
for the network’s input spikes. Accordingly, at each time step, the
normalized pixel values of the images (ranging from 0 to 1) were
input into ReLU based neurons, resulting in higher pixel values
producing spikes of identical amplitude but with increased firing
frequency. The input spikes and weights transformed through
these processes for the second layer were utilized in RRAM cross-
bar arrays and PySpice simulations.

4.3. PySpice simulations

PySpice (version 1.5) was utilized in a Jupyter Notebook
environment based on Anaconda. A 24 x 20 array was modeled

Mater. Horiz., 2025, 12, 8059-8071 | 8069


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5mh00086f

Open Access Article. Published on 18 June 2025. Downloaded on 11/3/2025 1:48:19 AM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Communication

to implement differential pairs similar to a physical array,
accounting for non-ideal phenomena by embedding parasitic
elements such as line resistance and contact resistance. Pre-
trained weights were converted into piecewise linear (PWL)
functions using Python code to enable weight transfer simula-
tions at each time step. Input spikes for inference were simi-
larly converted to PWL signals using Python code, with input
spikes of 1 V or 0 V applied to the wordlines at each time step.
These input spikes were multiplied by the conductance stored
in the array and summed as the output currents at bitlines
maintained at 0 V. Furthermore, the error in each modeled
device was determined based on the measurement results
shown in Fig. 4b. Within the range of —4 nS to 4 nS, 94% of
the distribution lies between —2 nS and 2 nS, and an indepen-
dent normal distribution with a standard deviation of 1.06 nS
was assigned to represent the device error. In the array model,
each time a specific cell transfers its weight, a random value
sampled from this distribution is added. Consequently, when
the current is measured at the end of the bitline, the 24
individual errors combine, causing the total bitline error to
follow a new normal distribution according to the central limit
theorem. More details are shown in Fig. S6 (ESIt). By imple-
menting not only the weight-transfer process but also the errors
arising during inference in this way, we have significantly
enhanced the reliability of the array model simulation.
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